The Effect of Antibiotics on the Nervous System: Importance for Anesthesiology and Intensive Care
Abstract
:1. Introduction
2. Beta-Lactams
2.1. Pathophysiology
2.2. Penicillin
2.3. Cephalosporins
2.4. Carbapenems
2.5. Monobactams
2.6. Beta-Lactamase Inhibitors
3. Fluoroquinolones
4. Macrolides
5. Linezolid
6. Metronidazole
7. Glycopeptides
8. Polymyxin
9. Aminoglycosides
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ARD | Adverse drug reaction |
BBB | Blood−brain barrier |
GABA | Gamma-aminobutyric acid |
NCSE | non-convulsive epilepsy |
CSF | Cerebrospinal fluid |
EEG | Encephalogram |
MAOA | Monoamine oxidase A |
MAO | Monoamine oxidase |
UTI | Urinary tract infections |
DINDS | Drug-induced neurological disorders |
CNS | Central nervous system |
ROS | Reactive oxygen species |
SS | Serotonin syndrome |
LION | Linezolid-associated optic neuropathy |
LIPN | Linezolid-induced peripheral neuropathy |
5-HT | 5-hydroxytryptamine receptors/serotonine receptors |
DIAM | Drug-induced aseptic meningitis |
AMPA | α-amino-3-hydroxy-5-methyl-isoxazolopropionate complex |
NMDA | N-methyl-D-asparagine receptor |
VPA | Valproic acid |
ICU | Intensive Care Unit |
ER | Endoplasmic reticulum |
ACTH | Adrenocorticotropic hormone |
References
- Radkowski, P.; Derkaczew, M.; Mazuchowski, M.; Moussa, A.; Podhorodecka, K.; Dawidowska-Fidrych, J.; Braczkowska-Skibińska, M.; Synia, D.; Śliwa, K.; Wiszpolska, M.; et al. Antibiotic–Drug Interactions in the Intensive Care Unit: A Literature Review. Antibiotics 2024, 13, 503. [Google Scholar] [CrossRef] [PubMed]
- Xiao, M.; Huang, X. Unmasking Antibiotic-Associated Neurological Disorders: The Underminer in Intensive Care Unit. J. Clin. Neurosci. 2021, 91, 131–135. [Google Scholar] [CrossRef]
- Hurkacz, M.; Dobrek, L.; Wiela-Hojeńska, A. Antibiotics and the Nervous System—Which Face of Antibiotic Therapy Is Real, Dr. Jekyll (Neurotoxicity) or Mr. Hyde (Neuroprotection)? Molecules 2021, 26, 7456. [Google Scholar] [CrossRef]
- Schatz, S.N.; Weber, R.J. Adverse Drug Reactions. In PSAP 2015 Book 2 CNS/Pharmacy Practice; Lee, M.W., Murphy, J.E., Eds.; American College of Clinical Pharmacy: Lenexa, KS, USA, 2015; pp. 5–22. [Google Scholar]
- Coleman, J.J.; Pontefract, S.K. Adverse Drug Reactions. Clin. Med. 2016, 16, 481–485. [Google Scholar] [CrossRef]
- Edwards, I.R.; Aronson, J.K. Adverse Drug Reactions: Definitions, Diagnosis, and Management. Lancet 2000, 356, 1255–1259. [Google Scholar] [CrossRef]
- Roger, C.; Louart, B. Beta-Lactams Toxicity in the Intensive Care Unit: An Underestimated Collateral Damage? Microorganisms 2021, 9, 1505. [Google Scholar] [CrossRef]
- Demler, T.L. Drug-Induced Neurologic Conditions. US Pharm. 2014, 39, 47–51. [Google Scholar]
- Jain, K.K. Drug-Induced Neurological Disorders; Springer International Publishing: Cham, Switzerland, 2021; ISBN 978-3-030-73502-9. [Google Scholar]
