Diagnostic Accuracy of Presepsin and Its Impact on Early Antibiotic De-Escalation in Burn-Related Sepsis
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Clinical Management and Specimen Collection
2.3. Reference Standard
2.4. Biomarker Selection and Measurement
2.5. Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. Distribution of Bacterial Species and Antibiotic Resistance
3.3. Diagnostic Performance of Biomarkers
3.4. Decision Curve Analysis
3.5. Reclassification Analysis
3.6. Mortality Prediction
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dvorak, J.E.; Ladhani, H.A.; Claridge, J.A. Review of Sepsis in Burn Patients in 2020. Surg. Infect. 2021, 22, 37–43. [Google Scholar] [CrossRef]
- Singer, M.; Deutschman, C.S.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.D.; Coopersmith, C.M.; et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016, 315, 801–810. [Google Scholar] [CrossRef]
- Tjandra, K.C.; Ram-Mohan, N.; Abe, R.; Hashemi, M.M.; Lee, J.H.; Chin, S.M.; Roshardt, M.A.; Liao, J.C.; Wong, P.K.; Yang, S. Diagnosis of Bloodstream Infections: An Evolution of Technologies towards Accurate and Rapid Identification and Antibiotic Susceptibility Testing. Antibiotics 2022, 11, 511. [Google Scholar] [CrossRef]
- Sinha, M.; Jupe, J.; Mack, H.; Coleman, T.P.; Lawrence, S.M.; Fraley, S.I. Emerging Technologies for Molecular Diagnosis of Sepsis. Clin. Microbiol. Rev. 2018, 31, e00089-17. [Google Scholar] [CrossRef]
- Harris, A.M.; Bramley, A.M.; Jain, S.; Arnold, S.R.; Ampofo, K.; Self, W.H.; Williams, D.J.; Anderson, E.J.; Grijalva, C.G.; McCullers, J.A.; et al. Influence of Antibiotics on the Detection of Bacteria by Culture-Based and Culture-Independent Diagnostic Tests in Patients Hospitalized with Community-Acquired Pneumonia. Open Forum Infect. Dis. 2017, 4, ofx014. [Google Scholar] [CrossRef] [PubMed]
- AlHawaj, A.; AlMadhoob, M.; Alkhanaizi, R.; AlHaddad, A. Evaluation of White Blood Cell Count, Lymphocyte Percentage, Neutrophil Percentage, and Elevated Temperature as Predictors of Wound Infection in Burn Patients. Cureus 2024, 16, e63172. [Google Scholar] [CrossRef]
- Permatasari, A.A.I.Y.; Sanjaya, I.G.P.H.; Widiana, I.G.R.; Niryana, I.W.; Asmarajaya, A.A.G.N.; Hamid, A.R.R.H.; Adnyana, M.S. Role of Procalcitonin and C-reactive Protein as Marker of Sepsis in Major Burn Patients: A Systematic Review and Meta-analysis. Open Access Maced. J. Med. Sci. 2021, 9, 197–203. [Google Scholar] [CrossRef]
- Cabral, L.; Afreixo, V.; Meireles, R.; Vaz, M.; Marques, M.; Tourais, I.; Chaves, C.; Almeida, L.; Paiva, J.A. Procalcitonin Kinetics after Burn Injury and Burn Surgery in Septic and Non-Septic Patients—A Retrospective Observational Study. BMC Anesthesiol. 2018, 18, 122. [Google Scholar] [CrossRef] [PubMed]
- Galliera, E.; Massaccesi, L.; de Vecchi, E.; Banfi, G.; Romanelli, M.M.C. Clinical Application of Presepsin as Diagnostic Biomarker of Infection: Overview and Updates. Clin. Chem. Lab. Med. 2019, 58, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Hu, L.; Zhang, G.; Wu, F.; He, T. Accuracy of Presepsin in Sepsis Diagnosis: A Systematic Review and Meta-Analysis. PLoS ONE 2015, 10, e0133057. [Google Scholar] [CrossRef]
