Risk Factors and Clinical Impact of Extended-Spectrum Beta-Lactamase (ESBL)-Producing Escherichia coli Bacteremia Among Hospitalized Patients
Abstract
1. Introduction
2. Results
2.1. Baseline Characteristics
Variables | Escherichia coli | ||
---|---|---|---|
ESBL (n = 138) | Non-ESBL (n = 86) | p | |
Demographics | |||
Gender, male | 60 (43.5) | 33 (38.4) | 0.451 |
Median age, years (IQR) | 53.5 (42.75–63) | 54 (40–64) | 0.584 |
Median LOS (IQR) | 8 (3–15.25) | 6 (3–11) | 0.147 |
Comorbidities | |||
Hypertension | 49 (35.5) | 29 (33.7) | 0.785 |
Diabetes mellitus | 54 (39.1) | 27 (31.4) | 0.241 |
Heart failure | 12 (8.7) | 9 (10.5) | 0.659 |
COPD | 3 (2.2) | 2 (2.3) | 0.940 |
Liver cirrhosis | 7 (5.1) | 6 (7.0) | 0.553 |
Hematologic malignancy | 8 (5.8) | 7 (8.1) | 0.495 |
Solid tumor | 32 (23.2) | 22 (25.6) | 0.684 |
HIV/AIDS | 0 (0) | 1 (1.2) | 0.204 |
Median CCI (IQR) | 4 (1–6) | 3 (1–5.25) | 0.267 |
CCI ≥ 3 | 81 (58.7) | 47 (54.7) | 0.552 |
Potential source of bacteremia | |||
Pneumonia | 93 (67.4) | 60 (69.8) | 0.710 |
Intra-abdominal | 32 (23.2) | 60 (69.8) | <0.001 * |
Urinary tract | 93 (67.4) | 16 (18.6) | <0.001 * |
Intracranial | 4 (2.9) | 60 (69.8) | <0.001 * |
Skin and soft tissue | 34 (24.6) | 0 (0) | <0.001 * |
Primary bloodstream infection | 5 (3.6) | 2 (2.3) | 0.587 |
Hospital-acquired infection | 31 (22.5) | 23 (26.7) | 0.466 |
Previous exposure | |||
Prior hospitalization | 102 (73.9) | 54 (62.8) | 0.078 |
Prior ICU stay | 22 (15.9) | 12 (14.0) | 0.687 |
Prior surgery | 55 (39.9) | 23 (26.7) | 0.045 * |
Prior chemotherapy or radiotherapy | 9 (6.5) | 12 (14.0) | 0.063 |
Prior corticosteroid use | 15 (10.9) | 16 (18.6) | 0.103 |
Prior antibiotic use | 76 (55.1) | 23 (26.7) | <0.001 * |
History of hemodialysis | 12 (8.7) | 3 (3.5) | 0.129 |
Use of invasive procedures or devices | |||
Mechanical ventilation | 55 (39.9) | 29 (33.7) | 0.356 |
Central venous catheterization | 86 (62.3) | 37 (43.0) | 0.005 * |
Urinary catheterization | 119 (86.2) | 62 (72.1) | 0.009 * |
Laboratory examination | |||
Leukocytosis | 105 (76.1) | 53 (61.6) | 0.021 * |
Neutropenia | 6 (4.3) | 9 (10.5) | 0.075 |
Serum albumin < 30 g/L | 115 (84.6) | 63 (74.1) | 0.056 |
Severity of illness | |||
Median qSOFA score (IQR) | 2 (1–3) | 1 (1–2) | 0.036 * |
Median SOFA score (IQR) | 6 (4–8) | 6 (3–8) | 0.576 |
Median PBS (IQR) | 2 (0–4) | 0.5 (0–4) | 0.001 * |
Vasopressor use | 67 (48.6) | 30 (34.9) | 0.045 * |
Median CRP (IQR) | 17.9 (10.32–28.22) | 14.62 (5.31–25.53) | 0.091 |
Median procalcitonin (IQR) | 22.75 (3.15–62.99) | 24.03 (2.86–50.32) | 0.549 |
Empirical antibiotic treatment | (n = 135) | (n = 80) | 0.136 |
Cephalosporin | 80 (59.3) | 37 (46.3) | |
Fluoroquinolone | 35 (25.9) | 31 (38.8) | |
BLBLI | 16 (11.9) | 12 (15) | |
Aminoglycosides | 2 (1.5) | 0 (0) | |
Metronidazole | 2 (1.5) | 0 (0) | |
Inappropriate initial antibiotic therapy | 115 (83.3) | 16 (20.5) | <0.001 * |
Mortality, n (%) | 97 (70.3) | 52 (60.5) | 0.130 |
2.2. Analysis of the Development of ESBL-Producing E. coli Bacteremia
2.3. Analysis of Mortality Among E. coli Bacteremia Patients
2.4. Risk Factors for Mortality Among Patients with ESBL-Producing E. coli Bacteremia
3. Discussion
4. Materials and Methods
4.1. Study Design and Patient Selection
4.2. Microbiology Test
4.3. Statistical Analysis
4.3.1. Descriptive and Bivariate Analysis
4.3.2. Multivariate Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AIDS | Acquired immunodeficiency syndrome |
AMR | Antimicrobial resistance |
BLBLI | Beta-lactam–beta-lactamase inhibitor |
BSI | Bloodstream infection |
CCI | Charlson comorbidity index |
CI | Confidence interval |
CLSI | Clinical and Laboratory Standards Institute |