- Castagna, J.; Nosbaum, A.; Vial, T.; Rozieres, A.; Hacard, F.; Vocanson, M.; Pralong, P.; Chuniaud-Louche, C.; Nicolas, J.F.; Gouraud, A.; et al. Drug-Induced Aseptic Meningitis: A Possible T-Cell–Mediated Hypersensitivity. J. Allergy Clin. Immunol. Pract. 2018, 6, 1409–1411. [Google Scholar] [CrossRef] [PubMed]
- Prieto-González, S.; Escoda, R.; Coloma, E.; Grau, J.M. Amoxicillin-Induced Acute Aseptic Meningitis. J. Clin. Neurosci. 2011, 18, 443–444. [Google Scholar] [CrossRef]
- Fugate, J.E.; Kalimullah, E.A.; Hocker, S.E.; Clark, S.L.; Wijdicks, E.F.M.; Rabinstein, A.A. Cefepime Neurotoxicity in the Intensive Care Unit: A Cause of Severe, Underappreciated Encephalopathy. Crit. Care 2013, 17, R264. [Google Scholar] [CrossRef]
- Pandey, N.; Cascella, M. Beta-Lactam Antibiotics. In StatPearls; StatPearls Publishing: Treasaure Island, FL, USA, 2023. [Google Scholar]
- Grill, M.F.; Maganti, R.K. Neurotoxic Effects Associated with Antibiotic Use: Management Considerations. Br. J. Clin. Pharmacol. 2011, 72, 381–393. [Google Scholar] [CrossRef] [PubMed]
- Rezaei, N.J.; Bazzazi, A.M.; Alavi, S.A.N. Neurotoxicity of the Antibiotics: A Comprehensive Study. Neurol. India 2018, 66, 1732–1740. [Google Scholar] [CrossRef]
- Kathait Jyoti, R.A. Beta- LactamAntibiotics Induced Neurotoxicity. IOSR J. Pharm. 2020, 10, 1–7. [Google Scholar]
- Barreto, E.F.; Webb, A.J.; Pais, G.M.; Rule, A.D.; Jannetto, P.J.; Scheetz, M.H. Setting the Beta-Lactam Therapeutic Range for Critically Ill Patients: Is There a Floor or Even a Ceiling? Crit. Care Explor. 2021, 3, E0446. [Google Scholar] [CrossRef] [PubMed]
- Imani, S.; Buscher, H.; Marriott, D.; Gentili, S.; Sandaradura, I. Too Much of a Good Thing: A Retrospective Study of β-Lactam Concentration-Toxicity Relationships. J. Antimicrob. Chemother. 2017, 72, 2891–2897. [Google Scholar] [CrossRef]
- de Oliveira Vilaça, C.; Orsini, M.; Martello, R.; Fiorelli, R.; Afonso, C. Seizures Related to Antibiotic Use: Update. Biomed. J. Sci. Tech. Res. 2018, 4, 3845–3849. [Google Scholar] [CrossRef]
- Amakhin, D.V.; Soboleva, E.B.; Zaitsev, A.V. Cephalosporin Antibiotics Are Weak Blockers of GABAa Receptor-Mediated Synaptic Transmission in Rat Brain Slices. Biochem. Biophys. Res. Commun. 2018, 499, 868–874. [Google Scholar] [CrossRef]
- Mohamed, A.; Jadhav, N.; Elbathani, M.; Farah, A. Encephalopathy Tango: When Beta-Lactam Antibiotics Waltz with GABA Receptor. Adv. Clin. Med. Res. Healthc. Deliv. 2023, 3. [Google Scholar] [CrossRef]
- Sutter, R.; Rüegg, S.; Tschudin-Sutter, S. Seizures as Adverse Events of Antibiotic Drugs: A Systematic Review. Neurology 2015, 85, 1332–1341. [Google Scholar] [CrossRef] [PubMed]
- Chow, K.M.; Hui, A.C.; Szeto, C.C. Neurotoxicity Induced by Beta-Lactam Antibiotics: From Bench to Bedside. Eur. J. Clin. Microbiol. Infect. Dis. 2005, 24, 649–653. [Google Scholar] [CrossRef]
- Arulkumaran, N.; Routledge, M.; Schlebusch, S.; Lipman, J.; Conway Morris, A. Antimicrobial-Associated Harm in Critical Care: A Narrative Review. Intensive Care Med. 2020, 46, 225–235. [Google Scholar] [CrossRef] [PubMed]
