Resistance to Lefamulin: An Evaluation of Data from In Vitro Antimicrobial Susceptibility Studies
Abstract
1. Introduction
2. Methods
2.1. Sources and Search Strategy
2.2. Eligibility Criteria
2.3. Screening of Studies
2.4. Data Extraction and Tabulation
2.5. Breakpoints of Susceptibility Testing
3. Results
3.1. Selection of Relevant Articles
3.2. Main Findings
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| AMR | antimicrobial resistance |
| CABP | community-acquired bacterial pneumonia |
| CAP | community-acquired pneumonia |
| CLSI | Clinical and Laboratory Standards Institute |
| DOIs | digital object identifiers |
| ECR | early clinical response |
| EMA | European Medicines Agency |
| EUCAST | European Committee on Antimicrobial Susceptibility Testing |
| FDA | US Food and Drug Administration |
| GI | gastrointestinal |
| IACR | investigator’s assessment of clinical response |
| IV | intravenous |
| MDR | multidrug-resistant |
| MIC | minimum inhibitory concentration |
| MIC50 | minimum inhibitory concentration required to inhibit 50% of organisms |
| MIC90 | minimum inhibitory concentration required to inhibit 90% of organisms |
| MRSA | methicillin-resistant S. aureus |
| MSSA | methicillin-susceptible S. aureus |
| PO | oral |
| PTC | peptidyl transferase center |
| XDR | extensively drug-resistant |
References
- Musher, D.M.; Thorner, A.R. Community-Acquired Pneumonia. N. Engl. J. Med. 2014, 371, 1619–1628. [Google Scholar] [CrossRef]
- GBD 2021 Lower Respiratory Infections and Antimicrobial Resistance Collaborators. Global, Regional, and National Incidence and Mortality Burden of Non-COVID-19 Lower Respiratory Infections and Aetiologies, 1990–2021: A Systematic Analysis from the Global Burden of Disease Study 2021. Lancet Infect. Dis. 2024, 24, 974–1002. [CrossRef]
- Torres, A.; Peetermans, W.E.; Viegi, G.; Blasi, F. Risk Factors for Community-Acquired Pneumonia in Adults in Europe: A Literature Review. Thorax 2013, 68, 1057–1065. [Google Scholar] [CrossRef]
- Vaughn, V.M.; Dickson, R.P.; Horowitz, J.K.; Flanders, S.A. Community-Acquired Pneumonia: A Review. JAMA 2024, 332, 1282–1295. [Google Scholar] [CrossRef]
- Reichel, F.; Tesch, F.; Berger, S.; Seifert, M.; Koschel, D.; Schmitt, J.; Kolditz, M. Epidemiology and Risk Factors of Community-Acquired Pneumonia in Patients with Different Causes of Immunosuppression. Infection 2024, 52, 2475–2486. [Google Scholar] [CrossRef] [PubMed]
- McDermott, K.W.; Roemer, M. Most Frequent Principal Diagnoses for Inpatient Stays in U.S. Hospitals, 2018. In Healthcare Cost and Utilization Project (HCUP) Statistical Briefs; Agency for Healthcare Research and Quality (US): Rockville, MD, USA, 2006. [Google Scholar]
- Ramirez, J.A.; Wiemken, T.L.; Peyrani, P.; Arnold, F.W.; Kelley, R.; Mattingly, W.A.; Nakamatsu, R.; Pena, S.; Guinn, B.E.; Furmanek, S.P.; et al. Adults Hospitalized With Pneumonia in the United States: Incidence, Epidemiology, and Mortality. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2017, 65, 1806–1812. [Google Scholar] [CrossRef] [PubMed]
- Capelastegui, A.; España, P.P.; Bilbao, A.; Gamazo, J.; Medel, F.; Salgado, J.; Gorostiaga, I.; Esteban, C.; Altube, L.; Gorordo, I.; et al. Study of Community-Acquired Pneumonia: Incidence, Patterns of Care, and Outcomes in Primary and Hospital Care. J. Infect. 2010, 61, 364–371. [Google Scholar] [CrossRef]
- Theilacker, C.; Sprenger, R.; Leverkus, F.; Walker, J.; Häckl, D.; von Eiff, C.; Schiffner-Rohe, J. Population-Based Incidence and Mortality of Community-Acquired Pneumonia in Germany. PLoS ONE 2021, 16, e0253118. [Google Scholar] [CrossRef]
- Prina, E.; Ranzani, O.T.; Torres, A. Community-Acquired Pneumonia. Lancet 2015, 386, 1097–1108. [Google Scholar] [CrossRef]
- Jain, S.; Self, W.H.; Wunderink, R.G.; Fakhran, S.; Balk, R.; Bramley, A.M.; Reed, C.; Grijalva, C.G.; Anderson, E.J.; Courtney, D.M.; et al. Community-Acquired Pneumonia Requiring Hospitalization among U.S. Adults. N. Engl. J. Med. 2015, 373, 415–427. [Google Scholar] [CrossRef]
- Gadsby, N.J.; Musher, D.M. The Microbial Etiology of Community-Acquired Pneumonia in Adults: From Classical Bacteriology to Host Transcriptional Signatures. Clin. Microbiol. Rev. 2022, 35, e0001522. [Google Scholar] [CrossRef]
- The Aetiology and Antibiotic Management of Community-Acquired Pneumonia in Adults in Europe: A Literature Review—PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/24532008/ (accessed on 29 October 2025).
- Holter, J.C.; Müller, F.; Bjørang, O.; Samdal, H.H.; Marthinsen, J.B.; Jenum, P.A.; Ueland, T.; Frøland, S.S.; Aukrust, P.; Husebye, E.; et al. Etiology of Community-Acquired Pneumonia and Diagnostic Yields of Microbiological Methods: A 3-Year Prospective Study in Norway. BMC Infect. Dis. 2015, 15, 64. [Google Scholar] [CrossRef]
- Candel, F.J.; Salavert, M.; Basaras, M.; Borges, M.; Cantón, R.; Cercenado, E.; Cilloniz, C.; Estella, Á.; García-Lechuz, J.M.; Garnacho Montero, J.; et al. Ten Issues for Updating in Community-Acquired Pneumonia: An Expert Review. J. Clin. Med. 2023, 12, 6864. [Google Scholar] [CrossRef] [PubMed]
- He, H.; Wunderink, R.G. Staphylococcus aureus Pneumonia in the Community. Semin. Respir. Crit. Care Med. 2020, 41, 470–479. [Google Scholar] [CrossRef]
- Waagsbø, B.; Tranung, M.; Damås, J.K.; Heggelund, L. Antimicrobial Therapy of Community-Acquired Pneumonia during Stewardship Efforts and a Coronavirus Pandemic: An Observational Study. BMC Pulm. Med. 2022, 22, 379. [Google Scholar] [CrossRef] [PubMed]
- Cillóniz, C.; Garcia-Vidal, C.; Ceccato, A.; Torres, A. Antimicrobial Resistance Among Streptococcus pneumoniae. In Antimicrobial Resistance in the 21st Century; Springer: Cham, Switzerland, 2018; pp. 13–38. [Google Scholar] [CrossRef]
- Sfeir, M.M. Haemophilus Influenzae Global Epidemiology and Antimicrobial Susceptibility Patterns Including Ampicillin and Amoxicillin-Clavulanate Resistance Based on β-Lactamase Production, 2013–2022. BMC Infect. Dis. 2025, 25, 1391. [Google Scholar] [CrossRef] [PubMed]
- Self, W.H.; Wunderink, R.G.; Williams, D.J.; Zhu, Y.; Anderson, E.J.; Balk, R.A.; Fakhran, S.S.; Chappell, J.D.; Casimir, G.; Courtney, D.M.; et al. Staphylococcus aureus Community-Acquired Pneumonia: Prevalence, Clinical Characteristics, and Outcomes. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2016, 63, 300–309. [Google Scholar] [CrossRef]
- File, T.M.; Ramirez, J.A. Community-Acquired Pneumonia. N. Engl. J. Med. 2023, 389, 632–641. [Google Scholar] [CrossRef]
- Liang, S.; Wen, Y.-H.; Zhang, Z.-H.; Shi, Y.; Xu, J.-F. Efficacy of Lefamulin for Community-Acquired Bacterial Pneumonia (CABP) Patients: Pooled Analysis of the Lefamulin Evaluation Against Pneumonia (LEAP) 1, LEAP 2 and LEAP China Trials. Infect. Drug Resist. 2025, 18, 4833–4845. [Google Scholar] [CrossRef]
- Zahari, N.I.N.; Engku Abd Rahman, E.N.S.; Irekeola, A.A.; Ahmed, N.; Rabaan, A.A.; Alotaibi, J.; Alqahtani, S.A.; Halawi, M.Y.; Alamri, I.A.; Almogbel, M.S.; et al. A Review of the Resistance Mechanisms for β-Lactams, Macrolides and Fluoroquinolones among Streptococcus pneumoniae. Medicina 2023, 59, 1927. [Google Scholar] [CrossRef]
- No Development of Ciprofloxacin Resistance in the Haemophilus Species Associated with Pneumonia over a 10-Year Study | BMC Infectious Diseases. Available online: https://link.springer.com/article/10.1186/s12879-015-1267-3 (accessed on 25 November 2025).