COPD | Chronic obstructive pulmonary disease |
CRP | C-reactive protein |
CVC | Central venous catheter |
E. coli | Escherichia coli |
EPV | Events per variable |
ESBL | Extended-spectrum beta-lactamase |
HIV | Human immunodeficiency virus |
ICU | Intensive care unit |
IIAT | Inappropriate initial antibiotic therapy |
IQR | Interquartile range |
LOS | Length of stay |
MDRO | Multidrug-resistant organism |
OR | Odds ratio |
PBS | Pitt bacteremia score |
qSOFA | Quick sequential organ failure assessment |
SOFA | Sequential organ failure assessment |
SPSS | Statistical product and service solutions |
UPEC | Uropathogenic Escherichia coli |
UTI | Urinary tract infection |
VIF | Variance inflation factors |
WHO | World Health Organization |
References
- Husna, A.; Rahman, M.M.; Badruzzaman, A.T.M.; Sikder, M.H.; Islam, M.R.; Rahman, M.T.; Alam, J.; Ashour, H.M. Extended-Spectrum β-Lactamases (ESBL): Challenges and Opportunities. Biomedicines 2023, 11, 2937. [Google Scholar] [CrossRef]
- Zhang, S.; Yang, J.; Abbas, M.; Yang, Q.; Li, Q.; Liu, M.; Zhu, D.; Wang, M.; Tian, B.; Cheng, A. Threats across Boundaries: The Spread of ESBL-Positive Enterobacteriaceae Bacteria and Its Challenge to the “One Health” Concept. Front. Microbiol. 2025, 16, 1496716. [Google Scholar] [CrossRef]
- Xiao, T.; Wu, Z.; Shi, Q.; Zhang, X.; Zhou, Y.; Yu, X.; Xiao, Y. A Retrospective Analysis of Risk Factors and Outcomes in Patients with Extended-Spectrum Beta-Lactamase-Producing Escherichia coli Bloodstream Infections. J. Glob. Antimicrob. Resist. 2019, 17, 147–156. [Google Scholar] [CrossRef]
- World Health Organization. Global Antimicrobial Resistance and Use Surveillance System (GLASS). Available online: https://www.who.int/data/gho/data/themes/topics/global-antimicrobial-resistance-surveillance-system-glass (accessed on 18 August 2025).
- Bloodstream Infection Due to Escherichia coli Resistant to Third-Generation Cephalosporins, Proportion (%). Available online: https://www.who.int/data/gho/data/indicators/indicator-details/GHO/sdg-3.d.2--proportion-of-bloodstream-infections-due-to-selected-antimicrobial-resistant-organisms--median-(-) (accessed on 18 August 2025).
- Kadariswantiningsih, I.N.; Rampengan, D.D.; Ramadhan, R.N.; Idrisova, A.; Idrisov, B.; Empitu, M.A. Antibiotic Resistance in Indonesia: A Systematic Review and Meta-analysis of Extended-spectrum Beta-lactamase-producing Bacteria (2008–2024). Trop. Med. Int. Health 2025, 30, 246–259. [Google Scholar] [CrossRef] [PubMed]
- Limato, R.; Lazarus, G.; Dernison, P.; Mudia, M.; Alamanda, M.; Nelwan, E.J.; Sinto, R.; Karuniawati, A.; Rogier van Doorn, H.; Hamers, R.L. Optimizing Antibiotic Use in Indonesia: A Systematic Review and Evidence Synthesis to Inform Opportunities for Intervention. Lancet Reg. Health Southeast. Asia 2022, 2, 100013. [Google Scholar] [CrossRef] [PubMed]
- Sianipar, O.; Asmara, W.; Dwiprahasto, I.; Mulyono, B. Mortality Risk of Bloodstream Infection Caused by Either Escherichia coli or Klebsiella Pneumoniae Producing Extended-Spectrum β-Lactamase: A Prospective Cohort Study. BMC Res. Notes 2019, 12, 719. [Google Scholar] [CrossRef] [PubMed]
- de Maia, M.O.; da Silveira, C.D.G.; Gomes, M.; Fernandes, S.E.S.; de Santana, R.B.; de Oliveira, D.Q.; Amorim, F.F.P.; de Assis Rocha Neves, F.; Amorim, F.F. Multidrug-Resistant Bacteria on Critically Ill Patients with Sepsis at Hospital Admission: Risk Factors and Effects on Hospital Mortality. Infect. Drug Resist. 2023, 16, 1693–1704. [Google Scholar] [CrossRef]
- Tsachouridou, O.; Pilalas, D.; Nanoudis, S.; Antoniou, A.; Bakaimi, I.; Chrysanthidis, T.; Markakis, K.; Kassomenaki, A.; Mantzana, P.; Protonotariou, E.; et al. Mortality Due to Multidrug-Resistant Gram-Negative Bacteremia in an Endemic Region: No Better Than a Toss of a Coin. Microorganisms 2023, 11, 1711. [Google Scholar] [CrossRef] [PubMed]