- Hutchings, M.; Truman, A.; Wilkinson, B. Antibiotics: Past, Present and Future. Curr. Opin. Microbiol. 2019, 51, 72–80. [Google Scholar] [CrossRef]
- De Sarro, A.; Ammendola, D.; Zappala, M.; Grasso, S.; De Sarro, G.B. Relationship between Structure and Convulsant Properties of Some β- Lactam Antibiotics Following Intracerebroventricular Microinjection in Rats. Antimicrob. Agents Chemother. 1995, 39, 232–237. [Google Scholar] [CrossRef] [PubMed]
- Mattappalil, A.; Mergenhagen, K.A. Neurotoxicity with Antimicrobials in the Elderly: A Review. Clin. Ther. 2014, 36, 1489–1511.e4. [Google Scholar] [CrossRef]
- Warstler, A.; Bean, J. Antimicrobial-Induced Cognitive Side Effects. Ment. Health Clin. 2016, 6, 207–214. [Google Scholar] [CrossRef]
- Deshayes, S.; Coquerel, A.; Verdon, R. Neurological Adverse Effects Attributable to β-Lactam Antibiotics: A Literature Review. Drug Saf. 2017, 40, 1171–1198. [Google Scholar] [CrossRef]
- Frazee, A.; Pertea, G.; Jaffe, A.; Langmead, B.; Salzberg, S.; Leek, J. Flexible Analysis of Transcriptome Assemblies with Ballgown. bioRxiv 2014, 003665. [Google Scholar] [CrossRef]
- Raposo, J.; Teotónio, R.; Bento, C.; Sales, F. Amoxicillin, a Potential Epileptogenic Drug. Epileptic Disord. 2016, 18, 454–457. [Google Scholar] [CrossRef]
- Lalanne, S.; Bouzillé, G.; Tron, C.; Revest, M.; Polard, E.; Bellissant, E.; Verdier, M.C.; Lemaitre, F. Amoxicillin-Induced Neurotoxicity: Contribution of a Healthcare Data Warehouse to the Determination of a Toxic Concentration Threshold. Antibiotics 2023, 12, 680. [Google Scholar] [CrossRef] [PubMed]
- Wanleenuwat, P.; Suntharampillai, N.; Iwanowski, P. Antibiotic-Induced Epileptic Seizures: Mechanisms of Action and Clinical Considerations. Seizure 2020, 81, 167–174. [Google Scholar] [CrossRef]
- Bui, T.; Patel, P.; Preuss, C.V. Cephalosporins. In StatPearls; StatPearls Publishing: Treasaure Island, FL, USA, 2024. [Google Scholar]
- Lin, X.; Kück, U. Cephalosporins as Key Lead Generation Beta-Lactam Antibiotics. Appl. Microbiol. Biotechnol. 2022, 106, 8007–8020. [Google Scholar] [CrossRef]
- Grill, M.F.; Maganti, R. Cephalosporin-Induced Neurotoxicity: Clinical Manifestations, Potential Pathogenic Mechanisms, and the Role of Electroencephalographic Monitoring. Ann. Pharmacother. 2008, 42, 1843–1850. [Google Scholar] [CrossRef]
- Naeije, G.; Lorent, S.; Vincent, J.L.; Legros, B. Continuous Epileptiform Discharges in Patients Treated With Cefepime or Meropenem. Arch. Neurol. 2011, 68, 1303–1307. [Google Scholar] [CrossRef]
- Payne, L.E.; Gagnon, D.J.; Riker, R.R.; Seder, D.B.; Glisic, E.K.; Morris, J.G.; Fraser, G.L. Cefepime-Induced Neurotoxicity: A Systematic Review. Crit. Care 2017, 21, 276. [Google Scholar] [CrossRef]
- Armstrong, T.; Fenn, S.J.; Hardie, K.R. JMM Profile: Carbapenems: A Broad-Spectrum Antibiotic. J. Med. Microbiol. 2021, 70, 001462. [Google Scholar] [CrossRef] [PubMed]
- Seto, A.H.; Song, J.C.; Guest, S.S. Ertapenem-Associated Seizures in a Peritoneal Dialysis Patient. Ann. Pharmacother. 2005, 39, 352–356. [Google Scholar] [CrossRef]
