Phenotypic and Molecular Study of Multidrug-Resistant Escherichia coli Isolates Expressing Diverse Resistance and Virulence Genes from Broilers in Tunisia
Abstract
1. Introduction
2. Results
2.1. Antimicrobial Resistance Pattern
2.2. Detection of β-Lactamases Genes and Colistin Resistance Genes
2.3. Identification of Antimicrobial Resistance Genes
2.4. Virulence Factors Genes
2.5. Phylogenetic Groups
2.6. Association of Virulence Genes and Resistance Genes Distribution Among Phylogenetic Groups
2.7. Characterization of Integrons
3. Discussion
4. Material and Methods
4.1. Samples
4.2. Bacterial Isolation and Identification
4.3. Antimicrobial Sensitivity Test and ESBL Phenotype Detection
4.4. Detection of β-Lactamase Genes
4.5. Detection of Antimicrobial Resistance Genes to Non-β-Lactam Agents
4.6. Detection and Characterization of Integrons
4.7. Determination of Phylogenetic Groups and Virulence Factors
4.8. Data Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Escobar-Páramo, P.; Grenet, K.; Le Menac’h, A.; Rode, L.; Salgado, E.; Amorin, C.; Gouriou, S.; Picard, B.; Rahimy, M.C.; Andremont, A. Large-scale population structure of human commensal Escherichia coli isolates. Appl. Environ. Microbiol. 2004, 70, 5698–5700. [Google Scholar] [CrossRef]
- Ramos, S.; Silva, V.; Dapkevicius, M.L.E.; Caniça, M.; Tejedor-Junco, M.T.; Igrejas, G.; Poeta, P. Escherichia coli as Commensal and Pathogenic Bacteria Among Food-Producing Animals: Health Implications of Extended Spectrum β-lactamase (ESBL) Production. Animals 2020, 10, 2239. [Google Scholar] [CrossRef]
- Rezatofighi, S.E.; Mirzarazi, M.; Salehi, M. Virulence genes and phylogenetic groups of uropathogenic Escherichia coli isolates from patients with urinary tract infection and uninfected control subjects: A case-control study. BMC Infect. Dis. 2021, 21, 361. [Google Scholar] [CrossRef]
- Wu, H.-J.; Wang, A.H.; Jennings, M.P. Discovery of virulence factors of pathogenic bacteria. Curr. Opin. Chem. Biol. 2008, 12, 93–101. [Google Scholar] [CrossRef] [PubMed]
- Pakbin, B.; Brück, W.M.; Rossen, J.W.A. Virulence Factors of Enteric Pathogenic Escherichia coli: A Review. Int. J. Mol. Sci. 2021, 22, 9922. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.; Kim, J.H.; Lee, Y. Virulence Factors Associated with Escherichia coli Bacteremia and Urinary Tract Infection. Ann. Lab. Med. 2022, 42, 203–212. [Google Scholar] [CrossRef] [PubMed]
- Clermont, O.; Christenson, J.K.; Denamur, E.; Gordon, D.M. The Clermont Escherichia coli phylo-typing method revisited: Improvement of specificity and detection of new phylo-groups. Environ. Microbiol. Rep. 2013, 5, 58–65. [Google Scholar] [CrossRef]
- Laarem, M.; Barguigua, A.; Nayme, K.; Akila, A.; Zerouali, K.; El Mdaghri, N.; Timinouni, M. Occurrence of plasmid-mediated quinolone resistance and virulence genes in avian Escherichia coli isolates from Algeria. J. Infect. Dev. Ctries. 2017, 11, 143–151. [Google Scholar] [CrossRef]
- Mellata, M. Human and avian extraintestinal pathogenic Escherichia coli: Infections, zoonotic risks, and antibiotic resistance trends. Foodborne Pathog. Dis. 2013, 10, 916–932. [Google Scholar] [CrossRef]
- de Brito, B.G.; Gaziri, L.C.J.; Vidotto, M.C. Virulence factors and clonal relationships among Escherichia coli strains isolated from broiler chickens with cellulitis. Infect. Immun. 2003, 71, 4175–4177. [Google Scholar] [CrossRef]
