Vancomycin Dosing Regimen to Obtain the Target Area Under the Concentration–Time Curve, Which Provides an Early Treatment Response for Patients on Haemodialysis
Abstract
1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Ethics
4.2. Inclusion and Exclusion Criteria for Patients on HD
4.3. Classification of the Vancomycin Dosing Regimen
4.4. Definitions of Adverse Effects and Clinical Efficacy
4.5. Estimating the AUC over a Specified Period in Patients on HD
4.6. Evaluation of the AUC
4.7. Relationship Between Trough Concentrations and AUC24h in Patients Without HD
4.8. Statistical Methods
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| AUC | Area under the curve |
| MIC | Minimum Inhibitory Concentration |
| HD | Haemodialysis |
| HDF | Haemodiafiltration |
| TDM | Therapeutic drug monitoring |
| PK | Pharmacokinetic |
| PD | Pharmacodynamic |
References
- Snyder, G.M.; Patel, P.R.; Kallen, A.J.; Strom, J.A.; Tucker, J.K.; D’Agata, E.M. Antimicrobial use in outpatient hemodialysis units. Infect. Control Hosp. Epidemiol. 2013, 34, 349–357. [Google Scholar] [CrossRef]
- Wong, Y.T.; Yeung, C.S.; Chak, W.L.; Cheung, C.Y. Methicillin-resistant Staphylococcus aureus nasal carriage among patients on haemodialysis with newly inserted central venous catheters. Int. Urol. Nephrol. 2023, 55, 2059–2066. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. Preventing Bloodstream Infections in People on Dialysis|VitalSigns|CDC. Available online: https://www.cdc.gov/vitalsigns/dialysis-infections/index.html?utm_source=chatgpt.com (accessed on 2 August 2025).
- Reed, S.D.; Friedman, J.Y.; Engemann, J.J.; Griffiths, R.I.; Anstrom, K.J.; Kaye, K.S.; Stryjewski, M.E.; Szczech, L.A.; Reller, L.B.; Corey, G.R.; et al. Costs and outcomes among hemodialysis-dependent patients with methicillin-resistant or methicillin-susceptible Staphylococcus aureus bacteremia. Infect. Control Hosp. Epidemiol. 2005, 26, 175–183. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, K.; Oda, K.; Shoji, K.; Hanai, Y.; Takahashi, Y.; Fujii, S.; Hamada, Y.; Kimura, T.; Mayumi, T.; Ueda, T.; et al. Clinical Practice Guidelines for Therapeutic Drug Monitoring of Vancomycin in the Framework of Model-Informed Precision Dosing: A Consensus Review by the Japanese Society of Chemotherapy and the Japanese Society of Therapeutic Drug Monitoring. Pharmaceutics 2022, 14, 489. [Google Scholar] [CrossRef] [PubMed]
- Tsutsuura, M.; Moriyama, H.; Kojima, N.; Mizukami, Y.; Tashiro, S.; Osa, S.; Enoki, Y.; Taguchi, K.; Oda, K.; Fujii, S.; et al. The monitoring of vancomycin: A systematic review and meta-analyses of area under the concentration–time curve-guided dosing and trough-guided dosing. BMC Infect. Dis. 2021, 21, 153. [Google Scholar] [CrossRef] [PubMed]
- Ueda, T.; Takesue, Y.; Nakajima, K.; Ichiki, K.; Ishikawa, K.; Yamada, K.; Doita, A.; Wada, Y.; Okada, M.; Hanai, Y.; et al. Validation of Vancomycin Area under the Concentration–Time Curve Estimation by the Bayesian Approach Using One-Point Samples for Predicting Clinical Outcomes in Patients with Methicillin-Resistant Staphylococcus aureus Infections. Antibiotics 2022, 11, 96. [Google Scholar] [CrossRef]