- Namikawa, H.; Imoto, W.; Yamada, K.; Tochino, Y.; Kaneko, Y.; Kakeya, H.; Shuto, T. Predictors of Mortality from Extended-Spectrum Beta-Lactamase-Producing Enterobacteriaceae Bacteremia. Emerg. Microbes Infect. 2023, 12, 2217951. [Google Scholar] [CrossRef]
- Ling, W.; Paterson, D.L.; Harris, P.N.A.; Furuya-Kanamori, L.; Edwards, F.; Laupland, K.B. Mortality, Hospital Length of Stay, and Recurrent Bloodstream Infections Associated with Extended-Spectrum Beta-Lactamase-Producing Escherichia coli in a Low Prevalence Region: A 20-Year Population-Based Large Cohort Study. Int. J. Infect. Dis. 2024, 138, 84–90. [Google Scholar] [CrossRef]
- Vance, M.K.; Cretella, D.A.; Ward, L.M.; Vijayvargiya, P.; Garrigos, Z.E.; Joyce, M.; Wingler, B. Risk Factors for Bloodstream Infections Due to ESBL-Producing Escherichia coli, Klebsiella spp., and Proteus Mirabilis. Pharmacy 2023, 11, 74. [Google Scholar] [CrossRef] [PubMed]
- Baek, Y.J.; Kim, Y.A.; Kim, D.; Shin, J.H.; Uh, Y.; Shin, K.S.; Shin, J.H.; Jeong, S.H.; Lee, G.W.; Lee, E.J.; et al. Risk Factors for Extended-Spectrum-β-Lactamase-Producing Escherichia coli in Community-Onset Bloodstream Infection: Impact on Long-Term Care Hospitals in Korea. Ann. Lab. Med. 2021, 41, 455–462. [Google Scholar] [CrossRef]
- Tsai, W.-L.; Hung, C.-H.; Chen, H.-A.; Wang, J.-L.; Huang, I.-F.; Chiou, Y.-H.; Chen, Y.-S.; Lee, S.S.-J.; Hung, W.-Y.; Cheng, M.-F. Extended-Spectrum β-Lactamase-Producing Escherichia coli Bacteremia: Comparison of Pediatric and Adult Populations. J. Microbiol. Immunol. Infect. 2018, 51, 723–731. [Google Scholar] [CrossRef]
- Global Antimicrobial Resistance and Use Surveillance System (GLASS) Report 2022; World Health Organization: Geneva, Switzerland, 2022.
- Lin, T.-C.; Hung, Y.-P.; Lin, W.-T.; Dai, W.; Huang, Y.-L.; Ko, W.-C. Risk Factors and Clinical Impact of Bacteremia Due to Carbapenem-Nonsusceptible Enterobacteriaceae: A Multicenter Study in Southern Taiwan. J. Microbiol. Immunol. Infect. 2021, 54, 1122–1129. [Google Scholar] [CrossRef]
- Altamimi, I.; Binkhamis, K.; Alhumimidi, A.; Alabdulkarim, I.M.; Almugren, A.; Alhemsi, H.; Altamimi, A.; Almazyed, A.; Elbih, S.; Alghunaim, R.; et al. Decline in ESBL Production and Carbapenem Resistance in Urinary Tract Infections among Key Bacterial Species during the COVID-19 Pandemic. Antibiotics 2024, 13, 216. [Google Scholar] [CrossRef]
- Sharifzadeh Kermani, M.; Pouradeli, S.; Sadeghian, R.; Momen Abadi, Z. Exploring the Impact of Comorbidities and Drug Resistance on Mortality in ICU-Acquired Bloodstream Infections. AMB Express 2025, 15, 70. [Google Scholar] [CrossRef]
- Anggraini, D.; Santosaningsih, D.; Endraswari, P.D.; Jasmin, N.; Siregar, F.M.; Hadi, U.; Kuntaman, K. Multicenter Study of the Risk Factors and Outcomes of Bloodstream Infections Caused by Carbapenem-Non-Susceptible Acinetobacter Baumannii in Indonesia. Trop. Med. Infect. Dis. 2022, 7, 161. [Google Scholar] [CrossRef]
- Hayward, M. The Influence of Host Factors on Susceptibility and Resistance to Infectious Diseases. J. Microbiol. Pathol. 2023, 7, 1–3. [Google Scholar] [CrossRef]
- Rockenschaub, P.; Hayward, A.; Shallcross, L. Antibiotic Prescribing Before and After the Diagnosis of Comorbidity: A Cohort Study Using Primary Care Electronic Health Records. Clin. Infect. Dis. 2020, 71, e50–e57. [Google Scholar] [CrossRef] [PubMed]
- Naghavi, M.; Vollset, S.E.; Ikuta, K.S.; Swetschinski, L.R.; Gray, A.P.; Wool, E.E.; Robles Aguilar, G.; Mestrovic, T.; Smith, G.; Han, C.; et al. Global Burden of Bacterial Antimicrobial Resistance 1990–2021: A Systematic Analysis with Forecasts to 2050. Lancet 2024, 404, 1199–1226. [Google Scholar] [CrossRef] [PubMed]