- Johar, A.; Al-Thani, N.; Al-Hadidi, S.H.; Dlissi, E.; Mahmoud, M.H.; Eltai, N.O. Antibiotic resistance and virulence gene patterns associated with avian pathogenic Escherichia coli (APEC) from broiler chickens in qatar. Antibiotics 2021, 10, 564. [Google Scholar] [CrossRef]
- Hussain, A.; Shaik, S.; Ranjan, A.; Nandanwar, N.; Tiwari, S.K.; Majid, M.; Baddam, R.; Qureshi, I.A.; Semmler, T.; Wieler, L.H. Risk of transmission of antimicrobial resistant Escherichia coli from commercial broiler and free-range retail chicken in India. Front. Microbiol. 2017, 8, 2120. [Google Scholar] [CrossRef] [PubMed]
- de Been, M.; Lanza, V.F.; de Toro, M.; Scharringa, J.; Dohmen, W.; Du, Y.; Hu, J.; Lei, Y.; Li, N.; Tooming-Klunderud, A. Dissemination of cephalosporin resistance genes between Escherichia coli strains from farm animals and humans by specific plasmid lineages. PLoS Genet. 2014, 10, e1004776. [Google Scholar] [CrossRef]
- O’Neill, J. Review on Antimicrobial Resistance: Tackling Drug-Resistant Infections Globally: Final Report and Recommendations; Wellcome Trust: London, UK, 2016. [Google Scholar]
- Mohamed, M.-Y.I.; Abu, J.; Zakaria, Z.; Khan, A.R.; Abdul Aziz, S.; Bitrus, A.A.; Habib, I. Multi-Drug Resistant Pathogenic Escherichia coli Isolated from Wild Birds, Chicken, and the Environment in Malaysia. Antibiotics 2022, 11, 1275. [Google Scholar] [CrossRef]
- Lye, D.; Earnest, A.; Ling, M.; Lee, T.-E.; Yong, H.-C.; Fisher, D.; Krishnan, P.; Hsu, L.-Y. The impact of multidrug resistance in healthcare-associated and nosocomial Gram-negative bacteraemia on mortality and length of stay: Cohort study. Clin. Microbiol. Infect. 2012, 18, 502–508. [Google Scholar] [CrossRef] [PubMed]
- Abdallah, H.; Reuland, E.; Wintermans, B.; Al Naiemi, N.; Koek, A.; Abdelwahab, A.; Ammar, A.; Mohamed, A.; Vandenbroucke-Grauls, C. Extended-spectrum β-lactamases and/or carbapenemases-producing Enterobacteriaceae isolated from retail chicken meat in Zagazig, Egypt. PLoS ONE 2015, 10, e0136052. [Google Scholar] [CrossRef]
- Canton, R.; Novais, A.; Valverde, A.; Machado, E.; Peixe, L.; Baquero, F.; Coque, T. Prevalence and spread of extended-spectrum β-lactamase-producing Enterobacteriaceae in Europe. Clin. Microbiol. Infect. 2008, 14, 144–153. [Google Scholar] [CrossRef]
- Cantón, R.; Coque, T.M. The CTX-M β-lactamase pandemic. Curr. Opin. Microbiol. 2006, 9, 466–475. [Google Scholar] [CrossRef]
- Changkaew, K.; Intarapuk, A.; Utrarachkij, F.; Nakajima, C.; Suthienkul, O.; Suzuki, Y. Antimicrobial Resistance, Extended-Spectrum β-Lactamase Productivity, and Class 1 Integrons in Escherichia coli from Healthy Swine. J. Food Prot. 2015, 78, 1442–1450. [Google Scholar] [CrossRef]
- Poirel, L.; Walsh, T.R.; Cuvillier, V.; Nordmann, P. Multiplex PCR for detection of acquired carbapenemase genes. Diagn. Microbiol. Infect. Dis. 2011, 70, 119–123. [Google Scholar] [CrossRef]
- Jin, M.; Osman, M.; Green, B.A.; Yang, Y.; Ahuja, A.; Lu, Z.; Cazer, C.L. Evidence for the transmission of antimicrobial resistant bacteria between humans and companion animals: A scoping review. One Health 2023, 17, 100593. [Google Scholar] [CrossRef]
- Muloi, D.; Ward, M.J.; Pedersen, A.B.; Fevre, E.M.; Woolhouse, M.E.; van Bunnik, B.A. Are food animals responsible for transfer of antimicrobial-resistant Escherichia coli or their resistance determinants to human populations? A systematic review. Foodborne Pathog. Dis. 2018, 15, 467–474. [Google Scholar]
- WHO. Available online: https://www.who.int/about/accountability/results/who-results-report-2020-2021/country-profile/2021/tunisia (accessed on 1 March 2023).