- Oda, K.; Matsumoto, K.; Shoji, K.; Shigemi, A.; Kawamura, H.; Takahashi, Y.; Fujii, S.; Hamada, Y.; Kimura, T.; Hanai, Y.; et al. Validation and development of population pharmacokinetic model of vancomycin using a real-world database from a nationwide free web application. J. Infect. Chemother. 2024, 30, 1244–1251. [Google Scholar] [CrossRef]
- Oda, K.; Jono, H.; Saito, H. Model-Informed Precision Dosing of Vancomycin in Adult Patients Undergoing Hemodialysis. Antimicrob. Agents Chemother. 2023, 67, e0008923. [Google Scholar] [CrossRef]
- Iida, M.; Horita, Y.; Asaoka, M.; Ohashi, K.; Noda, M.; Wachino, C.; Hirose, T.; Nomura, Y.; Hisada, Y.; Nagamizu, M.; et al. Evaluation of target area under the concentration–time curve of vancomycin in an initial dosing design: A retrospective cohort study. J. Antimicrob. Chemother. 2024, 79, 2518–2527. [Google Scholar] [CrossRef]
- Lewis, S.J.; Mueller, B.A. Evaluation and development of vancomycin dosing schemes to meet new AUC/MIC targets in intermittent hemodialysis using Monte Carlo simulation techniques. J. Clin. Pharmacol. 2021, 61, 211–223. [Google Scholar] [CrossRef]
- Polášková, L.; Hartinger, J.M.; Murínová, I.; Michálek, P.; Slanař, O.; Šíma, M. Vancomycin loading dose individualization in obese patients undergoing haemodialysis based on a population pharmacokinetic model. J. Chemother. 2025, 37, 121–129. [Google Scholar] [CrossRef] [PubMed]
- Rungprai, D.; Jaruratanasirikul, S.; Wongpoowarak, W.; Pattharachayakul, S.; Wanakamanee, U.; Dandecha, P.; Jitsurong, A. Vancomycin dosing regimen by Monte Carlo simulation in patients on intermittent high-efficiency hemodialysis. J. Med. Assoc. Thai. 2015, 98, 606–615. [Google Scholar] [PubMed]
- Lewis, S.J.; Jang, S.M.; Mueller, B.A. Vancomycin and daptomycin dosing recommendations in patients receiving home hemodialysis using Monte Carlo simulation. BMC Nephrol. 2023, 24, 270. [Google Scholar] [CrossRef] [PubMed]
- Zamoner, W.; de Souza Cavalcante, R.; Balbi, A.L.; Ponce, D. Vancomycin administration and AUC/MIC in patients with acute kidney injury on hemodialysis: Randomized clinical trial. Sci. Rep. 2024, 14, 31220. [Google Scholar] [CrossRef]
- Ables, M.; Welch, R.W.; Walley, B. Development and assessment of vancomycin dosing utilizing AUC/MIC protocol in ESRD patients on intermittent hemodialysis. J. Pharm. Pract. 2024, 37, 922–926. [Google Scholar] [CrossRef]
- Vandecasteele, S.J.; De Bacquer, D.; De Vriese, A.S. Implementation of a dose calculator for vancomycin to achieve target trough levels of 15–20 µg/mL in hemodialysis patients. Clin. Infect. Dis. 2011, 53, 124–129. [Google Scholar] [CrossRef]
- Hui, K.; Patel, K.; Nalder, M.; Nelson, C.; Buising, K.; Pedagogos, E.; Kong, D.C.M.; Kirkpatrick, C.M.J. Optimizing vancomycin dosage regimens in relation to high-flux haemodialysis. J. Antimicrob. Chemother. 2019, 74, 130–134. [Google Scholar] [CrossRef]
- Fu, C.F.; Huang, J.D.; Wang, J.T.; Lin, S.W.; Wu, C.C. The ratio of pre-dialysis vancomycin trough serum concentration to minimum inhibitory concentration is associated with treatment outcomes in methicillin-resistant Staphylococcus aureus bacteremia. PLoS ONE 2018, 13, e0193585. [Google Scholar] [CrossRef]