- Formenti, P.; Gotti, M.; Palmieri, F.; Pastori, S.; Roccaforte, V.; Menozzi, A.; Galimberti, A.; Umbrello, M.; Sabbatini, G.; Pezzi, A. Presepsin in Critical Illness: Current Knowledge and Future Perspectives. Diagnostics 2024, 14, 1311. [Google Scholar] [CrossRef] [PubMed]
- Iba, T.; Levy, J.H. Sepsis-Induced Coagulopathy and Disseminated Intravascular Coagulation. Anesthesiology 2020, 132, 1238–1245. [Google Scholar] [CrossRef] [PubMed]
- Tacon, S.L.; Falaize, A.; Mellati, N.; Picard, Y.; Goetz, C.; Gette, S.; Losser, M.R. Evolution of Hematocrit in Burn Patients as a Marker of Early Fluid Management during Acute Phase. Burn. J. Int. Soc. Burn. Inj. 2023, 49, 1356–1362. [Google Scholar] [CrossRef]
- Halaby, R.; Popma, C.J.; Cohen, A.; Chi, G.; Zacarkim, M.R.; Romero, G.; Goldhaber, S.Z.; Hull, R.; Hernandez, A.; Mentz, R.; et al. D-Dimer Elevation and Adverse Outcomes. J. Thromb. Thrombolysis 2015, 39, 55–59. [Google Scholar] [CrossRef]
- Hajian-Tilaki, K. Sample Size Estimation in Diagnostic Test Studies of Biomedical Informatics. J. Biomed. Inform. 2014, 48, 193–204. [Google Scholar] [CrossRef]
- Vickers, A.J.; Elkin, E.B. Decision Curve Analysis: A Novel Method for Evaluating Prediction Models. Med. Decis. Mak. 2006, 26, 565–574. [Google Scholar] [CrossRef]
- Pencina, M.J.; D’Agostino, R.B.; D’Agostino, R.B.; Vasan, R.S. Evaluating the Added Predictive Ability of a New Marker: From Area under the ROC Curve to Reclassification and Beyond. Stat. Med. 2008, 27, 157–172. [Google Scholar] [CrossRef] [PubMed]
- Drăgoescu, A.N.; Pădureanu, V.; Stănculescu, A.D.; Chiuțu, L.C.; Florescu, D.N.; Gheonea, I.A.; Pădureanu, R.; Stepan, A.; Streba, C.T.; Drocaș, A.I.; et al. Presepsin as a Potential Prognostic Marker for Sepsis According to Actual Practice Guidelines. J. Pers. Med. 2021, 11, 2. [Google Scholar] [CrossRef]
- Rand, K.H.; Beal, S.G.; Rivera, K.; Allen, B.; Payton, T.; Lipori, G.P. Hourly Effect of Pretreatment with IV Antibiotics on Blood Culture Positivity Rate in Emergency Department Patients. Open Forum Infect. Dis. 2019, 6, ofz179. [Google Scholar] [CrossRef]
- Ikegame, A.; Kondo, A.; Kitaguchi, K.; Sasa, K.; Miyoshi, M. Presepsin Production in Monocyte/Macrophage-Mediated Phagocytosis of Neutrophil Extracellular Traps. Sci. Rep. 2022, 12, 5978. [Google Scholar] [CrossRef]
- Barlam, T.F.; Cosgrove, S.E.; Abbo, L.M.; MacDougall, C.; Schuetz, A.N.; Septimus, E.J.; Srini-Vasan, A.; Dellit, T.H.; Falck-Ytter, Y.T.; Fishman, N.O.; et al. Implementing an Antibiotic Stewardship Program: Guidelines by the Infectious Diseases Society of America and the Society for Healthcare Epidemiology of America. Clin. Infect. Dis. 2016, 62, e51–e77. [Google Scholar] [CrossRef] [PubMed]
- Póvoa, P.; Coelho, L.; Dal-Pizzol, F.; Ferrer, R.; Huttner, A.; Conway Morris, A.; Nobre, V.; Ramirez, P.; Rouze, A.; Salluh, J.; et al. How to Use Biomarkers of Infection or Sepsis at the Bedside: Guide to Clinicians. Intensive Care Med. 2023, 49, 142–153. [Google Scholar] [CrossRef] [PubMed]