- Abdallah, K.; Tayh, G.; Maamar, E.; Mosbah, A.; Abbes, O.; Fliss, I.; Messadi, L.J.M.R. Genotypic Characterisation and Risk Assessment of Virulent ESBL-Producing E. coli in Chicken Meat in Tunisia: Insights from Multi-Omics Machine Learning Perspective. Microbiol. Res. 2025, 16, 131. [Google Scholar]
- Liu, Z.; Wang, K.; Zhang, Y.; Xia, L.; Zhao, L.; Guo, C.; Liu, X.; Qin, L.; Hao, Z. High prevalence and diversity characteristics of blaNDM, mcr, and blaESBLs harboring multidrug-resistant Escherichia coli from chicken, pig, and cattle in China. Front. Cell. Infect. Microbiol. 2022, 1364, 755545. [Google Scholar] [CrossRef]
- Akenten, C.W.; Ofori, L.A.; Khan, N.A.; Mbwana, J.; Sarpong, N.; May, J.; Thye, T.; Obiri-Danso, K.; Paintsil, E.K.; Fosu, D.; et al. Prevalence, Characterization, and Antimicrobial Resistance of Extended-Spectrum Beta-Lactamase-Producing Escherichia coli from Domestic Free-Range Poultry in Agogo, Ghana. Foodborne Pathog. Dis. 2023, 20, 59–66. [Google Scholar] [CrossRef]
- Mezhoud, H.; Boyen, F.; Touazi, L.-h.; Garmyn, A.; Moula, N.; Smet, A.; Haesbrouck, F.; Martel, A.; Iguer-Ouada, M.; Touati, A. Extended spectrum β-lactamase producing Escherichia coli in broiler breeding roosters: Presence in the reproductive tract and effect on sperm motility. Anim. Reprod. Sci. 2015, 159, 205–211. [Google Scholar] [CrossRef]
- Mnif, B.; Ktari, S.; Rhimi, F.; Hammami, A. Extensive dissemination of CTX-M-1-and CMY-2-producing Escherichia coli in poultry farms in Tunisia. Lett. Appl. Microbiol. 2012, 55, 407–413. [Google Scholar] [CrossRef] [PubMed]
- Aliyu, A.B.; Jalila, A.; Saleha, A.A.; Zunita, Z. ESBL Producing E. coli in Chickens and Poultry Farms Environment in Selangor, Malaysia: A Cross-Sectional Study on Their Occurrence and Associated Risk Factors with Environment and Public Health Importance. Zoonoses Public Health 2024, 71, 962–971. [Google Scholar] [CrossRef] [PubMed]
- Kuan, N.-L.; Chen, Y.-P.; Shien, J.-H.; Yeh, K.-S. Characteristics of the extended-spectrum-β-lactamase-producing Escherichia coli isolated from diseased livestock and poultry in Taiwan. Sci. Rep. 2024, 14, 29459. [Google Scholar] [CrossRef]
- Song, J.; Oh, S.-S.; Kim, J.; Park, S.; Shin, J. Clinically relevant extended-spectrum β-lactamase–producing Escherichia coli isolates from food animals in South Korea. Front. Microbiol. 2020, 11, 604. [Google Scholar] [CrossRef]
- Ho, P.-L.; Chow, K.; Lai, E.L.; Lo, W.-U.; Yeung, M.; Chan, J.; Chan, P.; Yuen, K. Extensive dissemination of CTX-M-producing Escherichia coli with multidrug resistance to ‘critically important’antibiotics among food animals in Hong Kong, 2008–2010. J. Antimicrob. Chemother. 2011, 66, 765–768. [Google Scholar] [CrossRef]
- Kasparaviciene, B.; Novoslavskij, A.; Aksomaitiene, J.; Stankeviciene, J.; Kasetiene, N.; Sinkevicius, R.; Malakauskas, M. Prevalence and Antimicrobial Resistance of ESBL E. coli in Early Broiler Production Stage and Farm Environment in Lithuania. Microorganisms 2025, 13, 425. [Google Scholar] [CrossRef]
- Abbassi, M.; Kilani, H.; Zouari, M.; Mansouri, R.; Oussama, E.; Hammami, S.; Chehida, N.B. Antimicrobial resistance in Escherichia coli isolates from healthy poultry, bovine and ovine in Tunisia: A real animal and human health threat. J. Clin. Microbiol. Biochem. Technol. 2017, 3, 019–123. [Google Scholar]
- Ardakani, Z.; Aragrande, M.; Canali, M. Global antimicrobial use in livestock farming: An estimate for cattle, chickens, and pigs. Animal 2024, 18, 101060. [Google Scholar] [CrossRef]
- Tayh, G.; Al Laham, N.; Ben Yahia, H.; Ben Sallem, R.; Elottol, A.E.; Ben Slama, K. Extended-spectrum β-lactamases among Enterobacteriaceae isolated from urinary tract infections in Gaza strip, Palestine. BioMed Res. Int. 2019, 2019, 4041801. [Google Scholar] [CrossRef]