- Shaikh, S.B.U.; Ahmed, Z.; Arsalan, S.A.; Shafiq, S. Prevalence and Resistance Pattern of Moraxella Catarrhalis in Community-Acquired Lower Respiratory Tract Infections. Infect. Drug Resist. 2015, 8, 263–267. [Google Scholar] [CrossRef]
- Wang, G.; Wu, P.; Tang, R.; Zhang, W. Global Prevalence of Resistance to Macrolides in Mycoplasma pneumoniae: A Systematic Review and Meta-Analysis. J. Antimicrob. Chemother. 2022, 77, 2353–2363. [Google Scholar] [CrossRef]
- Rodvold, K.A. Introduction: Lefamulin and Pharmacokinetic/Pharmacodynamic Rationale to Support the Dose Selection of Lefamulin. J. Antimicrob. Chemother. 2019, 74, iii2–iii4. [Google Scholar] [CrossRef]
- Covvey, J.R.; Guarascio, A.J. Clinical Use of Lefamulin: A First-in-class Semisynthetic Pleuromutilin Antibiotic. J. Intern. Med. 2022, 291, 51–63. [Google Scholar] [CrossRef] [PubMed]
- Adhikary, S.; Duggal, M.K.; Nagendran, S.; Chintamaneni, M.; Tuli, H.S.; Kaur, G. Lefamulin: A New Hope in the Field of Community-Acquired Bacterial Pneumonia. Curr. Pharmacol. Rep. 2022, 8, 418–426. [Google Scholar] [CrossRef]
- Veve, M.P.; Wagner, J.L. Lefamulin: Review of a Promising Novel Pleuromutilin Antibiotic. Pharmacotherapy 2018, 38, 935–946. [Google Scholar] [CrossRef]
- Watkins, R.R.; File, T.M. Lefamulin: A Novel Semisynthetic Pleuromutilin Antibiotic for Community-Acquired Bacterial Pneumonia. Clin. Infect. Dis. 2020, 71, 2757–2762. [Google Scholar] [CrossRef] [PubMed]
- Eyal, Z.; Matzov, D.; Krupkin, M.; Paukner, S.; Riedl, R.; Rozenberg, H.; Zimmerman, E.; Bashan, A.; Yonath, A. A Novel Pleuromutilin Antibacterial Compound, Its Binding Mode and Selectivity Mechanism. Sci. Rep. 2016, 6, 39004. [Google Scholar] [CrossRef]
- Kozhokar, L.; Levien, T.L.; Baker, D.E. Lefamulin. Hosp. Pharm. 2022, 57, 704–711. [Google Scholar] [CrossRef] [PubMed]
- U.S. Food and Drug Administration. XENLETA (Lefamulin) Injection, for Intravenous Use XENLETA (Lefamulin) Tablets, for Oral Use; U.S. Food and Drug Administration: Silver Spring, MD, USA, 2019. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/211672s000,211673s000lbl.pdf (accessed on 30 October 2025).
- European Medicines Agency. Xenleta (Lefamulin): Annex I Summary of Product Characteristics (English); European Medicines Agency: Amsterdam, The Netherlands, 2018; Available online: https://ec.europa.eu/health/documents/community-register/2022/20220708156315/anx_156315_en.pdf (accessed on 30 October 2025).
- Wu, S.; Zheng, Y.; Guo, Y.; Yin, D.; Zhu, D.; Hu, F. In Vitro Activity of Lefamulin Against the Common Respiratory Pathogens Isolated From Mainland China During 2017–2019. Front. Microbiol. 2020, 11, 578824. [Google Scholar] [CrossRef]
- Waites, K.B.; Crabb, D.M.; Duffy, L.B.; Jensen, J.S.; Liu, Y.; Paukner, S. In Vitro Activities of Lefamulin and Other Antimicrobial Agents against Macrolide-Susceptible and Macrolide-Resistant Mycoplasma pneumoniae from the United States, Europe, and China. Antimicrob. Agents Chemother. 2016, 61, e02008-16. [Google Scholar] [CrossRef]
- Taylor, R.M.; Karlowsky, J.A.; Baxter, M.R.; Adam, H.J.; Walkty, A.; Lagacé-Wiens, P.; Zhanel, G.G. In Vitro Susceptibility of Common Bacterial Pathogens Causing Respiratory Tract Infections in Canada to Lefamulin, a New Pleuromutilin. J. Assoc. Med. Microbiol. Infect. Dis. Can. 2021, 6, 149–162. [Google Scholar] [CrossRef]
- Sader, H.S.; Biedenbach, D.J.; Paukner, S.; Ivezic-Schoenfeld, Z.; Jones, R.N. Antimicrobial Activity of the Investigational Pleuromutilin Compound BC-3781 Tested against Gram-Positive Organisms Commonly Associated with Acute Bacterial Skin and Skin Structure Infections. Antimicrob. Agents Chemother. 2012, 56, 1619–1623. [Google Scholar] [CrossRef]
- Sader, H.S.; Paukner, S.; Ivezic-Schoenfeld, Z.; Biedenbach, D.J.; Schmitz, F.J.; Jones, R.N. Antimicrobial Activity of the Novel Pleuromutilin Antibiotic BC-3781 against Organisms Responsible for Community-Acquired Respiratory Tract Infections (CARTIs). J. Antimicrob. Chemother. 2012, 67, 1170–1175. [Google Scholar] [CrossRef]
- Paukner, S.; Sader, H.S.; Ivezic-Schoenfeld, Z.; Jones, R.N. Antimicrobial Activity of the Pleuromutilin Antibiotic BC-3781 against Bacterial Pathogens Isolated in the SENTRY Antimicrobial Surveillance Program in 2010. Antimicrob. Agents Chemother. 2013, 57, 4489–4495. [Google Scholar] [CrossRef] [PubMed]