- Alkan, S.; Balkan, I.I.; Surme, S.; Bayramlar, O.F.; Kaya, S.Y.; Karaali, R.; Mete, B.; Aygun, G.; Tabak, F.; Saltoglu, N. Urinary Tract Infections in Older Adults: Associated Factors for Extended-Spectrum Beta-Lactamase Production. Front. Microbiol. 2024, 15, 1384392. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhou, Z.; Zheng, L.; Gong, Z.; Li, Y.; Jin, Y.; Huang, Y.; Chi, M. Urinary Tract Infections Caused by Uropathogenic Escherichia coli: Mechanisms of Infection and Treatment Options. Int. J. Mol. Sci. 2023, 24, 10537. [Google Scholar] [CrossRef] [PubMed]
- Al-Groom, R. Incidence of Extended Spectrum Beta-Lactamase (ESBL) Producing Escherichia coli Isolated from Women with Urinary Tract Infections in Jordan. Iran. J. Microbiol. 2025, 17, 41–50. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, M.; Hanawa, T.; Suda, T.; Tanji, Y.; Minh, L.N.; Kondo, K.; Azam, A.H.; Kiga, K.; Yonetani, S.; Yashiro, R.; et al. Comparative Analysis of Virulence-Associated Genes in ESBL-Producing Escherichia coli Isolates from Bloodstream and Urinary Tract Infections. Front. Microbiol. 2025, 16, 1571121. [Google Scholar] [CrossRef] [PubMed]
- Asmare, Z.; Awoke, T.; Genet, C.; Admas, A.; Melese, A.; Mulu, W. Incidence of Catheter-Associated Urinary Tract Infections by Gram-Negative Bacilli and Their ESBL and Carbapenemase Production in Specialized Hospitals of Bahir Dar, Northwest Ethiopia. Antimicrob. Resist. Infect. Control 2024, 13, 10. [Google Scholar] [CrossRef]
- Lindblom, A.; Kiszakiewicz, C.; Kristiansson, E.; Yazdanshenas, S.; Kamenska, N.; Karami, N.; Åhrén, C. The Impact of the ST131 Clone on Recurrent ESBL-Producing E. Coli Urinary Tract Infection: A Prospective Comparative Study. Sci. Rep. 2022, 12, 1–9. [Google Scholar] [CrossRef]
- Alsehemi, A.F.; Alharbi, E.A.; Alammash, B.B.; Alrais, A.I.; Elbadawy, H.M.; Alahmadi, Y.M. Assessment of Risk Factors Associated with Multidrug-Resistant Organism Infections among Patients Admitted in a Tertiary Hospital-a Retrospective Study. Saudi Pharm. J. SPJ 2023, 31, 1084. [Google Scholar] [CrossRef]
- Gontjes, K.J.; Gibson, K.E.; Lansing, B.J.; Mantey, J.; Jones, K.M.; Cassone, M.; Wang, J.; Mills, J.P.; Mody, L.; Patel, P.K. Association of Exposure to High-Risk Antibiotics in Acute Care Hospitals With Multidrug-Resistant Organism Burden in Nursing Homes. JAMA Netw. Open 2022, 5, e2144959. [Google Scholar] [CrossRef]
- Apisarnthanarak, A.; Kondo, S.; Apisarnthanarak, P.; Mundy, L.M. Risk Factors for Extended-Spectrum Beta-Lactamase–Producing Enterobacteriaceae Enteric Carriage among Abdominal Surgery Patients. Infect. Control Hosp. Epidemiol. 2020, 41, 1098–1100. [Google Scholar] [CrossRef]
- Nasser, S.; Alnasser, Z.; Aljuhani, O.; Alharbi, A.; Rice, J.; Alharthi, A.F.; Kensara, R.; Al Mutairi, F.E.; Zaabee, D.; Alowais, S.A.; et al. Exploring Infection Risk Factors and Multi-Drug-Resistant Organisms (MDROs) in Burn Intensive Care Units: A Multi-Centre Case–Control Study. J. Hosp. Infect. 2025, 162, 186–196. [Google Scholar] [CrossRef]
- Yassin, A.; Eid, R.A.; Mohammad, M.F.; Elgendy, M.O.; Mohammed, Z.; Abdelrahim, M.E.A.; Abdel Hamied, A.M.; Binsuwaidan, R.; Saleh, A.; Hussein, M.; et al. Microbial Multidrug-Resistant Organism (MDRO) Mapping of Intensive Care Unit Infections. Medicina 2025, 61, 1220. [Google Scholar] [CrossRef]
- Merlinda Veronica, R.; Kumalawati, J.; Martin Rumende, C.; Nainggolan, L.; Simadibrata, M. Multidrug-Resistant Organisms Infection on Mortality of Burn Patients at Public Hospital X in Jakarta: A Retrospective Study. Kesmas Natl. Public. Health J. 2024, 19, 11. [Google Scholar] [CrossRef]