- Rybak, M.J.; Le, J.; Lodise, T.P.; Levine, D.P.; Bradley, J.S.; Liu, C.; Mueller, B.A.; Pai, M.P.; Wong-Beringer, A.; Rotschafer, J.C.; et al. Therapeutic monitoring of vancomycin for serious methicillin-resistant Staphylococcus aureus infections: A revised consensus guideline and review by professional societies. Am. J. Health-Syst. Pharm. 2020, 77, 835–864. [Google Scholar] [CrossRef]
- Lewis, S.J.; Nolin, T.D. New Vancomycin Dosing Guidelines for Hemodialysis Patients: Rationale, Caveats, and Limitations. Kidney360 2021, 2, 1313–1315. [Google Scholar] [CrossRef]
- Robinson, B.M.; Akizawa, T.; Jager, K.J.; Kerr, P.G.; Saran, R.; Pisoni, R.L. Factors affecting outcomes in patients reaching end-stage kidney disease worldwide: Differences in access to renal replacement therapy and haemodialysis practices. Lancet 2016, 388, 294–306. [Google Scholar] [CrossRef]
- Abe, M.; Kikuchi, K.; Wada, A.; Nakai, S.; Kanda, E.; Hanafusa, N. Current dialyzer classification in Japan and mortality risk in patients undergoing hemodialysis. Sci. Rep. 2024, 14, 10272. [Google Scholar] [CrossRef]
- Akizawa, T.; Koiwa, F. Clinical Expectation of Online Hemodiafiltration: A Japanese Perspective. Blood Purif. 2015, 40, 12–16. [Google Scholar] [CrossRef]
- Mineshima, M.; Eguchi, K. Validity of Intermittent Infusion Hemodiafiltration. Blood Purif. 2019, 48, 7–10. [Google Scholar] [CrossRef]
- Matsumoto, K.; Takesue, Y.; Ohmagari, N.; Mochizuki, T.; Mikamo, H.; Seki, M.; Takakura, S.; Tokimatsu, I.; Takahashi, Y.; Kasahara, K.; et al. Practice guidelines for therapeutic drug monitoring of vancomycin: A consensus review of the Japanese Society of Chemotherapy and the Japanese Society of Therapeutic Drug Monitoring. J. Infect. Chemother. 2013, 19, 365–380. [Google Scholar] [CrossRef]
- Legout, L.; Valette, M.; Dezeque, H.; Nguyen, S.; Lemaire, X.; Loïez, C.; Caillaux, M.; Beltrand, E.; Dubreuil, L.; Yazdanpanah, Y.; et al. Tolerability of prolonged linezolid therapy in bone and joint infection: Protective effect of rifampicin on the occurrence of anaemia. J. Antimicrob. Chemother. 2010, 65, 2224–2230. [Google Scholar] [CrossRef]
- Ueda, T.; Takesue, Y.; Nakajima, K.; Ichiki, K.; Doita, A.; Wada, Y.; Tsuchida, T.; Takahashi, Y.; Ishihara, M.; Ikeuchi, H.; et al. Enhanced loading regimen of teicoplanin is necessary to achieve therapeutic pharmacokinetic levels for the improvement of clinical outcomes in patients with renal dysfunction. Eur. J. Clin. Microbiol. Infect. Dis. 2016, 35, 1501–1509. [Google Scholar] [CrossRef] [PubMed]
- Clinical and Laboratory Standards Institute. Performance Standards for Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically, 11th ed.; Approved Standard; CLSI: Wayne, PA, USA, 2018. [Google Scholar]
- Oda, K.; Hashiguchi, Y.; Kimura, T.; Tsuji, Y.; Shoji, K.; Takahashi, Y.; Matsumoto, K.; Kawamura, H.; Saito, H.; Takesue, Y. Performance of area under the concentration–time curve estimations of vancomycin with limited sampling by a newly developed web application. Pharm. Res. 2021, 38, 637–646. [Google Scholar] [CrossRef] [PubMed]





| Population for Treatment Outcome Evaluation | Treatment Outcomes | AUC2nd term/MIC < 400 No. of Patients (%) | AUC2nd term/MIC ≥ 400 No. of Patients (%) | p Value |