- Martínez, M.L.; Plata-Menchaca, E.P.; Ruiz-Rodríguez, J.C.; Ferrer, R. An Approach to Antibiotic Treatment in Patients with Sepsis. J. Thorac. Dis. 2020, 12, 1007–1021. [Google Scholar] [CrossRef]
- Yiğit, E.; Demir Yiğit, Y. Diagnostic Importance of Serum C-reactive Protein and Procalcitonin in Sepsis after Burn. Int. J. Burn. Trauma 2021, 11, 391–396. [Google Scholar]
- Cao, Y.; Su, Y.; Guo, C.; He, L.; Ding, N. Albumin Level Is Associated with Short-Term and Long Term Outcomes in Sepsis Patients Admitted in the ICU: A Large Public Database Retrospective Research. Clin. Epidemiol. 2023, 15, 263–273. [Google Scholar] [CrossRef]
- Soeters, P.B.; Wolfe, R.R.; Shenkin, A. Hypoalbuminemia: Pathogenesis and Clinical Significance. JPEN J. Parenter. Enter. Nutr. 2019, 43, 181–193. [Google Scholar] [CrossRef] [PubMed]
Group Variables | Overall, n = 221 | Negative Blood Culture, n = 117 (52.9%) | Positive Blood Culture, n = 104 (47.1%) | p-Value | |
---|---|---|---|---|---|
Outcomes | Mortality | 73 (33.0%) | 22 (18.8%) | 51 (49.0%) | <0.001 |
Sepsis 3 | 149 (67.4%) | 62 (53.0%) | 87 (83.7%) | <0.001 | |
Age | 56 [43, 66] | 57 [45, 68] | 56 [38, 64] | 0.341 | |
Sex | 0.732 | ||||
Male | 179 (81.0%) | 96 (82.1%) | 83 (79.8%) | ||
Baseline | Female | 42 (19.0%) | 21 (17.9%) | 21 (20.2%) | |
TBSA (%) | 38 [20, 55] | 25 [15, 43] | 44 [33, 63] | <0.001 | |
Inhalation | 0.081 | ||||
No | 181 (81.9%) | 101 (86.3%) | 80 (76.9%) | ||
Yes | 40 (18.1%) | 16 (13.7%) | 24 (23.1%) | ||
Type | 0.306 | ||||
FB | 162 (73.3%) | 85 (72.6%) | 77 (74.0%) | ||
Baseline (cont.) | SB | 25 (11.3%) | 10 (8.5%) | 15 (14.4%) | |
EB | 21 (9.5%) | 14 (12.0%) | 7 (6.7%) | ||
ChB | 2 (0.9%) | 2 (1.7%) | 0 (0.0%) | ||
CoB | 11 (5.0%) | 6 (5.1%) | 5 (4.8%) | ||
LOICU (days) | 21 [12, 33] | 18 [8, 28] | 24 [17, 40] | <0.001 | |
Cardiovascular disease | 36 (16.3%) | 19 (16.2%) | 17 (16.3%) | >0.999 | |
Endocrine disorders | 21 (9.5%) | 13 (11.1%) | 8 (7.7%) | 0.492 | |
Medical history | Malignant | 10 (4.5%) | 4 (3.4%) | 6 (5.8%) | 0.522 |
Others | 4 (1.8%) | 3 (2.6%) | 1 (1.0%) | 0.624 | |
Operations | 81 (36.7%) | 44 (37.6%) | 37 (35.6%) | 0.781 | |
ABSI | 9 [7, 10] | 8 [7, 9] | 9 [8, 11] | <0.001 | |
rBaux | 97 [81, 112] | 90 [76, 100] | 106 [94, 119] | <0.001 | |
Severity scores | Hangang | 131 [120, 144] | 126 [117, 136] | 137 [126, 152] | <0.001 |
APACHE IV | 60 [34, 83] | 51 [29, 76] | 67 [42, 88] | 0.001 | |
SOFA | 4 [2, 7] | 3 [2, 5] | 6 [3, 9] | <0.001 | |
Complications | ARDS | 68 (30.8%) | 27 (23.1%) | 41 (39.4%) | 0.013 |
AKI | 64 (29.0%) | 25 (21.4%) | 39 (37.5%) | 0.011 | |
Interventions | Ventilator | 125 (56.6%) | 51 (43.6%) | 74 (71.2%) | <0.001 |
CRRT | 47 (21.3%) | 13 (11.1%) | 34 (32.7%) | <0.001 | |
Presepsin | 754 [362, 1758] | 467 [249, 1042] | 1299 [556, 3538] | <0.001 | |
Procalcitonin | 0.5 [0.2, 1.5] | 0.4 [0.2, 0.7] | 0.8 [0.3, 3.7] | <0.001 | |
Albumin | 2.50 [2.30, 2.80] | 2.60 [2.40, 3.00] | 2.50 [2.20, 2.70] | <0.001 | |