- Lin, H.; Chew, S.T.H. Status Epilepticus and Delirium Associated with Ertapenem in a Very Elderly Patient with Chronic Kidney Disease and Silent Ischaemic Cerebrovascular Disease. Drug Saf.—Case Rep. 2015, 2, 19. [Google Scholar] [CrossRef] [PubMed]
- Park, M.K.; Lim, K.S.; Kim, T.E.; Han, H.K.; Yi, S.J.; Shin, K.H.; Cho, J.Y.; Shin, S.G.; Jang, I.J.; Yu, K.S. Reduced Valproic Acid Serum Concentrations Due to Drug Interactions with Carbapenem Antibiotics: Overview of 6 Cases. Ther. Drug Monit. 2012, 34, 599–603. [Google Scholar] [CrossRef]
- Koppel, B.S.; Hauser, A.; Politis, C.; Van Duin, D.; Daras, M. Seizures in the Critically Ill: The Role of Imipenem. Epilepsia 2001, 42, 1590–1593. [Google Scholar] [CrossRef]
- Yagi, Y.; Nawa, T.; Kurata, Y.; Shibasaki, S.; Suzuki, H.; Kurosawa, T. Convulsive Liability of an Oral Carbapenem Antibiotic, Tebipenem Pivoxil. Jpn. J. Antibiot. 2009, 62, 241–252. [Google Scholar]
- Ong, C.; Chua, A.C.; Tambyah, P.A.; Fei, Y.S. Seizures Associated with Ertapenem. Int. J. Antimicrob. Agents 2008, 31, 290. [Google Scholar] [CrossRef] [PubMed]
- Cannon, J.P.; Lee, T.A.; Clark, N.M.; Setlak, P.; Grim, S.A. The Risk of Seizures among the Carbapenems: A Meta-Analysis. J. Antimicrob. Chemother. 2014, 69, 2043–2055. [Google Scholar] [CrossRef]
- Šoštarič, N.; Beović, B.; Matičič, M. Ertapenem-Associated Seizures in a Patient without Prior CNS Disorder or Severe Renal Dysfunction. Int. J. Clin. Pharmacol. Ther. 2014, 52, 255–258. [Google Scholar] [CrossRef]
- Day, I.P.; Goudie, J.; Nishiki, K.; Williams, P.D. Correlation between in Vitro and in Vivo Models of Proconvulsive Activity with the Carbapenem Antibiotics, Biapenem, Imipenem/Cilastatin and Meropenem. Toxicol. Lett. 1995, 76, 239–243. [Google Scholar] [CrossRef]
- Horiuchi, M.; Kimura, M.; Tokumura, M.; Hasebe, N.; Arai, T.; Abe, K. Absence of Convulsive Liability of Doripenem, a New Carbapenem Antibiotic, in Comparison with β-Lactam Antibiotics. Toxicology 2006, 222, 114–124. [Google Scholar] [CrossRef]
- Tooke, C.L.; Hinchliffe, P.; Bragginton, E.C.; Colenso, C.K.; Hirvonen, V.H.A.; Takebayashi, Y.; Spencer, J. β-Lactamases and β-Lactamase Inhibitors in the 21st Century. J. Mol. Biol. 2019, 431, 3472–3500. [Google Scholar] [CrossRef]
- Gatti, M.; Raschi, E.; De Ponti, F. Serious Adverse Events with Novel Beta-Lactam/Beta-Lactamase Inhibitor Combinations: A Large-Scale Pharmacovigilance Analysis. Eur. J. Clin. Microbiol. Infect. Dis. 2021, 40, 1169–1176. [Google Scholar] [CrossRef] [PubMed]
- Gorelik, E.; Masarwa, R.; Perlman, A.; Rotshild, V.; Abbasi, M.; Muszkat, M.; Matok, I. Fluoroquinolones and Cardiovascular Risk: A Systematic Review, Meta-Analysis and Network Meta-Analysis. Drug Saf. 2019, 42, 529–538. [Google Scholar] [CrossRef]
- Anwar, A.I.; Lu, L.; Plaisance, C.J.; Daniel, C.P.; Flanagan, C.J.; Wenger, D.M.; McGregor, D.; Varrassi, G.; Kaye, A.M.; Ahmadzadeh, S.; et al. Fluoroquinolones: Neurological Complications and Side Effects in Clinical Practice. Cureus 2024, 16, e54565. [Google Scholar] [CrossRef]