|---|---|---|---|---|
| Patients infected with MRSA (n = 31) | Early clinical response | 3/12 (25.0) | 15/19 (78.9) | 0.003 |
| Clinical success at the end of therapy | 7/12 (58.3) | 18/19 (94.7) | 0.022 | |
| 30-day mortality | 3/12 (25.0) | 0/19 (0.0) | 0.049 | |
| Patients infected with resistant Gram-positive organisms (n = 50) | Early clinical response | 3/12 (25.0) | 32/38 (84.2) | <0.001 |
| Clinical success at the end of therapy | 7/12 (58.3) | 37/38 (97.4) | 0.002 | |
| 30-day mortality | 3/12 (25.0) | 1/38 (2.6) | 0.038 |
| Adverse Effect | Observation Period | AUC2nd term | p Value | |
|---|---|---|---|---|
| <600 μg·h/mL (n = 109) | 600–700 μg·h/mL (n = 10) | |||
| Hepatotoxicity, no. of patients (%) | On day 5 (±1 day) | 13 (11.9) | 2 (20.0) | 0.613 |
| At the end of therapy | 17 (15.6) | 2 (20.0) | 0.660 | |
| Neutropenia, No. of patients (%) | On day 5 (±1 day) | 1 (0.9) | 0 (0.0) | 1.000 |
| At the end of therapy | 4 (3.7) | 1 (10.0) | 0.360 | |
| Thrombocytopenia, No. of patients (%) | On day 5 (±1 day) | 6 (5.5) | 0 (0.0) | 1.000 |
| At the end of therapy | 11 (10.1) | 1 (10.0) | 1.000 | |
| Myelosuppression, no of patients (%) | On day 5 (±1 day) | 7 (6.4) | 0 (0.0) | 1.000 |
| At the end of therapy | 14 (12.8) | 2 (20.0) | 0.623 | |
| Ototoxicity, no. of patients (%) | At the end of therapy * | 0 † (0) | 0 (0) | – |
| Factor | No. of Patients with an Early Clinical Response (%) | Univariate Analysis | Multivariate Analysis | |||
|---|---|---|---|---|---|---|
| Patients with a Particular Factor | Patients Without a Particular Factor | Crude OR (95% CI) | p Value | Adjusted OR (95% CI) | p Value | |
| Male sex | 13/21 (61.9) | 5/10 (50.0) | 1.63 (0.36–7.43) | 0.701 | ||
| ICU stay | 2/4 (50.0) | 16/27 (59.3) | 0.69 (0.08–5.64) | 1.000 | ||
| Age ≥ 65 years | 16/25 (64.0) | 2/6 (33.3) | 3.56 (0.54–23.39) | 0.208 | ||
| Body mass index < 18.5 kg/m2 | 3/7 (42.9) | 15/24 (62.5) | 0.45 (0.08–2.49) | 0.413 | ||
| Body mass index ≥ 25 kg/m2 | 5/9 (55.6) | 13/22 (59.1) | 0.87 (0.18–4.14) | 1.000 | ||
| Surgery within 30 days | 4/6 (66.7) | 14/25 (56.0) | 1.57 (0.24–10.22) | 1.000 | ||
| Severity of illness | ||||||
| SOFA score > 5 (median) | 7/13 (53.8) | 11/18 (61.1) | 0.74 (0.18–3.15) | 0.686 | ||
| Septic shock | 0/0 | 18/31 (58.1) | – | – | ||
| Mechanical ventilation | 1/2 (50.0) | 17/29 (58.6) | 0.71 (0.04–12.43) | 1.000 | ||
| Type of infection | ||||||
| Complicated by MRSA infection * | 8/17 (47.1) | 10/14 (71.4) | 0.36 (12.08–1.59) | 0.171 | 0.34 (0.07–1.65) | 0.079 |
| Bloodstream infection | 3/6 (50.0) | 15/25 (60.0) | 0.67 (0.11–3.99) | 0.676 | ||
| Bone and joint infection | 7/12 (58.3) | 11/19 (57.9) | 1.02 (0.24–4.41) | 0.981 | ||
| Skin and soft tissue infection | 6/9 (66.7) | 12/22 (54.5) | 1.67 (0.33–8.42) | 0.696 | ||
| Respiratory tract infection | 5/8 (62.5) | 13/23 (56.5) | 1.28 (0.25–6.69) | 1.000 | ||
| Intra-abdominal infection | 0/0 | 18/31 (58.1) | – | – | ||
| Urinary tract infection | 0/0 | 18/31 (58.1) | – | – | ||
| Co-infection with Gram-negative bacteria | 10/16 (62.5) | 8/15 (53.3) | 1.46 (0.35–6.11) | 0.605 | ||