- Ben Sallem, R.; Ben Slama, K.; Sáenz, Y.; Rojo-Bezares, B.; Estepa, V.; Jouini, A.; Gharsa, H.; Klibi, N.; Boudabous, A.; Torres, C. Prevalence and characterization of extended-spectrum beta-lactamase (ESBL)–and CMY-2–producing Escherichia coli isolates from healthy food-producing animals in Tunisia. Foodborne Pathog. Dis. 2012, 9, 1137–1142. [Google Scholar] [CrossRef] [PubMed]
- Messaili, C.; Messai, Y.; Bakour, R. Virulence gene profiles, antimicrobial resistance and phylogenetic groups of fecal Escherichia coli strains isolated from broiler chickens in Algeria. Vet. Ital. 2019, 55, 35–46. [Google Scholar] [CrossRef]
- Abdel-Rahman, M.A.; Hamed, E.A.; Abdelaty, M.F.; Sorour, H.K.; Badr, H.; Hassan, W.M.; Shalaby, A.G.; Mohamed, A.A.-E.; Soliman, M.A.; Roshdy, H. Distribution pattern of antibiotic resistance genes in Escherichia coli isolated from colibacillosis cases in broiler farms of Egypt. World 2023, 16, 1. [Google Scholar] [CrossRef]
- Racewicz, P.; Majewski, M.; Biesiada, H.; Nowaczewski, S.; Wilczyński, J.; Wystalska, D.; Kubiak, M.; Pszczoła, M.; Madeja, Z.E. Prevalence and characterisation of antimicrobial resistance genes and class 1 and 2 integrons in multiresistant Escherichia coli isolated from poultry production. Sci. Rep. 2022, 12, 6062. [Google Scholar] [CrossRef] [PubMed]
- Maamar, E.; Alonso, C.A.; Hamzaoui, Z.; Dakhli, N.; Abbassi, M.S.; Ferjani, S.; Saidani, M.; Boubaker, I.B.-B.; Torres, C. Emergence of plasmid-mediated colistin-resistance in CMY-2-producing Escherichia coli of lineage ST2197 in a Tunisian poultry farm. Int. J. Food Microbiol. 2018, 269, 60–63. [Google Scholar] [CrossRef]
- Aklilu, E.; Raman, K. MCR-1 gene encoded colistin-resistant Escherichia coli in raw chicken meat and bean sprouts in Malaysia. Int. J. Microbiol. 2020, 2020, 8853582. [Google Scholar] [CrossRef]
- Ben Haj Yahia, A.; Tayh, G.; Landolsi, S.; Maamar, E.; Galai, N.; Landoulsi, Z.; Messadi, L. First Report of OXA-48 and IMP Genes Among Extended-Spectrum Beta-Lactamase-Producing Escherichia coli Isolates from Diarrheic Calves in Tunisia. Microb. Drug Resist. 2023, 29, 150–162. [Google Scholar] [CrossRef]
- Lengliz, S.; Benlabidi, S.; Raddaoui, A.; Cheriet, S.; Ben Chehida, N.; Najar, T.; Abbassi, M.S. High occurrence of carbapenem-resistant Escherichia coli isolates from healthy rabbits (Oryctolagus cuniculus): First report of blaIMI and blaVIM type genes from livestock in Tunisia. Lett. Appl. Microbiol. 2021, 73, 708–717. [Google Scholar] [CrossRef]
- Hamza, E.; Dorgham, S.M.; Hamza, D.A. Carbapenemase-producing Klebsiella pneumoniae in broiler poultry farming in Egypt. J. Glob. Antimicrob. Resist. 2016, 7, 8–10. [Google Scholar] [CrossRef] [PubMed]
- Aklilu, E.; Harun, A.; Singh, K.K.B.; Ibrahim, S.; Kamaruzzaman, N.F. Phylogenetically Diverse Escherichia coli Strains from Chicken Coharbor Multiple Carbapenemase-Encoding Genes (blaNDM-blaOXA-blaIMP). BioMed Res. Int. 2021, 2021, 5596502. [Google Scholar] [CrossRef]
- Bonardi, S.; Pitino, R. Carbapenemase-producing bacteria in food-producing animals, wildlife and environment: A challenge for human health. Ital. J. Food Saf. 2019, 8, 7956. [Google Scholar] [CrossRef]
- Ahmad, K.; Khattak, F.; Ali, A.; Rahat, S.; Noor, S.; Mahsood, N.; Somayya, R. Carbapenemases and extended-spectrum β-lactamase–producing multidrug-resistant Escherichia coli isolated from retail chicken in peshawar: First report from Pakistan. J. Food Prot. 2018, 81, 1339–1345. [Google Scholar] [PubMed]
- Ktari, S.; Arlet, G.; Mnif, B.; Gautier, V.; Mahjoubi, F.; Ben Jmeaa, M.; Bouaziz, M.; Hammami, A. Emergence of multidrug-resistant Klebsiella pneumoniae isolates producing VIM-4 metallo-β-lactamase, CTX-M-15 extended-spectrum β-lactamase, and CMY-4 AmpC β-lactamase in a Tunisian university hospital. Antimicrob. Agents Chemother. 2006, 50, 4198–4201. [Google Scholar] [CrossRef]