- Holmbom, M.; Möller, V.; Kristinsdottir, L.; Nilsson, M.; Rashid, M.-U.; Fredrikson, M.; Berglund, B.; Östholm Balkhed, Å. Risk Factors and Outcome Due to Extended-Spectrum β-Lactamase-Producing Uropathogenic Escherichia coli in Community-Onset Bloodstream Infections: A Ten-Year Cohort Study in Sweden. PLoS ONE 2022, 17, e0277054. [Google Scholar] [CrossRef]
- Septimus, E.J.; Moody, J. Prevention of Device-Related Healthcare-Associated Infections. F1000Res 2016, 5, 65. [Google Scholar] [CrossRef]
- Blomstrom-Lundqvist, C.; Ostrowska, B. Prevention of Cardiac Implantable Electronic Device Infections: Guidelines and Conventional Prophylaxis. EP Europace 2021, 23, iv11–iv19. [Google Scholar] [CrossRef]
- Battle, S.E.; Shuping, M.; Withers, S.; Justo, J.A.; Bookstaver, P.B.; Al-Hasan, M.N. Prediction of Mortality in Staphylococcus Aureus Bloodstream Infection Using Quick Pitt Bacteremia Score. J. Infect. 2022, 84, 131–135. [Google Scholar] [CrossRef]
- Al Shaqri, E.J.; Balkhair, A. Relationship of C-Reactive Protein/Serum Albumin Ratio and QPitt Bacteremia Score with An All-Cause In-Hospital Mortality in Patients with Bloodstream Infections. Cureus 2024, 16, 66584. [Google Scholar] [CrossRef]
- Al-Hasan, M.N.; Baddour, L.M. Resilience of the Pitt Bacteremia Score: 3 Decades and Counting. Clin. Infect. Dis. 2020, 70, 1834–1836. [Google Scholar] [CrossRef]
- Zhao, S.; Wu, Y.; Dai, Z.; Chen, Y.; Zhou, X.; Zhao, J. Risk Factors for Antibiotic Resistance and Mortality in Patients with Bloodstream Infection of Escherichia coli. Eur. J. Clin. Microbiol. Infect. Dis. 2022, 41, 713–721. [Google Scholar] [CrossRef] [PubMed]
- Ling, W.; Furuya-Kanamori, L.; Ezure, Y.; Harris, P.N.A.; Paterson, D.L. Adverse Clinical Outcomes Associated with Infections by Enterobacterales Producing ESBL (ESBL-E): A Systematic Review and Meta-Analysis. JAC Antimicrob. Resist. 2021, 3, dlab068. [Google Scholar] [CrossRef] [PubMed]
- Phungoen, P.; Sarunyaparit, J.; Apiratwarakul, K.; Wonglakorn, L.; Meesing, A.; Sawanyawisuth, K. The Association of ESBL Escherichia coli with Mortality in Patients with Escherichia coli Bacteremia at the Emergency Department. Drug Target. Insights 2022, 16, 12–16. [Google Scholar] [CrossRef]
- Pratiwi, A.D.; Rusli, M.; Utomo, B. Correlation between ESBL-Producing Bacteria Infection with Sepsis Severity of Patient in Medical Ward of Internal Medicine Department Dr. Soetomo General Hospital in 2016. JUXTA J. Ilm. Mhs. Kedokt. Univ. Airlangga 2019, 10, 84. [Google Scholar] [CrossRef]
- Kadri, S.S.; Lai, Y.L.; Warner, S.; Strich, J.R.; Babiker, A.; Ricotta, E.E.; Demirkale, C.Y.; Dekker, J.P.; Palmore, T.N.; Rhee, C.; et al. Inappropriate Empirical Antibiotic Therapy for Bloodstream Infections Based on Discordant In-Vitro Susceptibilities: A Retrospective Cohort Analysis of Prevalence, Predictors, and Mortality Risk in US Hospitals. Lancet Infect. Dis. 2021, 21, 241–251. [Google Scholar] [CrossRef]
- Aliska, G.; Nur Utami, W. The Relationship Between Appropriateness of Antibiotic Use Based on the Gyssens Algorithm and Mortality: A Retrospective Cohort Study in Indonesian Tertiary Hospital. Acta Med. Indones-Indones J. Intern Med. 2024, 56, 137–144. [Google Scholar]
- Fazal, A.Z.; McGovern, O.L.; Mahon, G.W.; Lessa, F.C.; Gler, M.T.; Garcia, J.; Festin, M.J.; Kuntaman, K.; Parwati, I.; Siregar, C.; et al. Trends in Inpatient Antibiotic Use in Indonesia and the Philippines during the COVID-19 Pandemic. Antimicrob. Steward. Healthc. Epidemiol. 2025, 5, e134. [Google Scholar] [CrossRef]