- Paukner, S.; Mendes, R.E.; Arends, S.J.R.; Gassner, G.; Gelone, S.P.; Sader, H.S. 7-Year (2015–21) Longitudinal Surveillance of Lefamulin in Vitro Activity against Bacterial Pathogens Collected Worldwide from Patients with Respiratory Tract Infections Including Pneumonia and Characterization of Resistance Mechanisms. J. Antimicrob. Chemother. 2023, 79, 360–369. [Google Scholar] [CrossRef] [PubMed]
- Paukner, S.; Gelone, S.P.; Arends, S.J.R.; Flamm, R.K.; Sader, H.S. Antibacterial Activity of Lefamulin against Pathogens Most Commonly Causing Community-Acquired Bacterial Pneumonia: SENTRY Antimicrobial Surveillance Program (2015–2016). Antimicrob. Agents Chemother. 2019, 63, e02161-18. [Google Scholar] [CrossRef]
- Mendes, R.E.; Paukner, S.; Doyle, T.B.; Gelone, S.P.; Flamm, R.K.; Sader, H.S. Low Prevalence of Gram-Positive Isolates Showing Elevated Lefamulin MIC Results during the SENTRY Surveillance Program for 2015–2016 and Characterization of Resistance Mechanisms. Antimicrob. Agents Chemother. 2019, 63, e02158-18. [Google Scholar] [CrossRef]
- Mendes, R.E.; Farrell, D.J.; Flamm, R.K.; Talbot, G.H.; Ivezic-Schoenfeld, Z.; Paukner, S.; Sader, H.S. In Vitro Activity of Lefamulin Tested against Streptococcus pneumoniae with Defined Serotypes, Including Multidrug-Resistant Isolates Causing Lower Respiratory Tract Infections in the United States. Antimicrob. Agents Chemother. 2016, 60, 4407–4411. [Google Scholar] [CrossRef]
- Ding, L.; Shen, S.; Han, R.; Yin, D.; Yang, Y.; Wu, S.; Zhu, D.; Guo, Y.; Hu, F. Antimicrobial Activity of Lefamulin against Pathogens Most Commonly Causing Community-Acquired Pneumonia: Results from the China Antimicrobial Surveillance Network in 2020–2022. Eur. J. Clin. Microbiol. Infect. Dis. 2025, 44, 2067–2075. [Google Scholar] [CrossRef] [PubMed]
- Golden, A.R.; Rosenthal, M.; Fultz, B.; Nichol, K.A.; Adam, H.J.; Gilmour, M.W.; Baxter, M.R.; Hoban, D.J.; Karlowsky, J.A.; Zhanel, G.G. Characterization of MDR and XDR Streptococcus pneumoniae in Canada, 2007–2013. J. Antimicrob. Chemother. 2015, 70, 2199–2202. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing; M100 34th; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2024; Available online: https://clsi.org/shop/standards/m100/ (accessed on 14 October 2025).
- EUCAST. Breakpoint Tables for Interpretation of MICs and Zone Diameters. Version 15.0. 2025. Available online: https://www.eucast.org/bacteria/clinical-breakpoints-and-interpretation/clinical-breakpoint-tables/ (accessed on 14 October 2025).
- EUCAST. Breakpoint Tables for Interpretation of MICs and Zone Diameters. Version 8.0. European Committee on Antimicrobial Susceptibility Testing: Växjö, Sweden, 2018. Available online: https://www.eucast.org/bacteria/clinical-breakpoints-and-interpretation/clinical-breakpoint-tables/ (accessed on 14 October 2025).
- EUCAST. Breakpoint Tables for Interpretation of MICs and Zone Diameters. Version 1.3, January 2011. 2011. Available online: https://www.eucast.org/bacteria/clinical-breakpoints-and-interpretation/clinical-breakpoint-tables/ (accessed on 14 October 2025).
- Paukner, S.; Riedl, R. Pleuromutilins: Potent Drugs for Resistant Bugs—Mode of Action and Resistance. Cold Spring Harb. Perspect. Med. 2017, 7, a027110. [Google Scholar] [CrossRef]
- File, T.M.; Alexander, E.; Goldberg, L.; Das, A.F.; Sandrock, C.; Paukner, S.; Moran, G.J. Lefamulin Efficacy and Safety in a Pooled Phase 3 Clinical Trial Population with Community-Acquired Bacterial Pneumonia and Common Clinical Comorbidities. BMC Pulm. Med. 2021, 21, 154. [Google Scholar] [CrossRef]
- Nabriva Therapeutics AG. A Phase 3, Randomized, Double-Blind, Double-Dummy Study to Compare the Efficacy and Safety of Lefamulin (BC 3781) Versus Moxifloxacin (with or Without Adjunctive Linezolid) in Adults with Community-Acquired Bacterial Pneumonia. 2019. Available online: https://clinicaltrials.gov/study/NCT02559310 (accessed on 28 October 2025).
- File, T.M.; Goldberg, L.; Das, A.; Sweeney, C.; Saviski, J.; Gelone, S.P.; Seltzer, E.; Paukner, S.; Wicha, W.W.; Talbot, G.H.; et al. Efficacy and Safety of Intravenous-to-Oral Lefamulin, a Pleuromutilin Antibiotic, for the Treatment of Community-Acquired Bacterial Pneumonia: The Phase III Lefamulin Evaluation Against Pneumonia (LEAP 1) Trial. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2019, 69, 1856–1867. [Google Scholar] [CrossRef]
- Nabriva Therapeutics AG. A Phase 3, Randomized, Double-Blind, Double-Dummy Study to Compare the Efficacy and Safety of Oral Lefamulin (BC 3781) Versus Oral Moxifloxacin in Adults with Community-Acquired Bacterial Pneumonia. 2019. Available online: https://www.clinicaltrials.gov/study/NCT02813694 (accessed on 28 October 2025).