- Yahia, A.B.H.; Tayh, G.; Landolsi, S.; Maazaoui, A.; Chehida, F.B.; Mamlouk, A.; Dâaloul-Jedidi, M.; Messadi, L. Characterization of Extended-Spectrum β-Lactamase Producing-and Carbapenem–Resistant Escherichia coli Isolated from Diarrheic Dogs in Tunisia: First Report of bla IMP Gene in Companion Animals. Microbiol. Res. 2024, 15, 1119–1133. [Google Scholar] [CrossRef]
- Tayh, G.; Jebali, G.; Selmi, R.; Kaboudi, K.; Dâaloul-Jedidi, M.; Messadi, L. Prevalence, characterization, and emergence of extended-spectrum Β-lactamase producing-and carbapenem-resistant gram-negative bacteria isolated from houseflies (Musca domestica) in tunisia. Slov. Vet. Res. 2025. [Google Scholar] [CrossRef]
- Seo, K.W.; Lee, Y.J. Prevalence and characterization of plasmid mediated quinolone resistance genes and class 1 integrons among multidrug-resistant Escherichia coli isolates from chicken meat. J. Appl. Poult. Res. 2019, 28, 761–770. [Google Scholar] [CrossRef]
- Piekarska, K.; Rzeczkowska, M.; Zacharczuk, K.; Chróst, A.; Januszkiewicz, A.; Bareja, E.; Olak, M.; Gierczyński, R. Prevalence of qnr genes in clinical Enterobacteriaceae non-susceptible to fluoroquinolone in Poland. Med. Dosw. I Mikrobiol. 2012, 64, 211–219. [Google Scholar]
- Abbassi, M.S.; Kilani, H.; Abid, I.; Sáenz, Y.; Hynds, P.; Lengliz, S.; Ben Chehida, N.; Boutiba-Ben Boubaker, I. Genetic background of antimicrobial resistance in multiantimicrobial-resistant Escherichia coli isolates from feces of healthy broiler chickens in Tunisia. BioMed Res. Int. 2021, 2021, 1269849. [Google Scholar] [CrossRef]
- Ferreira, J.C.; Penha Filho, R.A.C.; Kuaye, A.P.Y.; Andrade, L.N.; Chang, Y.-F.; Darini, A.L.C. Virulence potential of commensal multidrug resistant Escherichia coli isolated from poultry in Brazil. Infect. Genet. Evol. 2018, 65, 251–256. [Google Scholar] [CrossRef]
- Ugwu, I.; Lee-Ching, L.; Ugwu, C.; Okoye, J.; Chah, K. In vitro assessment of pathogenicity and virulence encoding gene profiles of avian pathogenic Escherichia coli strains associated with colibacillosis in chickens. Iran. J. Vet. Res. 2020, 21, 180. [Google Scholar]
- Mbanga, J.; Nyararai, Y.O. Virulence gene profiles of avian pathogenic Escherichia coli isolated from chickens with colibacillosis in Bulawayo, Zimbabwe. Onderstepoort J. Vet. Res. 2015, 82, 1–8. [Google Scholar] [CrossRef]
- Chouikha, I.; Bree, A.; Moulin-Schouleur, M.; Gilot, P.; Germon, P. Differential expression of iutA and ibeA in the early stages of infection by extra-intestinal pathogenic E. coli. Microbes Infect. 2008, 10, 432–438. [Google Scholar] [CrossRef] [PubMed]
- Kargar, M.; Homayoon, M. Prevalence of shiga toxins (stx1, stx2), eaeA and hly genes of Escherichia coli O157: H7 strains among children with acute gastroenteritis in southern of Iran. Asian Pac. J. Trop. Med. 2015, 8, 24–28. [Google Scholar] [CrossRef]
- Maamar, E.; Hammami, S.; Alonso, C.A.; Dakhli, N.; Abbassi, M.S.; Ferjani, S.; Hamzaoui, Z.; Saidani, M.; Torres, C.; Boubaker, I.B.-B. High prevalence of extended-spectrum and plasmidic AmpC beta-lactamase-producing Escherichia coli from poultry in Tunisia. Int. J. Food Microbiol. 2016, 231, 69–75. [Google Scholar] [CrossRef] [PubMed]
- Manges, A.R.; Johnson, J.R. Food-borne origins of Escherichia coli causing extraintestinal infections. Clin. Infect. Dis. 2012, 55, 712–719. [Google Scholar] [CrossRef]
- Soufi, L.; Sáenz, Y.; Vinué, L.; Abbassi, M.S.; Ruiz, E.; Zarazaga, M.; Hassen, A.B.; Hammami, S.; Torres, C. Escherichia coli of poultry food origin as reservoir of sulphonamide resistance genes and integrons. Int. J. Food Microbiol. 2011, 144, 497–502. [Google Scholar] [CrossRef]
- Rowe-Magnus, D.A.; Mazel, D. The role of integrons in antibiotic resistance gene capture. Int. J. Med. Microbiol. 2002, 292, 115–125. [Google Scholar] [CrossRef]
- Fletcher, S. Understanding the contribution of environmental factors in the spread of antimicrobial resistance. Environ. Health Prev. Med. 2015, 20, 243–252. [Google Scholar] [CrossRef]