- Rahardjoputro, R.; Amrullah, A.W.; Rizky, W.; Ernawati, E.; Wahyudi, A.; Widyaningrum, N.R. Rationality Analysis of Antibiotics for Community-Acquired Pneumonia in Adult Inpatients at X Hospital Sukoharjo. Pharmacol. Clin. Pharm. Res. 2025, 10, 1. [Google Scholar] [CrossRef]
- Savitri, A.A.; Ni’ma, N.S.; Susatyo, E.B.; Nariswara, F.; Oktaviani, S.R. Rasionalitas Penggunaan Antibiotik Empiris Pada Pasien Pneumonia Di Bangsal Rawat Inap Rumah Sakit Bhakti Wira Tamtama Semarang. Media Farm. Indones. 2024, 19, 113–122. [Google Scholar] [CrossRef]
- Fath, S.; Fath Thoriq, S.; Syafhan, N.F.; Luthfi Aziz, M. The Impact of Appropriateness of Empirical Antibiotic in Hospitalized Pneumonia Patients on Clinical Outcomes and Length of Stay. J. Univers. Stud. 2024, 4, 11. [Google Scholar] [CrossRef]
- Allel, K.; Peters, A.; Furuya-Kanamori, L.; Spencer-Sandino, M.; Pitchforth, E.; Yakob, L.; Munita, J.M.; Undurraga, E.A. Impact of Inappropriate Empirical Antibiotic Therapy on In-Hospital Mortality: A Retrospective Multicentre Cohort Study of Patients with Bloodstream Infections in Chile, 2018–2022. BMJ Public Health 2024, 2, e001289. [Google Scholar] [CrossRef]
- Handal, N.; Whitworth, J.; Nakrem Lyngbakken, M.; Berdal, J.E.; Dalgard, O.; Bakken Jørgensen, S. Mortality and Length of Hospital Stay after Bloodstream Infections Caused by ESBL-Producing Compared to Non-ESBL-Producing E. Coli. Infect. Dis. 2024, 56, 19–31. [Google Scholar] [CrossRef]
- Tomidokoro, D.; Asai, Y.; Hayakawa, K.; Kutsuna, S.; Terada, M.; Sugiura, W.; Ohmagari, N.; Hiroi, Y. Comparison of the Clinical Characteristics and Outcomes of Japanese Patients with COVID-19 Treated in Primary, Secondary, and Tertiary Care Facilities. J. Infect. Chemother. 2023, 29, 302–308. [Google Scholar] [CrossRef]
- Ternavasio-De La Vega, H.G.; Castaño-Romero, F.; Ragozzino, S.; Sánchez González, R.; Vaquero-Herrero, M.P.; Siller-Ruiz, M.; Spalter-Glicberg, G.; Ramírez-Baum, C.; Rodríguez-Rodríguez, S.; García-Sánchez, J.E.; et al. The Updated Charlson Comorbidity Index Is a Useful Predictor of Mortality in Patients with Staphylococcus Aureus Bacteraemia. Epidemiol. Infect. 2018, 146, 2122–2130. [Google Scholar] [CrossRef]
- CLSI M100; Performance Standards for Antimicrobial Susceptibility Testing. Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2022.
- Sanguinetti, M.; Posteraro, B.; Spanu, T.; Ciccaglione, D.; Romano, L.; Fiori, B.; Nicoletti, G.; Zanetti, S.; Fadda, G. Characterization of Clinical Isolates of Enterobacteriaceae from Italy by the BD Phoenix Extended-Spectrum β-Lactamase Detection Method. J. Clin. Microbiol. 2003, 41, 1463–1468. [Google Scholar] [CrossRef]
Variables | Multivariate Analysis | ||
---|---|---|---|
p | OR | 95% CI for OR | |
Potential source of bacteremia | |||
Intra-abdominal | <0.001 | 0.068 | 0.021–0219 |
Urinary tract | 0.002 | 5.876 | 1.941–17.790 |
Intracranial | <0.001 | 0.003 | 0.001–0.019 |
Previous exposure | |||
Prior antibiotic use | 0.011 | 4.563 | 1.421–14.652 |
Use of invasive procedures or devices | |||
Central venous catheterization | <0.001 | 10.590 | 3.060–36.657 |
Variables | Bivariate Analysis | ||
---|---|---|---|
Survivor (n = 75) | Non-Survivor (n = 149) | p | |
Demographics | |||
Male gender | 21 (28) | 72 (48.3) | 0.004 * |
Median age, years (IQR) | 53 (42–63) | 54 (40.5–64) | 0.669 |
Median LOS, days (IQR) | 11 (8–18) | 5 (2–9.5) | <0.001 * |
Time before bacteremia, days (IQR) | 1 (1–7) | 3 (1–5.5) | 0.586 |
Comorbidities | |||
Hypertension | 35 (46.7) | 43 (28.9) | 0.008 * |
Diabetes mellitus | 32 (42.7) | 49 (32.9) | 0.150 |
Heart failure | 6 (8.0) | 15 (10.1) | 0.616 |
COPD | 2 (2.7) | 3 (2.0) | 0.775 |
Liver cirrhosis | 6 (8.0) | 7 (4.7) | 0.319 |
Hematologic malignancy | 5 (6.7) | 10 (6.7) | 0.990 |
Solid tumor | 11 (4.7) | 43 (28.9) | 0.019 * |