- Alexander, E.; Goldberg, L.; Das, A.F.; Moran, G.J.; Sandrock, C.; Gasink, L.B.; Spera, P.; Sweeney, C.; Paukner, S.; Wicha, W.W.; et al. Oral Lefamulin vs. Moxifloxacin for Early Clinical Response Among Adults with Community-Acquired Bacterial Pneumonia: The LEAP 2 Randomized Clinical Trial. JAMA 2019, 322, 1661–1671. [Google Scholar] [CrossRef]
- Paukner, S.; Mariano, D.; Das, A.F.; Moran, G.J.; Sandrock, C.; Waites, K.B.; File, T.M. Lefamulin in Patients with Community-Acquired Bacterial Pneumonia Caused by Atypical Respiratory Pathogens: Pooled Results from Two Phase 3 Trials. Antibiotics 2021, 10, 1489. [Google Scholar] [CrossRef]
- Vardakas, K.Z.; Trigkidis, K.K.; Apiranthiti, K.N.; Falagas, M.E. The Dilemma of Monotherapy or Combination Therapy in Community-Acquired Pneumonia. Eur. J. Clin. Investig. 2017, 47, e12845. [Google Scholar] [CrossRef]
- Martin-Loeches, I.; Torres, A.; Nagavci, B.; Aliberti, S.; Antonelli, M.; Bassetti, M.; Bos, L.D.; Chalmers, J.D.; Derde, L.; de Waele, J.; et al. ERS/ESICM/ESCMID/ALAT Guidelines for the Management of Severe Community-Acquired Pneumonia. Intensive Care Med. 2023, 49, 615–632. [Google Scholar] [CrossRef] [PubMed]
- Vardakas, K.Z.; Siempos, I.I.; Grammatikos, A.; Athanassa, Z.; Korbila, I.P.; Falagas, M.E. Respiratory Fluoroquinolones for the Treatment of Community-Acquired Pneumonia: A Meta-Analysis of Randomized Controlled Trials. CMAJ Can. Med. Assoc. J. 2008, 179, 1269–1277. [Google Scholar] [CrossRef] [PubMed]
- Cilloniz, C.; Ferrer, M.; Pericàs, J.M.; Serrano, L.; Méndez, R.; Gabarrús, A.; Peroni, H.J.; Ruiz, L.A.; Menéndez, R.; Zalacain, R.; et al. Validation of IDSA/ATS Guidelines for ICU Admission in Adults over 80 Years Old with Community-Acquired Pneumonia. Arch. Bronconeumol. 2023, 59, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Vardakas, K.Z.; Trigkidis, K.K.; Falagas, M.E. Fluoroquinolones or Macrolides in Combination with β-Lactams in Adult Patients Hospitalized with Community Acquired Pneumonia: A Systematic Review and Meta-Analysis. Clin. Microbiol. Infect. Off. Publ. Eur. Soc. Clin. Microbiol. Infect. Dis. 2017, 23, 234–241. [Google Scholar] [CrossRef] [PubMed]
- Attieh, R.; Nahal, J.; Husni, R.; Mokhbat, J.E.; Barhoun, J.; Kmeid, J.; Youssef, M.; Helou, Z.; Zorkot, W.; Abdallah, D.; et al. Tailoring ATS/IDSA Community-Acquired Pneumonia Guidelines to High-Resistance Settings: An Antibiotic Stewardship Framework from Lebanon. Infect. Dis. Lond. Engl. 2025, 57, 896–906. [Google Scholar] [CrossRef]
- Dinh, A.; Barbier, F.; Bedos, J.-P.; Blot, M.; Cattoir, V.; Claessens, Y.-E.; Duval, X.; Fillâtre, P.; Gautier, M.; Guegan, Y.; et al. Update of Guidelines for Management of Community Acquired Pneumonia in Adults by the French Infectious Disease Society (SPILF) and the French-Speaking Society of Respiratory Diseases (SPLF): Endorsed by the French Intensive Care Society (SRLF), the French Microbiology Society (SFM), the French Radiology Society (SFR) and the French Emergency Society (SFMU). Respir. Med. Res. 2025, 87, 101161. [Google Scholar] [CrossRef] [PubMed]
- Cherazard, R.; Epstein, M.; Doan, T.-L.; Salim, T.; Bharti, S.; Smith, M.A. Antimicrobial Resistant Streptococcus pneumoniae: Prevalence, Mechanisms, and Clinical Implications. Am. J. Ther. 2017, 24, e361–e369. [Google Scholar] [CrossRef]
- Mohanty, S.; Feemster, K.; Yu, K.C.; Watts, J.A.; Gupta, V. Trends in Streptococcus pneumoniae Antimicrobial Resistance in US Children: A Multicenter Evaluation. Open Forum Infect. Dis. 2023, 10, ofad098. [Google Scholar] [CrossRef]
- Ahmad, I.; Kubaev, A.; Zwamel, A.H.; R., R.; Baldaniya, L.; kaur, J.; Rani, B.; Beig, M. Insights into Haemophilus Macrolide Resistance: A Comprehensive Systematic Review and Meta-Analysis. PLoS Negl. Trop. Dis. 2025, 19, e0012878. [Google Scholar] [CrossRef] [PubMed]
- Abavisani, M.; Keikha, M.; Karbalaei, M. First Global Report about the Prevalence of Multi-Drug Resistant Haemophilus Influenzae: A Systematic Review and Meta-Analysis. BMC Infect. Dis. 2024, 24, 90. [Google Scholar] [CrossRef]
- Zhao, C.; Yang, S.; Zhang, F.; Wang, Z.; Zhang, Y.; Wang, X.; Li, H.; Chen, H.; Wang, H. Antimicrobial Resistance Trends of the Most Common Causative Pathogens Associated with Community-Acquired Respiratory Infections in China: 2009–2018. Infect. Drug Resist. 2022, 15, 5069–5083. [Google Scholar] [CrossRef]
- Wang, J.; Wang, R.; Jing, C.; Xiang, Y.; Xiong, Z.; Liu, F. Shifts in Epidemiology and Antibiotic Resistance of Haemophilus Influenzae in Children From Chongqing (2019–2024): Pre-, During, and Post-COVID-19. Infect. Drug Resist. 2025, 18, 4461–4470. [Google Scholar] [CrossRef]