- Dessie, H.K.; Bae, D.H.; Lee, Y.J. Characterization of integrons and their cassettes in Escherichia coli and Salmonella isolates from poultry in Korea. Poult. Sci. 2013, 92, 3036–3043. [Google Scholar] [CrossRef]
- Recchia, G.D.; Hall, R.M. Gene cassettes: A new class of mobile element. Microbiology 1995, 141, 3015–3027. [Google Scholar] [CrossRef]
- Guerra, B.; Junker, E.; Schroeter, A.; Malorny, B.; Lehmann, S.; Helmuth, R. Phenotypic and genotypic characterization of antimicrobial resistance in German Escherichia coli isolates from cattle, swine and poultry. J. Antimicrob. Chemother. 2003, 52, 489–492. [Google Scholar] [CrossRef]
- Coura, F.M.; Diniz, S.A.; Silva, M.X.; Arcebismo, T.L.; Minharro, S.; Feitosa, A.C.; Lage, A.P.; Knöbl, T.; Mussi, J.M.S.; Heinemann, M.B. Phylogenetic group of Escherichia coli isolates from broilers in Brazilian poultry slaughterhouse. Sci. World J. 2017, 2017, 5898701. [Google Scholar] [CrossRef] [PubMed]
- Pais, S.; Costa, M.; Barata, A.R.; Rodrigues, L.; Afonso, I.M.; Almeida, G. Evaluation of antimicrobial resistance of different phylogroups of Escherichia coli isolates from feces of breeding and laying hens. Antibiotics 2023, 12, 20. [Google Scholar] [CrossRef]
- Clermont, O.; Olier, M.; Hoede, C.; Diancourt, L.; Brisse, S.; Keroudean, M.; Glodt, J.; Picard, B.; Oswald, E.; Denamur, E. Animal and human pathogenic Escherichia coli strains share common genetic backgrounds. Infect. Genet. Evol. 2011, 11, 654–662. [Google Scholar] [CrossRef] [PubMed]
- Hendriksen, R.S.; Cavaco, L.M.; Guerra, B.; Bortolaia, V.; Agersø, Y.; Svendsen, C.A.; Nielsen, H.N.; Kjeldgaard, J.S.; Pedersen, S.K.; Fertner, M.; et al. Evaluation and validation of laboratory procedures for the surveillance of ESBL-, AmpC-, and carbapenemase-producing Escherichia coli from fresh meat and caecal samples. Front. Microbiol. 2023, 14, 1229542. [Google Scholar] [CrossRef] [PubMed]
- Heininger, A.; Binder, M.; Schmidt, S.; Unertl, K.; Botzenhart, K.; Döring, G. PCR and blood culture for detection of Escherichia coli bacteremia in rats. J. Clin. Microbiol. 1999, 37, 2479–2482. [Google Scholar] [CrossRef] [PubMed]
- The European Committee on Antimicrobial Susceptibility Testing (EUCAST). Breakpoint Tables for Interpretation of MICs and Zone Diameters. Version 7.1. 2017. Available online: www.eucast.org (accessed on 24 August 2025).
- Jouy, E.; Haenni, M.; Le Devendec, L.; Le Roux, A.; Châtre, P.; Madec, J.Y.; Kempf, I. Improvement in routine detection of colistin resistance in E. coli isolated in veterinary diagnostic laboratories. J. Microbiol. Methods 2017, 132, 125–127. [Google Scholar] [CrossRef] [PubMed]
- Jacoby, G.A.; Han, P. Detection of extended-spectrum beta-lactamases in clinical isolates of Klebsiella pneumoniae and Escherichia coli. J. Clin. Microbiol. 1996, 34, 908–911. [Google Scholar] [CrossRef] [PubMed]
- Sáenz, Y.; Brinas, L.; Domínguez, E.; Ruiz, J.; Zarazaga, M.; Vila, J.; Torres, C. Mechanisms of resistance in multiple-antibiotic-resistant Escherichia coli strains of human, animal, and food origins. Antimicrob. Agents Chemother. 2004, 48, 3996–4001. [Google Scholar] [CrossRef]
- Batchelor, M.; Hopkins, K.; Threlfall, E.; Clifton-Hadley, F.; Stallwood, A.; Davies, R.; Liebana, E. bla CTX-M genes in clinical Salmonella isolates recovered from humans in England and Wales from 1992 to 2003. Antimicrob. Agents Chemother. 2005, 49, 1319–1322. [Google Scholar] [CrossRef]
- Jouini, A.; Vinué, L.; Slama, K.B.; Saenz, Y.; Klibi, N.; Hammami, S.; Boudabous, A.; Torres, C. Characterization of CTX-M and SHV extended-spectrum β-lactamases and associated resistance genes in Escherichia coli strains of food samples in Tunisia. J. Antimicrob. Chemother. 2007, 60, 1137–1141. [Google Scholar] [CrossRef]
- Literacka, E.; Empel, J.; Baraniak, A.; Sadowy, E.; Hryniewicz, W.; Gniadkowski, M. Four variants of the Citrobacter freundii AmpC-Type cephalosporinases, including novel enzymes CMY-14 and CMY-15, in a Proteus mirabilis clone widespread in Poland. Antimicrob Agents Chemother 2004, 48, 4136–4143. [Google Scholar] [CrossRef]