Autoimmune disease | 2 (2.7) | 4 (2.7) | 0.994 |
Median CCI (IQR) | 4 (1–6) | 3 (1–6) | 0.982 |
CCI ≥ 3 | 42 (56) | 86 (57.7) | 0.806 |
Potential source of bacteremia | |||
Pneumonia | 41 (54.7) | 112 (75.2) | 0.002 * |
Intra-abdominal | 22 (29.3) | 70 (47) | 0.011 * |
Urinary tract | 37 (49.3) | 72 (48.3) | 0.886 |
Intracranial | 27 (36.0) | 37 (24.8) | 0.081 |
Skin and soft tissue | 9 (12) | 25 (16.8) | 0.347 |
Primary bacteremia | 4 (5.3) | 3 (2.0) | 0.178 |
Hospital-acquired infection | 15 (20) | 39 (26.2) | 0.308 |
ESBL-producing E. coli | 41 (54.7) | 97 (65.1) | 0.130 |
Previous exposure | |||
Prior hospitalization | 49 (65.3) | 107 (71.8) | 0.320 |
Prior ICU stay | 10 (13.3) | 24 (16.1) | 0.585 |
Prior surgery | 22 (29.3) | 56 (37.6) | 0.221 |
Prior chemotherapy or radiotherapy | 4 (5.3) | 17 (11.4) | 0.141 |
Prior corticosteroid use | 10 (13.3) | 21 (14.1) | 0.876 |
Prior antibiotic use | 31 (41.3) | 68 (45.6) | 0.540 |
History of hemodialysis | 3 (4.0) | 12 (8.1) | 0.252 |
Use of invasive procedures or device | |||
Mechanical ventilation | 15 (20) | 69 (46.3) | <0.001 * |
Central venous catheterization | 26 (34.7) | 97 (65.1) | <0.001 * |
Urinary catheterization | 50 (66.7) | 131 (87.9) | <0.001 * |
Laboratory examination | |||
Leukocytosis | 62 (82.7) | 96 (64.4) | 0.005 * |
Neutropenia | 2 (2.7) | 13 (8.7) | 0.087 |
Serum albumin < 30 g/L | 50 (67.6) | 128 (87.1) | 0.001 * |
Empirical antibiotic treatment | (n = 73) | (n = 142) | 0.626 |
Cephalosporin | 41 (56.2) | 76 (53.5) | |
Fluoroquinolone | 21 (28.8) | 45 (31.7) | |
BLBLI | 11 (15.1) | 17 (12) | |
Aminoglycoside | 0 (0) | 2 (1.4) | |
Metronidazole | 0 (0) | 2 (1.4) | |
Inappropiate initial antibiotic therapy | 36 (50.7) | 95 (65.5) | 0.036 * |
Severity of illness | |||
Median qSOFA score | 1 (0–2) | 2 (1–3) | <0.001 * |
Median SOFA score (IQR) | 4 (2–6) | 7 (4.5–8) | <0.001 * |
Median PBS (IQR) | 0 (0–2) | 2 (0–4) | <0.001 * |
Vasopressor use | 18 (24) | 79 (53) | <0.001 * |
Median CRP (IQR) | 12.89 (5.31–25.32) | 20.39 (10.25–28.75) | 0.038 * |
Median procalcitonin (IQR) | 10.8 (2.66–49.8) | 24.84 (3.76–62.99) | 0.128 |
Variables | Multivariate Analysis | ||
---|---|---|---|
p | OR | 95% CI for OR | |
Demographics | |||
Male gender | 0.003 | 3.646 | 1.536–8.656 |
Shorter LOS | <0.001 | 0.890 | 0.845–0.936 |
Comorbidity | |||
Solid tumor | 0.011 | 3.654 | 1.346–9.916 |
Potential source of bacteremia | |||
Pneumonia | 0.015 | 2.826 | 1.225–6.520 |
Use of invasive procedures or devices | |||
Mechanical ventilation | 0.041 | 2.976 | 1.045–8.474 |
Central venous catheterization | 0.037 | 2.498 | 1.056–5.910 |
Inappropriate initial antibiotic therapy | 0.030 | 2.403 | 1.091–5.293 |
Severity of illness | |||
SOFA score | <0.001 | 1.371 | 1.176–1.598 |
Variables | Bivariate Analysis | ||
---|---|---|---|
Survivor (n = 41) | Non-Survivor (n = 97) | p | |
Demographics | |||
Male gender | 11 (26.8) | 49 (50.5) | 0.010 * |
Median age, years (IQR) | 53 (42.5–62) | 55 (41.5–63.5) | 0.814 |
Median LOS, days (IQR) | 14 (9.5–20) | 6 (2–11) | <0.001 * |
Comorbidities | |||
Hypertension | 22 (53.7) | 27 (27.8) | 0.004 * |
Diabetes mellitus | 19 (46.3) | 35 (36.1) | 0.259 |
Heart failure | 5 (12.2) | 7 (7.2) | 0.343 |
COPD | 1 (2.4) | 2 (2.1) | 0.890 |
Liver cirrhosis | 3 (7.3) | 4 (4.1) | 0.435 |
Hematologic malignancy | 1 (2.4) | 7 (7.2) | 0.272 |
Solid tumor | 8 (19.5) | 24 (24.7) | 0.506 |
Autoimmune disease | 0 (0) | 4 (4.1) | 0.187 |
Median Charlson comorbidity index (IQR) | 4 (1.5–6) | 4 (1–6) | 0.622 |
CCI ≥ 3 | 24 (58.5) | 57 (58.8) | 0.980 |
Potential source of bacteremia | |||
Pneumonia | 24 (58.5) | 69 (71.1) | 0.149 |
Intra-abdominal | 5 (12.2) | 27 (27.8) | 0.047 * |
Urinary tract | 31 (75.6) | 62 (63.9) | 0.181 |