- Waites, K.B.; Ratliff, A.; Crabb, D.M.; Xiao, L.; Qin, X.; Selvarangan, R.; Tang, Y.-W.; Zheng, X.; Dien Bard, J.; Hong, T.; et al. Macrolide-Resistant Mycoplasma pneumoniae in the United States as Determined from a National Surveillance Program. J. Clin. Microbiol. 2019, 57, e00968-19. [Google Scholar] [CrossRef]
- Yang, H.-J.; Song, D.J.; Shim, J.Y. Mechanism of Resistance Acquisition and Treatment of Macrolide-Resistant Mycoplasma pneumoniae Pneumonia in Children. Korean J. Pediatr. 2017, 60, 167–174. [Google Scholar] [CrossRef]
- Georgakopoulou, V.E.; Lempesis, I.G.; Tarantinos, K.; Sklapani, P.; Trakas, N.; Spandidos, D.A. Atypical Pneumonia (Review). Exp. Ther. Med. 2024, 28, 424. [Google Scholar] [CrossRef] [PubMed]
- Kohlhoff, S.A.; Hammerschlag, M.R. Treatment of Chlamydial Infections: 2014 Update. Expert Opin. Pharmacother. 2015, 16, 205–212. [Google Scholar] [CrossRef] [PubMed]
- Pappa, O.; Chochlakis, D.; Sandalakis, V.; Dioli, C.; Psaroulaki, A.; Mavridou, A. Antibiotic Resistance of Legionella pneumophila in Clinical and Water Isolates-A Systematic Review. Int. J. Environ. Res. Public. Health 2020, 17, 5809. [Google Scholar] [CrossRef] [PubMed]
- Tewolde, R.; Thombre, R.; Farley, C.; Nadarajah, S.; Khan, I.; Sewell, M.; Spiller, O.B.; Afshar, B. Comparison of Phenotypic and Whole-Genome Sequencing-Derived Antimicrobial Resistance Profiles of Legionella pneumophila Isolated in England and Wales from 2020 to 2023. Antibiotics 2025, 14, 1053. [Google Scholar] [CrossRef]
- Coombs, G.W.; Yee, N.W.T.; Daley, D.; Bennett, C.M.; Robinson, J.O.; Stegger, M.; Shoby, P.; Mowlaboccus, S. Molecular Epidemiology of Penicillin-Susceptible Staphylococcus aureus Bacteremia in Australia and Reliability of Diagnostic Phenotypic Susceptibility Methods to Detect Penicillin Susceptibility. Microorganisms 2022, 10, 1650. [Google Scholar] [CrossRef]
- El Mammery, A.; Ramírez de Arellano, E.; Cañada-García, J.E.; Cercenado, E.; Villar-Gómara, L.; Casquero-García, V.; García-Cobos, S.; Lepe, J.A.; Ruiz de Gopegui Bordes, E.; Calvo-Montes, J.; et al. An Increase in Erythromycin Resistance in Methicillin-Susceptible Staphylococcus aureus from Blood Correlates with the Use of Macrolide/Lincosamide/Streptogramin Antibiotics. EARS-Net Spain (2004–2020). Front. Microbiol. 2023, 14, 1220286. [Google Scholar] [CrossRef]
- Jama-Kmiecik, A.; Mączyńska, B.; Frej-Mądrzak, M.; Choroszy-Król, I.; Dudek-Wicher, R.; Piątek, D.; Kujawa, K.; Sarowska, J. The Changes in the Antibiotic Resistance of Staphylococcus aureus, Streptococcus pneumoniae, Enterococcus faecalis and Enterococcus faecium in the Clinical Isolates of a Multiprofile Hospital over 6 Years (2017–2022). J. Clin. Med. 2025, 14, 332. [Google Scholar] [CrossRef]

| Author * | Year | Isolates | N | MIC Range/Value (mg/L) | MIC50 (mg/L) | MIC90 (mg/L) | Resistance n (% **) |
|---|---|---|---|---|---|---|---|
| Ding [46] | 2025 | S. pneumoniae | 529 | ≤0.015–0.25 | 0.125 | 0.125 | 0 (0) |
| penicillin-R | 287 | ≤0.015–0.25 | 0.125 | 0.125 | 0 (0) | ||
| penicillin-S | 134 | ≤0.015–0.25 | 0.06 | 0.125 | 0 (0) | ||
| penicillin-I | 108 | ≤0.015–0.25 | 0.125 | 0.25 | 0 (0) | ||
| Paukner [42] | 2023 | S. pneumoniae | 10,586 | 0.008–2 | 0.06 | 0.25 | 10 (0.09) |
| penicillin-S a, b | 6775 | 0.008–2 | 0.06 | 0.25 | 6 (0.08) | ||
| macrolide-R c | 3844 | 0.008–2 | 0.12 | 0.25 | 10 (2.6) | ||
| MDR d | 2342 | 0.008–1 | 0.06 | 0.12 | 5 (0.2) | ||
| penicillin-I a, e | 2292 | 0.008–1 | 0.12 | 0.25 | 4 (0.2) | ||
| penicillin-R a, f | 1519 | 0.008–0.5 | 0.06 | 0.12 | 0 (0) | ||
| XDR | 553 | 0.015–0.25 | 0.06 | 0.12 | 0 (0) | ||
| Taylor [38] | 2021 | S. pneumoniae | 482 | ≤0.004–0.25 | 0.12 | 0.12 | 0 (0) |
| penicillin-S | 397 | ≤0.004–0.25 | 0.12 | 0.12 | 0 (0) | ||
| clarithromycin-R | 110 | 0.008–0.25 | 0.12 | 0.25 | 0 (0) | ||
| doxycycline-R | 67 | 0.015–0.25 | 0.12 | 0.25 | 0 (0) | ||
| penicillin-I | 64 | 0.008–0.25 | 0.12 | 0.25 | 0 (0) | ||
| penicillin-R | 21 | 0.06–0.25 | 0.12 | 0.12 | 0 (0) | ||
| Wu [36] | 2020 | S. pneumoniae g | 172 | ≤0.015–0.25 | ≤0.015 | ≤0.25 | 0 (0) |
| penicillin-R f | 118 | ≤0.015–0.25 | ≤0.015 | ≤0.015 | 0 (0) | ||
| penicillin-I e | 40 | 0.03–0.25 | 0.125 | 0.25 | 0 (0) | ||
| penicillin-S b | 40 | ≤0.015 | ≤0.015 | ≤0.015 | 0 (0) | ||
| Paukner [43] | 2019 | S. pneumoniae | 3923 | ≤0.008–1 | 0.06 | 0.12 | 5 (0.1) |
| MDR d | 821 | ≤0.008–1 | 0.06 | 0.12 | 2 (0.2) | ||
| penicillin-NS h | 189 | 0.015–0.25 | 0.06 | 0.12 | 0 (0) | ||
| XDR d | 181 | 0.015–0.25 | 0.06 | 0.12 | 0 (0) | ||
| ceftriaxone-NS i | 155 | 0.015–0.25 | 0.06 | 0.12 | 0 (0) | ||
| levofloxacin-NS h | 47 | 0.015–1 | 0.06 | 0.25 | 1 (2.1) | ||
| Mendes [45] | 2016 | S. pneumoniae | 822 | ≤0.015–1 | 0.12 | 0.25 | 3 (0.4) |
| Paukner [41] | 2013 | S. pneumoniae | 1473 | ≤0.008–1 | 0.12 | 0.25 | 3 (0.2) |
| penicillin-S b | 903 | ≤0.008–1 | NA | NA | 2 (0.2) | ||
| penicillin-R f | 312 | 0.015–0.5 | NA | NA | 0 (0) | ||