- Candan, E.D.; Aksöz, N. Escherichia coli: Characteristics of carbapenem resistance and virulence factors. Braz. Arch. Biol. Technol. 2017, 60, e17160416. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Wang, Y.; Walsh, T.R.; Yi, L.X.; Zhang, R.; Spencer, J.; Doi, Y.; Tian, G.; Dong, B.; Huang, X.; et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: A microbiological and molecular biological study. Lancet. Infect. Dis. 2016, 16, 161–168. [Google Scholar] [CrossRef]
- Cattoir, V.; Poirel, L.; Rotimi, V.; Soussy, C.J.; Nordmann, P. Multiplex PCR for detection of plasmid-mediated quinolone resistance qnr genes in ESBL-producing enterobacterial isolates. J. Antimicrob. Chemother. 2007, 60, 394–397. [Google Scholar] [CrossRef]
- Park, C.H.; Robicsek, A.; Jacoby, G.A.; Sahm, D.; Hooper, D.C. Prevalence in the United States of aac(6’)-Ib-cr encoding a ciprofloxacin-modifying enzyme. Antimicrob Agents Chemother 2006, 50, 3953–3955. [Google Scholar] [CrossRef]
- Van De Klundert, J.; Vliegenthart, J. Nomenclature of aminoglycoside resistance genes: A comment. Antimicrob. Agents Chemother. 1993, 37, 927–928. [Google Scholar] [CrossRef][Green Version]
- Feng, P.; Monday, S. Multiplex PCR for detection of trait and virulence factors in enterohemorrhagic Escherichia coli serotypes. Mol. Cell Probes 2000, 14, 333–337. [Google Scholar] [CrossRef] [PubMed]
- Johnson, J.R.; Stell, A.L. Extended virulence genotypes of Escherichia coli strains from patients with urosepsis in relation to phylogeny and host compromise. J. Infect. Dis. 2000, 181, 261–272. [Google Scholar] [CrossRef] [PubMed]
- Tóth, I.; Hérault, F.; Beutin, L.; Oswald, E. Production of Cytolethal Distending Toxins by Pathogenic Escherichia coli Strains Isolated from Human and Animal Sources: Establishment of the Existence of a New cdt Variant (Type IV). J. Clin. Microbiol. 2003, 41, 4285–4291. [Google Scholar] [CrossRef] [PubMed]
- Vidal, M.; Kruger, E.; Durán, C.; Lagos, R.; Levine, M.; Prado, V.; Toro, C.; Vidal, R. Single multiplex PCR assay to identify simultaneously the six categories of diarrheagenic Escherichia coli associated with enteric infections. J. Clin. Microbiol. 2005, 43, 5362–5365. [Google Scholar] [CrossRef]
- Besser, T.E.; Shaikh, N.; Holt, N.J.; Tarr, P.I.; Konkel, M.E.; Malik-Kale, P.; Walsh, C.W.; Whittam, T.S.; Bono, J.L. Greater diversity of Shiga toxin-encoding bacteriophage insertion sites among Escherichia coli O157:H7 isolates from cattle than in those from humans. Appl. Environ. Microbiol. 2007, 73, 671–679. [Google Scholar] [CrossRef]
- Ruiz, J.; Simon, K.; Horcajada, J.P.; Velasco, M.; Barranco, M.; Roig, G.; Moreno-Martínez, A.; Martínez, J.A.; Anta, T.J.d.; Mensa, J.; et al. Differences in Virulence Factors among Clinical Isolates of Escherichia coli Causing Cystitis and Pyelonephritis in Women and Prostatitis in Men. J. Clin. Microbiol. 2002, 40, 4445–4449. [Google Scholar] [CrossRef]
- Yamamoto, S.; Terai, A.; Yuri, K.; Kurazono, H.; Takeda, Y.; Yoshida, O. Detection of urovirulence factors in Escherichia coli by multiplex polymerase chain reaction. FEMS Immunol. Med. Microbiol. 1995, 12, 85–90. [Google Scholar] [CrossRef]
- Hinenoya, A.; Naigita, A.; Ninomiya, K.; Asakura, M.; Shima, K.; Seto, K.; Tsukamoto, T.; Ramamurthy, T.; Faruque, S.M.; Yamasaki, S. Prevalence and characteristics of cytolethal distending toxin-producing Escherichia coli from children with diarrhea in Japan. Microbiol. Immunol. 2009, 53, 206–215. [Google Scholar] [CrossRef]
Category | Determinant | n (%) |
---|---|---|
Virulence genes | traT | 93 (83.8%) |
fimH | 88 (79.3%) | |
iutA | 82 (73.9%) | |
bfpA | 48 (43.2%) | |
fyuA | 35 (31.5%) | |
stx-1/shiga toxin | 34 (30.6%) | |
stx-2 | 8 (7.2%) | |
Resistance genes | blaCTX-M-G1 | 85 (76.6%) |