Intracranial | 1 (2.4) | 3 (3.1) | 0.834 |
Skin and soft tissue | 9 (22.0) | 25 (25.8) | 0.634 |
Mixed infection | 16 (39.0) | 36 (37.1) | 0.832 |
Primary bloodstream infection | 3 (7.3) | 2 (2.1) | 0.131 |
Hospital-acquired infection | 5 (12.2) | 26 (26.8) | 0.060 |
Previous exposure | |||
Prior hospitalization | 29 (70.7) | 73 (75.3) | 0.580 |
Prior chemotherapy or radiotherapy | 1 (2.4) | 8 (8.2) | 0.207 |
Prior corticosteroid use | 5 (12.2) | 10 (10.3) | 0.745 |
Prior surgery | 15 (36.6) | 40 (41.2) | 0.610 |
History of hemodialysis | 3 (7.3) | 9 (9.3) | 0.709 |
Prior antibiotic use | 21 (51.2) | 55 (56.7) | 0.554 |
Prior ICU stay | 5 (12.2) | 17 (17.5) | 0.434 |
Use of invasive procedures or devices | |||
Mechanical ventilation | 8 (19.5) | 47 (48.5) | 0.002 * |
Central venous catheterization | 31 (75.6) | 88 (90.7) | 0.019 * |
Urinary catheterization | 18 (43.9) | 68 (70.1) | 0.004 * |
Laboratory examination | |||
Leukocytosis | 35 (85.4) | 70 (72.2) | 0.097 |
Neutropenia | 1 (2.4) | 5 (5.2) | 0.475 |
Median serum albumin | 2.72 (2.47–3.05) | 2.33 (2.09–2.65) | <0.001 * |
Serum albumin < 30 g/L | 28 (70%) | 87 (90.6) | 0.002 * |
Empirical antibiotic treatment | 0.708 | ||
Cephalosporin | 24 (58.5) | 56 (59.6) | |
Fluoroquinolone | 11 (26.8) | 24 (25.5) | |
BLBLI | 6 (14.6) | 10 (10.6) | |
Aminoglycosides | 0 (0) | 2 (2.1) | |
Metronidazole | 0 (0) | 2 (2.1) | |
Inappropriate initial antibiotic therapy | 31 (75.6) | 84 (86.6) | 0.113 |
Severity of illness | |||
Median qSOFA score (IQR) | 1 (0–2) | 2 (1–3) | <0.001 * |
Median SOFA score (IQR) | 4 (2–6) | 6 (5–8) | <0.001 * |
Median PBS (IQR) | 0 (0–2) | 3 (1–6) | <0.001 * |
Vasopressor use | 14 (34.1) | 53 (54.6) | 0.028 * |
Median CRP (IQR) | 13.11 (8.85–27.66) | 20.38 (10.69–32.58) | 0.183 |
Median procalcitonin (IQR) | 8.68 (2.89–60.62) | 24.60 (3.91–64.03) | 0.315 |
Variables | Multivariate Analysis | ||
---|---|---|---|
p | OR | 95% CI for OR | |
Demographics | |||
Male gender | 0.007 | 4.927 | 1.548–15.683 |
Shorter LOS | 0.004 | 0.917 | 0.865–0.972 |
Comorbidity | |||
Hypertension | 0.003 | 0.187 | 0.061–0.569 |
Use of invasive procedures or device | |||
Central venous catheterization | 0.004 | 4.885 | 1.639–14.564 |
Severity of illness | |||
SOFA score | <0.001 | 1.842 | 1.359–2.496 |
Vasopressor use, n (%) | 0.033 | 0.227 | 0.058–0.884 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Asmarawati, T.P.; Widyatama, F.S.; Notobroto, H.B.; Nasronudin, N.; Sugai, M.; Kuntaman, K. Risk Factors and Clinical Impact of Extended-Spectrum Beta-Lactamase (ESBL)-Producing Escherichia coli Bacteremia Among Hospitalized Patients. Antibiotics 2025, 14, 882. https://doi.org/10.3390/antibiotics14090882
Asmarawati TP, Widyatama FS, Notobroto HB, Nasronudin N, Sugai M, Kuntaman K. Risk Factors and Clinical Impact of Extended-Spectrum Beta-Lactamase (ESBL)-Producing Escherichia coli Bacteremia Among Hospitalized Patients. Antibiotics. 2025; 14(9):882. https://doi.org/10.3390/antibiotics14090882
Chicago/Turabian StyleAsmarawati, Tri Pudy, Fikri Sasongko Widyatama, Hari Basuki Notobroto, Nasronudin Nasronudin, Motoyuki Sugai, and Kuntaman Kuntaman. 2025. "Risk Factors and Clinical Impact of Extended-Spectrum Beta-Lactamase (ESBL)-Producing Escherichia coli Bacteremia Among Hospitalized Patients" Antibiotics 14, no. 9: 882. https://doi.org/10.3390/antibiotics14090882
APA StyleAsmarawati, T. P., Widyatama, F. S., Notobroto, H. B., Nasronudin, N., Sugai, M., & Kuntaman, K. (2025). Risk Factors and Clinical Impact of Extended-Spectrum Beta-Lactamase (ESBL)-Producing Escherichia coli Bacteremia Among Hospitalized Patients. Antibiotics, 14(9), 882. https://doi.org/10.3390/antibiotics14090882