Biomarkers | CRP | 117 [67, 181] | 98 [60, 151] | 136 [77, 191] | 0.006 |
PT | 14.70 [13.70, 16.10] | 14.30 [13.50, 15.30] | 15.25 [14.08, 17.00] | <0.001 | |
D-dimer | 2.0 [1.1, 2.8] | 1.9 [1.0, 2.7] | 2.3 [1.4, 3.2] | 0.019 | |
Hct | 28 [25, 33] | 30 [27, 37] | 27 [25, 30] | <0.001 |
Biomarkers | Group | AUC (95% CI) | DeLong’s | Cutoff | Sensitivity | Specificity | PPV | NPV | Youden |
---|---|---|---|---|---|---|---|---|---|
p-Value | (95% CI) | (95% CI) | (95% CI) | (95% CI) | Index | ||||
Overall | 0.810 | 472 | 0.826 | 0.722 | 0.860 | 0.667 | 0.548 | ||
Presepsin | (0.742–0.878) | 0.015 * | (0.980–1.000) | (0.861–1.000) | (0.790–0.910) | (0.550–0.767) | |||
Culture- | 0.604 | 458 | 0.885 | 0.412 | 0.885 | 0.412 | 0.297 | ||
Positive | (0.425–0.783) | (0.782–1.000) | (0.588–1.000) | (0.794–0.941) | (0.194–0.665) | ||||
Culture- | 0.846 | 472 | 0.758 | 0.818 | 0.825 | 0.750 | 0.576 | ||
Negative | (0.775–0.917) | (0.965–1.000) | (0.927–1.000) | (0.696–0.908) | (0.619–0.849) | ||||
Overall | 0.752 | 0.66 | 0.517 | 0.903 | 0.917 | 0.474 | 0.420 | ||
Procalcitonin | (0.686–0.819) | 0.849 | (0.922–1.000) | (0.917–1.000) | (0.830–0.963) | (0.389–0.561) | |||
Culture- | 0.701 | 0.26 | 0.839 | 0.588 | 0.912 | 0.417 | 0.427 | ||
Positive | (0.537–0.865) | (0.862–1.000) | (0.706–1.000) | (0.823–0.961) | (0.228–0.631) | ||||
Culture- | 0.719 | 0.66 | 0.403 | 0.964 | 0.926 | 0.589 | 0.367 | ||
Negative | (0.628–0.810) | (0.875–1.000) | (0.964–1.000) | (0.742–0.987) | (0.480–0.690) | ||||
Overall | 0.750 | 2.8 | 0.919 | 0.542 | 0.235 | 0.194 | 0.461 | ||
Albumin | (0.673–0.828) | 0.243 | (0.967–1.000) | (0.787–1.000) | (0.132–0.378) | (0.139–0.263) | |||
Culture- | 0.647 | 2.8 | 0.874 | 0.412 | 0.611 | 0.116 | 0.285 | ||
Positive | (0.477–0.817) | (0.841–1.000) | (0.647–1.000) | (0.361–0.817) | (0.060–0.208) | ||||
Culture- | 0.762 | 2.8 | 0.871 | 0.636 | 0.186 | 0.270 | 0.507 | ||
Negative | (0.670–0.855) | (0.935–1.000) | (0.764–1.000) | (0.089–0.339) | (0.177–0.388) | ||||
Overall | 0.692 | 0.003 | 114.8 | 0.617 | 0.722 | 0.821 | 0.477 | 0.340 | |
CRP | (0.613–0.771) | ** | (0.893–1.000) | (0.792–1.000) | (0.735–0.885) | (0.381–0.574) | |||
Culture- | 0.440 | 179.2 | 0.701 | 0.353 | 0.812 | 0.153 | 0.054 | ||
Positive | (0.273–0.608) | (0.552–1.000) | (0.412–1.000) | (0.630–0.921) | (0.082–0.261) | ||||
Culture- | 0.732 | 119.9 | 0.613 | 0.836 | 0.809 | 0.657 | 0.449 | ||
Negative | (0.638–0.825) | (0.871–1.000) | (0.800–1.000) | (0.663–0.904) | (0.533–0.764) | ||||
Overall | 0.685 | 14.9 | 0.570 | 0.792 | 0.850 | 0.471 | 0.362 | ||
PT | (0.612–0.759) | 0.787 | (0.814–1.000) | (0.889–1.000) | (0.761–0.911) | (0.380–0.564) | |||
Culture- | 0.639 | 14.7 | 0.644 | 0.647 | 0.903 | 0.262 | 0.291 | ||
Positive | (0.493–0.784) | (0.733–1.000) | (0.706–1.000) | (0.795–0.960) | (0.144–0.423) | ||||
Culture- | 0.663 | 14.9 | 0.516 | 0.818 | 0.762 | 0.600 | 0.334 | ||
Negative | (0.565–0.762) | (0.774–1.000) | (0.836–1.000) | (0.602–0.874) | (0.480–0.709) | ||||
Overall | 0.676 | 1.41 | 0.765 | 0.514 | 0.765 | 0.514 | 0.279 | ||