- Pham, T.D.M.; Ziora, Z.M.; Blaskovich, M.A.T. Quinolone Antibiotics. MedChemComm 2019, 10, 1719–1739. [Google Scholar] [CrossRef]
- Bhattacharyya, S.; Darby, R.R.; Raibagkar, P.; Castro, L.N.G.; Berkowitz, A.L. Antibiotic-Associated Encephalopathy. Neurology 2016, 86, 963–971. [Google Scholar] [CrossRef] [PubMed]
- Neame, M.; King, C.; Riordan, A.; Iyer, A.; Kneen, R.; Sinha, I.; Hawcutt, D.B. Seizures and Quinolone Antibiotics in Children: A Systematic Review of Adverse Events. Eur. J. Hosp. Pharm. 2020, 27, 60–64. [Google Scholar] [CrossRef]
- Famularo, G.; Pizzicannella, M.; Gasbarrone, L. Levofloxacin and Seizures: What Risk for Elderly Adults? J. Am. Geriatr. Soc. 2014, 62, 2018–2019. [Google Scholar] [CrossRef] [PubMed]
- Kamath, A. Fluoroquinolone Induced Neurotoxicity: A Review. J. Adv. Pharm. Educ. Res. 2013, 3, 16–19. [Google Scholar]
- Freeman, M.Z.; Cannizzaro, D.N.; Naughton, L.F.; Bove, C. Fluoroquinolones-Associated Disability: It Is Not All in Your Head. NeuroSci 2021, 2, 235–253. [Google Scholar] [CrossRef]
- Schmuck, G.; Schürmann, A.; Schlüter, G. Determination of the Excitatory Potencies of Fluoroquinolones in the Central Nervous System by an in Vitro Model. Antimicrob. Agents Chemother. 1998, 42, 1831–1836. [Google Scholar] [CrossRef]
- Granzotto, A.; Canzoniero, L.M.T.; Sensi, S.L. A Neurotoxic Ménage-à-Trois: Glutamate, Calcium, and Zinc in the Excitotoxic Cascade. Front. Mol. Neurosci. 2020, 13, 600089. [Google Scholar] [CrossRef]
- Mehta, A.; Prabhakar, M.; Kumar, P.; Deshmukh, R.; Sharma, P.L. Excitotoxicity: Bridge to Various Triggers in Neurodegenerative Disorders. Eur. J. Pharmacol. 2013, 698, 6–18. [Google Scholar] [CrossRef]
- Morales, D.; Pacurariu, A.; Slattery, J.; Pinheiro, L.; McGettigan, P.; Kurz, X. Association Between Peripheral Neuropathy and Exposure to Oral Fluoroquinolone or Amoxicillin-Clavulanate Therapy. JAMA Neurol. 2019, 76, 827–833. [Google Scholar] [CrossRef]
- Akahane, K.; Kato, M.; Takayama, S. Involvement of Inhibitory and Excitatory Neurotransmitters in Levofloxacin- and Ciprofloxacin-Induced Convulsions in Mice. Antimicrob. Agents Chemother. 1993, 37, 1764. [Google Scholar] [CrossRef]
- Estofan, L.J.F.; Naydin, S.; Gliebus, G. Quinolone-Induced Painful Peripheral Neuropathy: A Case Report and Literature Review. J. Investig. Med. High. Impact Case Rep. 2018, 6, 2324709617752736. [Google Scholar] [CrossRef]
- Yu, X.; Tian, A.-L.; Wang, P.; Li, J.; Wu, J.; Li, B.; Liu, Z.; Liu, S.; Gao, Z.; Sun, S.; et al. Macrolide Antibiotics Activate the Integrated Stress Response and Promote Tumor Proliferation. Cell Stress 2023, 7, 20–33. [Google Scholar] [CrossRef] [PubMed]