| penicillin-I e | 258 | 0.015–1 | NA | NA | 1 (0.2) | ||
| Sader [40] | 2011 | S. pneumoniae | 157 | 0.015–0.5 | 0.12 | 0.25 | 0 (0) |
| penicillin-S b | 54 | 0.015–0.25 | 0.12 | 0.25 | 0 (0) | ||
| penicillin-R f | 52 | 0.015–0.5 | 0.12 | 0.25 | 0 (0) | ||
| penicillin-I e | 51 | 0.015–0.25 | 0.06 | 0.12 | 0 (0) |
| Author * | Year | Isolates | N | MIC Range/Value (mg/L) | MIC50 (mg/L) | MIC90 (mg/L) | Resistance n (% **) |
|---|---|---|---|---|---|---|---|
| Ding [46] | 2025 | H. influenzae | 121 | ≤0.015–2 | 0.5 | 1 | 0 (0) |
| β-lactamase positive | 63 | 0.25–2 | 0.5 | 1 | 0 (0) | ||
| β-lactamase negative | 58 | ≤0.015–2 | 0.5 | 1 | 0 (0) | ||
| Paukner [42] | 2023 | H. influenzae | 3496 | 0.12–≥8 | 0.5 | 2 | 30 (0.9) |
| β-lactamase positive | 816 | 0.008–≥8 | 0.5 | 2 | 11 (1.3) | ||
| Taylor [38] | 2021 | H. influenzae | 99 | ≤0.015–8 | 0.5 | 2 | 1 (1) |
| β-lactamase positive a | 69 | ≤0.015–>8 | 0.5 | 2 | 1 (1.4) | ||
| β-lactamase negative | 30 | ≤0.015–2 | 0.5 | 2 | 0 (0) | ||
| Wu [36] | 2020 | H. influenzae | 96 | 0.125–2 | ≤1 | ≤1 | 0 (0) |
| β-lactamase negative | 48 | 0.25–2 | 1 | 1 | 0 (0) | ||
| β-lactamase positive | 48 | 0.125–2 | 0.5 | 1 | 0 (0) | ||
| Paukner [43] | 2019 | H. influenzae | 1086 | ≤0.12–8 | 0.5 | 1 | 10 (0.9) |
| β-lactamase negative | 835 | ≤0.12–4 | 0.5 | 1 | 9 (1.1) | ||
| β-lactamase positive | 251 | ≤0.12–8 | 0.5 | 1 | 1 (0.4) | ||
| Paukner [41] | 2013 | H. influenzae | 360 | 0.015–8 | 1 | 2 | 6 (1.7) |
| β-lactamase negative | 275 | 0.15–8 | NA | NA | 4 (1.5) | ||
| β-lactamase positive | 85 | 0.25–8 | NA | NA | 2 (2.4) | ||
| Sader [40] | 2011 | H. influenzae | 102 | 0.25–2 | 0.5 | 2 | 0 (0) |
| β-lactamase negative | 51 | 0.25–2 | 0.5 | 1 | 0 (0) | ||
| β-lactamase positive | 51 | 0.25–2 | 0.5 | 2 | 0 (0) |
| Author * | Year | Isolates | N | MIC Range/Value (mg/L) | MIC50 (mg/L) | MIC90 (mg/L) | Resistance n (% **) |
|---|---|---|---|---|---|---|---|
| Ding [46] | 2025 | S. aureus | 306 | ≤0.015–>32 | 0.06 | 0.125 | 7 (2.3) a |
| Paukner [42] | 2024 | S. aureus | 3056 | 0.03–≥8 | 0.06 | 0.12 | 13 (0.4) |
| Paukner [43] | 2019 | S. aureus | 2919 | ≤0.008–>32 | 0.06 | 0.12 | 11 (0.4) |
| Paukner [41] | 2013 | S. aureus | 5527 | 0.015–>16 | 0.12 | 0.12 | 28 (0.5) |
| Sader [39] | 2012 | S. aureus | 784 | 0.03–0.5 | 0.12 | 0.25 | 8 (1) |
| Ding [46] | 2025 | MSSA | 188 | ≤0.015->32 | 0.06 | 0.125 | 3 (1.6) a |
| Paukner [42] | 2023 | MSSA | 2069 | 0.03–≥8 | 0.06 | 0.12 | 7 (0.3) |
| Taylor [38] | 2021 | MSSA | 70 | 0.06–>2 | 0.12 | 0.25 | 3 (4.3) |
| Wu [36] | 2020 | MSSA | 61 | ≤0.015–0.125 | 0.06 | 0.06 | 0 (0) |
| Paukner [43] | 2019 | MSSA | 1981 | ≤0.03–>8 | 0.06 | 0.06 | 6 (0.3) |
| Paukner [41] | 2013 | MSSA | 3157 | 0.015–>16 | NA | NA | 9 (0.3) |
| Sader [39] | 2012 | MSSA | 253 | 0.03–0.5 | 0.12 | 0.12 | 1 (0.4) |
| Ding [46] | 2025 | MRSA | 118 | ≤0.015–>32 | 0.125 | 0.125 | 4 (3.4) a |
| Paukner [42] | 2023 | MRSA | 987 | 0.03–≥8 | 0.06 | 0.12 | 6 (0.6) |
| Taylor [38] | 2021 | MRSA | 130 | 0.06–>2 | 0.12 | 0.25 | NA |
| Wu [36] | 2020 | MRSA | 60 | ≤0.015−0.25 | ≤0.015 | 0.125 | NA |
| Paukner [43] | 2019 | MRSA | 938 | ≤0.03–>32 | 0.06 | 0.12 | 5 (0.6) |
| Paukner [41] | 2013 | MRSA | 2370 | 0.015–4 | 0.12 | 0.25 | 19 (0.8) |
| Sader [39] | 2012 | MRSA | 531 | 0.03–0.5 | 0.12 | 0.25 | 7 (1.3) |
| Paukner [42] | 2023 | MDR (methicillin-, azithromycin- and levofloxacin-R) | 610 | 0.03–≥8 | 0.06 | 0.12 | 1 (0.2) |
| Author * | Year | Isolates | N | MIC Range/Value (mg/L) | MIC50 (mg/L) | MIC90 (mg/L) | Resistance n (% **) |
|---|---|---|---|---|---|---|---|
| Ding [46] | 2025 | M. catarrhalis | 81 | ≤0.015–0.5 | 0.125 | 0.5 | 0 (0) a |
| Paukner [42] | 2023 | M. catarrhalis | 1958 | 0.008–0.5 | 0.06 | 0.12 | NA |
| β-lactamase positive | 1490 | 0.008–0.5 | 0.06 | 0.12 | NA | ||
| Taylor [38] | 2021 | M. catarrhalis | 95 | ≤0.015–0.12 | 0.06 | 0.12 | NA |
| Wu [36] | 2020 | M. catarrhalis | 54 | ≤0.015–0.5 | 0.25 | 0.25 | NA |
| Paukner [41] | 2013 | M. catarrhalis | 253 | ≤0.008–0.5 | 0.12 | 0.25 | NA |
| Sader [40] | 2011 | M. catarrhalis | 50 | 0.015–0.12 | 0.06 | 0.12 | NA |
| Author * | Year | Isolates | N | MIC Range/Value (mg/L) | MIC50 (mg/L) | MIC90 (mg/L) | Resistance n (% **) |
|---|---|---|---|---|---|---|---|
| Paukner [42] | 2023 | β-hemolytic Streptococcus spp. | 128 | 0.015–0.25 | 0.03 | 0.06 | NA |
| S. agalactiae | 72 | 0.015–0.12 | 0.03 | 0.06 | NA | ||
| S. pyogenes | 39 | 0.015–0.25 | 0.03 | 0.03 | NA | ||
| S. dysgalactiae | 17 | 0.03–0.12 | 0.06 | 0.06 | NA | ||
| Viridans group Streptococcus spp. a | 50 | 0.008–1 | 0.06 | 0.25 | NA | ||
| S. mitis group | 23 | 0.015–1 | 0.12 | 0.5 | NA | ||
| S. anginosus group | 22 | 0.008–0.5 | 0.06 | 0.25 | NA | ||
| S. salivarius group | 5 | 0.015–0.12 | 0.06 | NA | NA | ||
| Wu [36] | 2020 | S. pyogenes | 30 | ≤0.015 | ≤0.015 | ≤0.015 | NA |