D-dimer | (0.601–0.752) | 0.776 | (0.883–1.000) | (0.847–1.000) | (0.687–0.829) | (0.394–0.632) | |||
Culture- | 0.645 | 1.04 | 0.851 | 0.412 | 0.881 | 0.350 | 0.262 | ||
Positive | (0.488–0.802) | (0.770–1.000) | (0.706–1.000) | (0.788–0.938) | (0.163–0.591) | ||||
Culture- | 0.672 | 1.42 | 0.742 | 0.527 | 0.639 | 0.644 | 0.269 | ||
Negative | (0.574–0.770) | (0.871–1.000) | (0.836–1.000) | (0.517–0.746) | (0.487–0.777) | ||||
Overall | 0.669 | 32.2 | 0.846 | 0.486 | 0.397 | 0.227 | 0.332 | ||
Hct | (0.590–0.748) | 0.264 | (0.899–1.000) | (0.842–1.000) | (0.273–0.534) | (0.167–0.300) | |||
Culture- | 0.565 | 24.9 | 0.287 | 0.941 | 0.795 | 0.038 | 0.229 | ||
Positive | (0.426–0.705) | (0.586–1.000) | (0.824–1.000) | (0.685–0.875) | (0.002–0.216) | ||||
Culture- | 0.663 | 32.9 | 0.806 | 0.564 | 0.279 | 0.324 | 0.370 | ||
Negative | (0.562–0.765) | (0.871–1.000) | (0.727–1.000) | (0.158–0.439) | (0.223–0.444) |
Biomarker | Comparator AUC | AUC Difference | p-Value |
---|---|---|---|
Procalcitonin | 0.752 | −0.058 | 0.142 |
Albumin | 0.750 | −0.060 | 0.121 |
CRP | 0.692 | −0.118 | 0.006 ** |
PT | 0.685 | −0.125 | 0.005 ** |
D-dimer | 0.676 | −0.134 | 0.005 ** |
Hct | 0.669 | −0.141 | <0.001 *** |
Biomarker | IDI (95% CI) | p-Value | NRI (95% CI) | p-Value |
---|---|---|---|---|
Procalcitonin | −0.005 (−0.242~0.232) | 0.737 | −0.615 (−1.319~0.089) | <0.001 *** |
Albumin | 0.142 (−0.195~0.479) | <0.001 *** | 0.609 (−0.115~1.332) | <0.001 *** |
CRP | 0.016 (−0.275~0.307) | 0.460 | 0.253 (−0.486~0.992) | 0.075 |
PT | 0.003 (−0.269~0.275) | 0.868 | −0.048 (−0.790~0.695) | 0.738 |
D-dimer | −0.048 (−0.309~0.213) | 0.007 ** | −0.662 (−1.328~0.004) | <0.001 *** |
Hct | 0.021 (−0.279~0.321) | 0.369 | 0.248 (−0.490~0.987) | 0.081 |
Biomarker | Hazard Ratio (95% CI) | p-Value |
---|---|---|
Presepsin | 3.143 (0.974–10.143) | 0.055 |
Procalcitonin | 3.781 (1.893–7.552) | <0.001 *** |
Albumin | 3.880 (0.533–28.233) | 0.181 |
CRP | 0.804 (0.459–1.405) | 0.443 |
PT | 2.123 (1.137–3.961) | 0.018 * |
D-dimer | 0.716 (0.400–1.282) | 0.262 |
Hct | 0.731 (0.309–1.731) | 0.476 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, S.; Kym, D.; Yoon, J.; Cho, Y.S.; Hur, J. Diagnostic Accuracy of Presepsin and Its Impact on Early Antibiotic De-Escalation in Burn-Related Sepsis. Antibiotics 2025, 14, 822. https://doi.org/10.3390/antibiotics14080822
Park S, Kym D, Yoon J, Cho YS, Hur J. Diagnostic Accuracy of Presepsin and Its Impact on Early Antibiotic De-Escalation in Burn-Related Sepsis. Antibiotics. 2025; 14(8):822. https://doi.org/10.3390/antibiotics14080822
Chicago/Turabian StylePark, Seontai, Dohern Kym, Jaechul Yoon, Yong Suk Cho, and Jun Hur. 2025. "Diagnostic Accuracy of Presepsin and Its Impact on Early Antibiotic De-Escalation in Burn-Related Sepsis" Antibiotics 14, no. 8: 822. https://doi.org/10.3390/antibiotics14080822
APA StylePark, S., Kym, D., Yoon, J., Cho, Y. S., & Hur, J. (2025). Diagnostic Accuracy of Presepsin and Its Impact on Early Antibiotic De-Escalation in Burn-Related Sepsis. Antibiotics, 14(8), 822. https://doi.org/10.3390/antibiotics14080822