- Moriya, S.; Che, X.-F.; Komatsu, S.; Abe, A.; Kawaguchi, T.; Gotoh, A.; Inazu, M.; Tomoda, A.; Miyazawa, K. Macrolide Antibiotics Block Autophagy Flux and Sensitize to Bortezomib via Endoplasmic Reticulum Stress-Mediated CHOP Induction in Myeloma Cells. Int. J. Oncol. 2013, 42, 1541–1550. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Bailey, W.M.; Kopper, T.J.; Orr, M.B.; Feola, D.J.; Gensel, J.C. Azithromycin Drives Alternative Macrophage Activation and Improves Recovery and Tissue Sparing in Contusion Spinal Cord Injury. J. Neuroinflamm. 2015, 12, 218. [Google Scholar] [CrossRef]
- Ma, T.K.W.; Chow, K.M.; Choy, A.S.M.; Kwan, B.C.H.; Szeto, C.C.; Li, P.K.T. Clinical Manifestation of Macrolide Antibiotic Toxicity in CKD and Dialysis Patients. Clin. Kidney J. 2014, 7, 507–512. [Google Scholar] [CrossRef]
- Vanoverschelde, A.; Oosterloo, B.C.; Ly, N.F.; Ikram, M.A.; Goedegebure, A.; Stricker, B.H.; Lahousse, L. Macrolide-Associated Ototoxicity: A Cross-Sectional and Longitudinal Study to Assess the Association of Macrolide Use with Tinnitus and Hearing Loss. J. Antimicrob. Chemother. 2021, 76, 2708–2716. [Google Scholar] [CrossRef]
- Amantea, D.; Certo, M.; Petrelli, F.; Bagetta, G. Neuroprotective Properties of a Macrolide Antibiotic in a Mouse Model of Middle Cerebral Artery Occlusion: Characterization of the Immunomodulatory Effects and Validation of the Efficacy of Intravenous Administration. ASSAY Drug Dev. Technol. 2016, 14, 298–307. [Google Scholar] [CrossRef]
- Paradelis, A.G.; Triantaphyllidis, C.; Giala, M.M. Neuromuscular Blocking Activity of Aminoglycoside Antibiotics. Methods Find. Exp. Clin. Pharmacol. 1980, 2, 45–51. [Google Scholar]
- Toolan, K.J.; Fondriest, J.; Keenan, K.; Mizen, T.; Stosic, M. Linezolid Toxic Optic Neuropathy: A Case Report and Review of Visual Prognosis. Am. J. Ophthalmol. Case Rep. 2023, 32, 101922. [Google Scholar] [CrossRef]
- Greenfield, A.; Deja, E.; Lee, K.; Sastry, S.; Rittmann, B. Linezolid and Tedizolid Adverse Effects: A Review on Serotonin Syndrome, Myelosuppression, Neuropathies, and Lactic Acidosis. Antimicrob. Steward. Healthc. Epidemiol. 2025, 5, e20. [Google Scholar] [CrossRef]
- Lifan, Z.; Sainan, B.; Feng, S.; Siyan, Z.; Xiaoqing, L. Linezolid for the Treatment of Extensively Drug-Resistant Tuberculosis: A Systematic Review and Meta-Analysis. Int. J. Tuberc. Lung Dis. 2019, 23, 1293–1307. [Google Scholar] [CrossRef]
- Elbarbry, F.; Moshirian, N. Linezolid-Associated Serotonin Toxicity: A Systematic Review. Eur. J. Clin. Pharmacol. 2023, 79, 875–883. [Google Scholar] [CrossRef]
- Xie, J.; Talaska, A.E.; Schacht, J. New Developments in Aminoglycoside Therapy and Ototoxicity. Hear. Res. 2011, 281, 28–37. [Google Scholar] [CrossRef]
- Brandariz-Núñez, D.; Hernández-Corredoira, V.; Guarc-Prades, E.; García-Navarro, B. Optic Neuropathy Associated with Linezolid: Systematic Review of Cases. Farm. Hosp. 2019, 43, 61–65. [Google Scholar] [CrossRef]
- Dunkley, E.J.C.; Isbister, G.K.; Sibbritt, D.; Dawson, A.H.; Whyte, I.M. The Hunter Serotonin Toxicity Criteria: Simple and Accurate Diagnostic Decision Rules for Serotonin Toxicity. QJM Int. J. Med. 2003, 96, 635–642. [Google Scholar] [CrossRef] [PubMed]