| S. agalactiae | 13 | ≤0.015–0.03 | ≤0.015 | 0.03 | NA | ||
| Mendes [44] | 2019 | S. agalactiae | 168 | ≤0.008–16 | 0.03 | 0.03 | NA |
| S. pyogenes | 165 | ≤0.008–0.03 | 0.015 | 0.03 | NA | ||
| S. dysgalactiae | 56 | 0.015–0.06 | 0.03 | 0.06 | NA | ||
| S. mitis group | 48 | 0.015–0.5 | 0.12 | 0.5 | NA | ||
| S. anginosus group | 44 | ≤0.008–0.5 | 0.06 | 0.25 | NA | ||
| S. salivarius/S. vestibularis group | 40 | ≤0.008–0.25 | 0.06 | 0.12 | NA | ||
| S. gallolyticus | 34 | 0.06–>32 | 1 | 2 | NA | ||
| S. lutetiensis | 7 | ≤0.008–1 | 0.015 | 1 | NA | ||
| S. bovis | 3 | ≤0.008–0.25 | ≤0.008 | 0.25 | NA | ||
| S. equinus | 2 | 0.015 | 0.015 | 0.015 | NA | ||
| Paukner [41] | 2013 | β-hemolytic Streptococcus spp. | 763 | ≤0.008–16 | 0.03 | 0.03 | NA |
| S. agalactiae | 334 | ≤0.008–16 | 0.03 | 0.03 | NA | ||
| S. pyogenes | 267 | ≤0.008–0.06 | 0.03 | 0.03 | NA | ||
| Viridans group Streptococcus spp. | 245 | ≤0.008–2 | 0.12 | 0.5 | NA | ||
| Sader [39] | 2012 | β-hemolytic Streptococcus spp. | 354 | ≤0.008–0.5 | 0.03 | 0.06 | NA |
| group A streptococci | 155 | 0.015–0.12 | 0.03 | 0.03 | NA | ||
| group B streptococci | 117 | ≤0.008–0.12 | 0.03 | 0.06 | NA | ||
| other β-hemolytic Streptococci spp. | 82 | 0.015–0.5 | 0.03 | 0.06 | NA | ||
| Viridans group Streptococcus spp. | 120 | ≤0.008–4 | 0.12 | 0.5 | NA |
| Author * | Year | Isolates | N | MIC Range/Value (mg/L) | MIC50 (mg/L) | MIC90 (mg/L) | Resistance n (% **) |
|---|---|---|---|---|---|---|---|
| Atypical | |||||||
| Ding [46] | 2025 | M. pneumoniae | 15 | ≤0.03 | ≤0.03 | ≤0.03 | NA |
| Wu [36] | 2020 | M. pneumoniae | 54 | ≤0.015–0.03 | 0.03 | 0.03 | NA |
| Waites [37] | 2016 | M. pneumoniae | 60 | ≤0.001–0.008 | ≤0.001 | 0.002 | NA |
| marcolide-S | 18 | ≤0.001 | ≤0.001 | ≤0.001 | NA | ||
| marcolide-R | 42 | ≤0.001–0.008 | 0.002 | 0.002 | NA | ||
| Sader [40] | 2011 | M. pneumoniae | 50 | ≤0.003–0.024 | 0.006 | 0.006 | NA |
| C. pneumoniae | 50 | 0.02–0.08 | 0.02 | 0.04 | NA | ||
| L. pneumophila | 30 | 0.06–1 | 0.06 | 0.5 | NA | ||
| Haemophilus spp. (except H. influenzae) | |||||||
| Paukner [42] | 2023 | H. parainfluenzae | 310 | 0.12–≥8 | 1 | 4 | NA |
| Wu [36] | 2020 | H. parainfluenzae | 10 | 0.015–2 | 0.5 | 1 | NA |
| Staphylococcus spp. (except S. aureus) | |||||||
| Wu [36] | 2020 | S. epidermidis, methicillin-R | 15 | ≤0.015–0.125 | ≤0.015 | 0.06 | NA |
| S. epidermidis, methicillin-S | 15 | ≤0.015–0.06 | ≤0.015 | 0.03 | NA | ||
| Paukner [41] | 2013 | coagulase-negative Staphylococci | 878 | ≤0.008–>16 | 0.06 | 0.12 | NA |
| methicillin-R | 637 | ≤0.008–>16 | 0.06 | 0.12 | NA | ||
| methicillin-S | 241 | ≤0.008–4 | 0.06 | 0.06 | NA | ||
| Sader [39] | 2012 | coagulase-negative Staphylococci | 204 | 0.015–>16 | 0.06 | 0.12 | NA |
| methicillin-resistant | 104 | 0.015–>16 | 0.06 | 0.25 | NA | ||
| methicillin-susceptible | 100 | 0.015–8 | 0.06 | 0.12 | NA | ||
| Enterococcus spp. | |||||||
| Paukner [41] | 2013 | E. faecium | 536 | 0.015–>16 | 0.12 | 4 | NA |
| vancomycin-NS | 304 | 0.015–>16 | 0.06 | 0.25 | NA | ||
| vancomycin-S | 232 | 0.03–>16 | 0.12 | >16 | NA | ||
| Sader [39] | 2012 | E. faecium | 214 | 0.015–>16 | 0.12 | 16 | NA |
| vancomycin-S | 129 | 0.03–>16 | 0.12 | 16 | NA | ||
| vancomycin-NS | 85 | 0.015–>16 | 0.12 | 2 | NA | ||
| E. faecalis | 50 | 4–>16 | >16 | >16 | NA | ||
| Enterococcus spp. | 22 | ≤0.008–>16 | 4 | >16 | NA | ||
| Author * | Year | Isolates | N | Resistance, % **,*** | ||||||
|---|---|---|---|---|---|---|---|---|---|---|
| Lefamulin | Penicillin **** | Amoxicillin-Clavulanate | Ceftriaxone | Azithromycin | Levofloxacin | Moxifloxacin | ||||
| Ding [46] | 2025 | S. pneumoniae | 529 | 0 | 54.3, I: 20.4 | – | – | 94.5, I: 2.1 | 1.7, I: 0.4 | 0.8, I: 0.9 |
| penicillin-R a | 287 | 0 | 100 | – | – | 99.3, I: 0.4 | 1.7 | 0.3, I: 1.4 | ||
| penicillin-S b | 134 | 0 | 0 | – | – | 82.1, I: 2.1 | 1.5, I: 0.7 | 0.7, I: 0.8 | ||
| penicillin-I c | 108 | 0 | I: 100 | 97.2, I: 0.9 | 1.9, I: 0.9 | 1.9 | ||||
| H. influenzae | 121 | 0 | – | – | 0 | NS: 34.4 | 0 | 0 | ||
| β-lactamase positive | 63 | 0 | – | – | 0 | NS: 66.7 | 0 | 0 | ||
| β-lactamase negative | 58 | 0 | – | – | 0 | NS: 3.4 | 0 | 0 | ||
| S. aureus | 306 | NS: 2.3 | – | – | – | 54.9, I: 0.3 | 17 | 17.3, I: 0.7 | ||
| MRSA | 118 | NS: 3.4 | – | – | – | 68.6 | 31.4 | 32.2, I: 0.9 | ||
| MSSA | 188 | 1.6 | – | – | – | 46.3, I: 0.5 | 8 | 8, I: 0.5 | ||
| M. catarrhalis | 81 | 0 | – | – | 0 | NS: 23.5 | 0 | 6.2 | ||
| M. pneumoniae | 15 | NA | – | – | – | 86.7 | 0 | 0 | ||
| Paukner [42] | 2023 | S. pneumoniae d | 10,586 | 0.09 | – | NS: 7 | – | NS: 37 | – | NS: 1.2 |
| MDR e | 2342 | 0.2 | – | NS: 25.9 | – | NS: 99 | – | NS: 3.4 | ||
| penicillin-R a | 1519 | 0 | – | NS: 48.3 | – | NS: 84.7 | – | NS: 3.5 | ||