| Co-infection with a fungal infection | 0/0 | 18/31 (58.1) | – | – | ||
| AUC2nd term/MIC ≥ 400 μg·h/mL | 15/19 (78.9) | 3/12 (25.0) | 11.25 (2.03–62.20) | 0.003 | 23.14 (2.31–431.53) | 0.008 |
| Achievement of source control | 12/17 (70.6) | 6/14 (42.9) | 3.20 (19.72–14.15) | 0.119 | 8.37 (0.86–81.38) | 0.067 |
| Comorbidity | ||||||
| Charlson Comorbidity Index > 11 (median) | 6/11 (54.5) | 12/20 (60.0) | 0.80 (0.18–3.54) | 1.000 | ||
| Myocardial infarction/congestive heart failure | 14/23 (60.9) | 4/8 (50.0) | 1.56 (0.31–7.85) | 0.689 | ||
| Diabetes | 11/19 (57.9) | 7/12 (58.3) | 0.98 (0.23–4.25) | 0.981 | ||
| Liver disease | 1/3 (33.3) | 17/28 (60.7) | 0.32 (0.03–4.01) | 0.558 | ||
| Cerebrovascular disease | 2/5 (40.0) | 16/26 (61.5) | 0.42 (0.06–2.95) | 0.625 | ||
| Chronic pulmonary disease | 3/5 (60.0) | 15/26 (57.7) | 1.10 (0.16–7.74) | 1.000 | ||
| Any malignancy within 5 years | 5/10 (50.0) | 13/21 (61.9) | 0.62 (0.13–2.82) | 0.701 | ||
| Leukaemia/lymphoma | 0/0 | 18/31 (58.1) | - | - | ||
| Classification of the Regimen According to the Cumulative Initial Two Doses | Vancomycin Dose (mg/kg) | AUC2nd term (μg·h/mL) | ||||||
|---|---|---|---|---|---|---|---|---|
| Loading Dose | Maintenance Dose | Total Two Doses | Target Attainment (400–700) | <400 | 400–600 | 600–700 | ≥700 | |
| Low-dose regimen (n = 9) | 20.5 ± 2.2 | 8.0 ± 1.1 | 28.5 ± 1.8 | 0.0% | 100.0% | 0.0% | 0.0% | 0.0% |
| Standard-dose regimen (n = 68) | 26.7 ± 1.8 | 9.0 ± 0.9 | 35.8 ± 1.8 | 69.1% | 30.9% | 66.2% | 2.9% | 0.0% |
| High-dose regimen (n = 42) | 30.7 ± 1.3 | 9.9 ± 0.7 | 40.6 ± 1.5 | 90.5% | 9.5% | 71.4% | 19.0% | 0.0% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Kambe, M.; Ueda, T.; Oda, K.; Sugiyama, K.; Nakajima, K.; Otani, N.; Uchino, M.; Horio, Y.; Kuwahara, R.; Toyama, M.; et al. Vancomycin Dosing Regimen to Obtain the Target Area Under the Concentration–Time Curve, Which Provides an Early Treatment Response for Patients on Haemodialysis. Antibiotics 2026, 15, 47. https://doi.org/10.3390/antibiotics15010047
Kambe M, Ueda T, Oda K, Sugiyama K, Nakajima K, Otani N, Uchino M, Horio Y, Kuwahara R, Toyama M, et al. Vancomycin Dosing Regimen to Obtain the Target Area Under the Concentration–Time Curve, Which Provides an Early Treatment Response for Patients on Haemodialysis. Antibiotics. 2026; 15(1):47. https://doi.org/10.3390/antibiotics15010047
Chicago/Turabian StyleKambe, Minori, Takashi Ueda, Kazutaka Oda, Kazuhiro Sugiyama, Kazuhiko Nakajima, Naruhito Otani, Motoi Uchino, Yuki Horio, Ryuichi Kuwahara, Masanobu Toyama, and et al. 2026. "Vancomycin Dosing Regimen to Obtain the Target Area Under the Concentration–Time Curve, Which Provides an Early Treatment Response for Patients on Haemodialysis" Antibiotics 15, no. 1: 47. https://doi.org/10.3390/antibiotics15010047
APA StyleKambe, M., Ueda, T., Oda, K., Sugiyama, K., Nakajima, K., Otani, N., Uchino, M., Horio, Y., Kuwahara, R., Toyama, M., Tomita, M., Ide, A., Ao, M., Nozaki, Y., & Takesue, Y. (2026). Vancomycin Dosing Regimen to Obtain the Target Area Under the Concentration–Time Curve, Which Provides an Early Treatment Response for Patients on Haemodialysis. Antibiotics, 15(1), 47. https://doi.org/10.3390/antibiotics15010047