blaTEM | 47 (42.3%) | |
blaSHV | 36 (32.4%) | |
blaCMY | 12 (10.8%) | |
blaIMP | 7 (6.3%) | |
blaOXA-48 | 14 (12.6%) | |
mcr-1 | 6 (5.4%) | |
aadA-1 | 80 (72%) | |
aadA-5 | 33 (29.7%) | |
aac (6)-Ib-cr | 32 (28.8%) | |
qnrS | 24 (21.6%) | |
qnrB | 22 (19.8%) | |
Integrons | Int1+ | 92 (82.9%) |
Int2+ | 44 (39.6%) |
Genes | A (n = 43) | Percent (%) | B1 (n = 18) | Percent (%) | B2 (n = 6) | Percent (%) | C (n = 3) | Percent (%) | Clade I (n = 2) | Percent (%) | D (n = 15) | Percent (%) | E (n = 8) | Percent (%) | F (n = 16) | Percent (%) | Total | Percent (%) | p-Value |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
blaCTX-M-1 | 40 | 93 | 9 | 50 | 5 | 83.3 | 2 | 66.7 | 2 | 100 | 9 | 60 | 7 | 87.5 | 11 | 68.8 | 85 | 76.6 | 0.001 |
blaSHV | 11 | 25.6 | 6 | 33.3 | 1 | 16.7 | 2 | 66.7 | 0 | 0 | 6 | 40 | 2 | 25 | 7 | 43.8 | 36 | 32.4 | 0.001 |
blaTEM | 16 | 37.2 | 6 | 33.3 | 2 | 33.3 | 3 | 100 | 2 | 100 | 4 | 26.7 | 6 | 75 | 8 | 50 | 47 | 42.3 | 0.001 |
blaCMY | 2 | 4.7 | 3 | 16.7 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 13.3 | 0 | 0 | 5 | 31.3 | 12 | 10.8 | 0.156 |
mcr-1 | 4 | 9.3 | 2 | 11.1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 6 | 5.4 | 0.741 |
blaIMP | 5 | 11.6 | 1 | 5.6 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 6.7 | 0 | 0 | 0 | 0 | 7 | 6.3 | 0.819 |
blaOXA-48 | 4 | 9.3 | 2 | 11.1 | 0 | 0 | 1 | 33.3 | 0 | 0 | 4 | 26.7 | 1 | 12.5 | 2 | 12.5 | 14 | 12.6 | 0.661 |
qnrA | 1 | 2.3 | 1 | 5.6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 1.8 | 0.975 |
qnrB | 10 | 23.3 | 4 | 26.7 | 2 | 33.3 | 1 | 33.3 | 0 | 0 | 3 | 20 | 0 | 0 | 2 | 12.5 | 22 | 19.8 | 0.705 |
qnrS | 18 | 41.9 | 1 | 5.6 | 0 | 0 | 1 | 33.3 | 0 | 0 | 4 | 26.7 | 0 | 0 | 0 | 00 | 24 | 21.6 | 0.003 |
aac(6)Ib-cr | 17 | 39.5 | 3 | 16.7 | 3 | 50 | 2 | 66.7 | 0 | 0 | 5 | 33.3 | 0 | 0 | 2 | 12.5 | 32 | 28.8 | 0.054 |
acc(3)-II | 14 | 32.6 | 4 | 26.7 | 2 | 33.3 | 0 | 0 | 0 | 0 | 7 | 46.7 | 2 | 25 | 1 | 6.3 | 30 | 27 | 0.011 |
aadA-1 | 34 | 79.1 | 14 | 77.8 | 3 | 50 | 3 | 100 | 1 | 50 | 9 | 60 | 5 | 62.5 | 10 | 62.5 | 80 | 72 | 0.001 |
aadA-5 | 16 | 37.2 | 4 | 26.7 | 2 | 33.3 | 0 | 0 | 0 | 0 | 5 | 33.3 | 0 | 0 | 6 | 37.5 | 33 | 29.7 | 0.001 |
sul1 | 8 | 18.6 | 6 | 33.3 | 0 | 0 | 1 | 33.3 | 0 | 0 | 4 | 26.7 | 0 | 0 | 1 | 6.3 | 20 | 18 | 0.27 |
sul2 | 10 | 23.3 | 5 | 27.8 | 2 | 33.3 | 0 | 0 | 0 | 0 | 4 | 26.7 | 0 | 0 | 0 | 0 | 22 | 19.8 | 0.231 |
IntI1 | 37 | 86 | 16 | 88.9 | 6 | 100 | 3 | 100 | 2 | 100 | 11 | 73.3 | 4 | 50 | 13 | 81.3 | 92 | 82.9 | 0.001 |
IntI2 | 14 | 32.6 | 9 | 50 | 4 | 66.7 | 0 | 0 | 2 | 100 | 2 | 13.3 | 3 | 37.5 | 10 | 62.5 | 44 | 39.6 | 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tayh, G.; Nsibi, F.; Abdallah, K.; Abbes, O.; Fliss, I.; Messadi, L. Phenotypic and Molecular Study of Multidrug-Resistant Escherichia coli Isolates Expressing Diverse Resistance and Virulence Genes from Broilers in Tunisia. Antibiotics 2025, 14, 931. https://doi.org/10.3390/antibiotics14090931
Tayh G, Nsibi F, Abdallah K, Abbes O, Fliss I, Messadi L. Phenotypic and Molecular Study of Multidrug-Resistant Escherichia coli Isolates Expressing Diverse Resistance and Virulence Genes from Broilers in Tunisia. Antibiotics. 2025; 14(9):931. https://doi.org/10.3390/antibiotics14090931
Chicago/Turabian StyleTayh, Ghassan, Fatma Nsibi, Khaled Abdallah, Omar Abbes, Ismail Fliss, and Lilia Messadi. 2025. "Phenotypic and Molecular Study of Multidrug-Resistant Escherichia coli Isolates Expressing Diverse Resistance and Virulence Genes from Broilers in Tunisia" Antibiotics 14, no. 9: 931. https://doi.org/10.3390/antibiotics14090931
APA StyleTayh, G., Nsibi, F., Abdallah, K., Abbes, O., Fliss, I., & Messadi, L. (2025). Phenotypic and Molecular Study of Multidrug-Resistant Escherichia coli Isolates Expressing Diverse Resistance and Virulence Genes from Broilers in Tunisia. Antibiotics, 14(9), 931. https://doi.org/10.3390/antibiotics14090931