| XDR e | 553 | 0 | – | NS: 84.4 | – | NS: 100 | – | NS: 8.7 | ||
| H. influenzae | 3496 | 0.9 | – | NS: 9 | – | NS: 2.1 | – | NS: 0.9 | ||
| β-lactamase positive | 816 | 1.3 | – | NS: 86.6 | – | NS: 4.4 | – | NS: 0.6 | ||
| S. aureus | 3056 | 0.4 | – | – | – | NS: 43.3 | – | NS: 27 | ||
| MRSA | 987 | 0.6 | – | – | – | NS: 76.6 | – | NS: 69.9 | ||
| MDR e | 610 | 0.2 | – | – | – | 100 | – | 100 | ||
| M. catarrhalis | 1958 | ΝA | – | 0 | – | NS: 0.2 | – | – | ||
| β-lactamase positive | 1490 | ΝA | – | 0 | – | NS: 0.3 | – | – | ||
| H. parainfluenzae | 310 | ΝA | – | NS: 3.9 | – | NS: 6.1 | – | NS: 17.1 | ||
| Taylor [38] | 2021 | S. pneumoniae | 482 | 0 | 4.4, I: 13.2 | 0.4, I: 2.1 | 0 | – | – | I: 0.2 |
| penicillin-S b | 397 | 0 | 0 | 0 | 0 | – | – | 0 | ||
| clarithromycin-R f | 110 | 0 | 15.5, I: 32.7 | 1.8, I: 7.3 | 0 | – | – | I: 0.9 | ||
| doxycycline-R g | 67 | 0 | 26.9, I: 49.2 | 3, I: 11.9 | 0 | – | – | I: 1.5 | ||
| penicillin-I c | 64 | 0 | I: 100 | 0 | 0 | – | – | I: 1.6 | ||
| penicillin-R a | 21 | 0 | 100 | 9.5, I: 47.6 | 0 | – | – | 0 | ||
| H. influenzae | 99 | 1 | – | 1 | 0 | – | – | 0 | ||
| β-lactamase positive h | 69 | 1.4 | – | 0 | 0 | – | – | 0 | ||
| β-lactamase negative | 30 | 0 | – | 3.3 | 0 | – | – | 0 | ||
| M. catarrhalis | 95 | ΝA | – | 0 | 0 | – | – | – | ||
| MSSA | 70 | 4.3 | – | – | – | – | – | 8.6 | ||
| MRSA | 130 | ΝA | – | – | – | – | – | 77.7, I: 3.1 | ||
| Wu [36] | 2020 | S. pneumoniae penicillin-R a | 118 | 0 | 100 | – | 45.8, I: 6.7 | 100 | 1.7 | 0.8, I: 0.9 |
| S. pneumoniae penicillin-I e | 40 | 0 | I: 100 | – | 0 | 100 | 0 | 0 0 | ||
| S. pneumoniae penicillin-S b | 40 | 0 | 0 | – | 0 | 97.5 | 3.3, I: 0.2 | I: 2.5 | ||
| H. influenzae β-lactamase negative | 48 | 0 | – | – | 0 | NS: 2.1 | 0 | 0 | ||
| H. influenzae β-lactamase positive | 48 | 0 | – | – | 0 | NS: 72.9 | 0 | 0 | ||
| MRSA | 60 | NA | – | – | – | 85 | 53.3, I: 1.7 | 48.3, I: 3.4 | ||
| MSSA | 61 | 0 | – | – | – | 55.7 | 3.3 | 3.3 | ||
| M. catarrhalis | 54 | NA | – | – | 0 | NS: 33.3 | 0 | – | ||
| M. pneumoniae | 54 | NA | – | – | – | 94.4 | – | 0 | ||
| H. parainfluenzae | 10 | NA | – | – | 0 | NS: 10 | NS: 20 | NS: 40 | ||
| Paukner [43] | 2019 | S. pneumoniae | 3923 | 0.1 | 12, I: 22.4 | 3.5, I: 2.9 i | 0.9, I: 3 | 33.6, I: 0.7 | 1.1, I: 0.1 | 0.6, I: 0.5 i |
| MDR e | 821 | 0.2 | 42.3, I: 41.4 | 14.1, I: 11.7 | 4.4, I: 14 | 97.7, I: 1.1 | 3.3, I: 0.2 | 1.2, I: 1.6 i | ||
| S. aureus | 2919 | 0.4 | – | – | – | 39.4, I: 1.4 | 26.9, I: 0.9 | 19.1, I: 7.5 i | ||
| MRSA | 938 | 0.6 | – | – | – | 75.5, I: 0.7 | 72.3, I: 1.7 | 51.9, I: 18.5 i | ||
| H. influenzae | 1086 | 0.9 | – | 2 | 0 | NS: 1.2 | NS: 0.4 | NS: 0.4 i | ||
| M. catarrhalis | 667 | NA | – | 0 | 0 | 0 | 0 | 0.5 i, j | ||
| Mendes [45] | 2016 | S. pneumoniae | 822 | 0.4 | 0.5, I: 10.3 k | – | 1.6, I: 5.8 | – | 1.1 | – |
| Paukner [41] | 2013 | S. pneumoniae | 1473 | 0.2 | 21.2, I: 17.5 | – | 1.2, I: 7.5 | 36.6, I: 0.8 | 1 | 0 |
| H. influenzae | 360 | 1.7 | – | – | 0 | NS: 1.7 | – | 0 | ||
| M. catarrhalis | 253 | NA | – | – | 0 | NS: 0.4 | – | 0 l | ||
| S. aureus | 2527 | 0.5 | – | – | – | – | 35.3, I: 1.3 | – | ||
| MRSA | 2370 | 0.8 | – | – | – | – | 71.2, I: 2 | – | ||
| Sader [40] | 2011 | S. pneumoniaed | 157 | 0 | 33.1, I: 22.5 | – | – | 50.3 | 1.3, I: 0.6 | – |
| penicillin-S b | 54 | 0 | 0 | – | – | 16.7 | I: 1.9 | – | ||
| penicillin-R a | 52 | 0 | 100 | – | – | 75 | 1.9 | – | ||
| penicillin-I c | 51 | 0 | I: 100 | – | – | 60.8 | 2 | – | ||
| H. influenzae | 102 | 0 | – | 0 | – | 0 | 0 | – | ||
| β-lactamase negative | 51 | 0 | – | 0 | – | 0 | 0 | – | ||
| β-lactamase positive | 51 | 0 | – | 0 | – | 0 | 0 | – | ||
| M. catarrhalis | 50 | NA | – | 0 l | – | 0 | 0 | – | ||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Falagas, M.E.; Fanariotis, G.; Romanos, L.T.; Katsikas, K.M.; Kakoullis, S.A. Resistance to Lefamulin: An Evaluation of Data from In Vitro Antimicrobial Susceptibility Studies. Antibiotics 2026, 15, 58. https://doi.org/10.3390/antibiotics15010058
Falagas ME, Fanariotis G, Romanos LT, Katsikas KM, Kakoullis SA. Resistance to Lefamulin: An Evaluation of Data from In Vitro Antimicrobial Susceptibility Studies. Antibiotics. 2026; 15(1):58. https://doi.org/10.3390/antibiotics15010058
Chicago/Turabian StyleFalagas, Matthew E., George Fanariotis, Laura T. Romanos, Konstantinos M. Katsikas, and Stylianos A. Kakoullis. 2026. "Resistance to Lefamulin: An Evaluation of Data from In Vitro Antimicrobial Susceptibility Studies" Antibiotics 15, no. 1: 58. https://doi.org/10.3390/antibiotics15010058
APA StyleFalagas, M. E., Fanariotis, G., Romanos, L. T., Katsikas, K. M., & Kakoullis, S. A. (2026). Resistance to Lefamulin: An Evaluation of Data from In Vitro Antimicrobial Susceptibility Studies. Antibiotics, 15(1), 58. https://doi.org/10.3390/antibiotics15010058