- Woroń, J.; Drygalski, T.; Lonc, T.; Gupało, J.; lorkowska-Zawicka, B. Interakcje u Pacjentów Hospitalizowanych w OIT, Istotny Problem, Często Niedoceniany. Anestezjol. I Ratow. 2024, 18, 195–202. [Google Scholar]
- Thirot, H.; Briquet, C.; Frippiat, F.; Jacobs, F.; Holemans, X.; Henrard, S.; Tulkens, P.M.; Spinewine, A.; Van Bambeke, F. Clinical Use and Adverse Drug Reactions of Linezolid: A Retrospective Study in Four Belgian Hospital Centers. Antibiotics 2021, 10, 530. [Google Scholar] [CrossRef]
- Zhang, D.; Xu, Y.; Wang, X.; Hou, L.; Xing, M.; Xu, S.; Guo, R.; Luo, Y. Risk Factors for Thrombocytopenia in Patients Receiving Linezolid Therapy: A Systematic Review and Meta-Analysis. Eur. J. Clin. Pharmacol. 2023, 79, 1303–1314. [Google Scholar] [CrossRef]
- Joseph Guglielmo, B. Metronidazole Neurotoxicity: Suspicions Confirmed. Clin. Infect. Dis. 2021, 72, 2101–2102. [Google Scholar] [CrossRef]
- Dai, C.; Xiao, X.; Li, J.; Ciccotosto, G.D.; Cappai, R.; Tang, S.; Schneider-Futschik, E.K.; Hoyer, D.; Velkov, T.; Shen, J. Molecular Mechanisms of Neurotoxicity Induced by Polymyxins and Chemoprevention. ACS Chem. Neurosci. 2019, 10, 120–131. [Google Scholar] [CrossRef]
- Puri, V. Metronidazole Neurotoxicity. Neurol. India 2011, 59, 4–5. [Google Scholar] [CrossRef] [PubMed]
- Hobbs, K.; Stern-Nezer, S.; Buckwalter, M.S.; Fischbein, N.; Finley Caulfield, A. Metronidazole-Induced Encephalopathy: Not Always a Reversible Situation. Neurocrit. Care 2015, 22, 429–436. [Google Scholar] [CrossRef] [PubMed]
- De Luca, J.F.; Holmes, N.E.; Trubiano, J.A. Adverse Reactions to Vancomycin and Cross-Reactivity with Other Antibiotics. Curr. Opin. Allergy Clin. Immunol. 2020, 20, 352–361. [Google Scholar] [CrossRef]
- Cao, P.; Kang, Y.; Liu, J.; Liu, X.; Jin, Y.; Zhang, Z. Urinary Metabolomics Study of Vancomycin-Associated Nephrotoxicity Based on Ultra-Performance Liquid Chromatography Coupled with Quadrupole-Time-of-Flight Mass Spectrometry. Hum. Exp. Toxicol. 2022, 41, 09603271221119178. [Google Scholar] [CrossRef]
- Bruniera, F.R.; Ferreira, F.M.; Saviolli, L.R.M.; Bacci, M.R.; Feder, D.; da Luz Gonçalves Pedreira, M.; Sorgini Peterlini, M.A.; Azzalis, L.A.; Campos Junqueira, V.B.; Fonseca, F.L.A. The Use of Vancomycin with Its Therapeutic and Adverse Effects: A Review. Eur. Rev. Med. Pharmacol. Sci. 2015, 19, 694–700. [Google Scholar]
- Zhang, Q.; Yao, Z.; Chen, F.; Wang, X.; Wang, M.; Lu, J.; Meng, Y.; Xu, L.; Han, Y.; Liu, W.; et al. TIGAR Protects Cochlear Hair Cells against Teicoplanin-Induced Damage. Mol. Neurobiol. 2023, 60, 3788–3802. [Google Scholar] [CrossRef] [PubMed]
- Yu, F.; Pan, T.; Huang, F.; Ying, R.; Liu, J.; Fan, H.; Zhang, J.; Liu, W.; Lin, Y.; Yuan, Y.; et al. Glycopeptide Antibiotic Teicoplanin Inhibits Cell Entry of SARS-CoV-2 by Suppressing the Proteolytic Activity of Cathepsin L. Front. Microbiol. 2022, 13, 884034. [Google Scholar]
- van Groesen, E.; Mons, E.; Kotsogianni, I.; Arts, M.; Tehrani, K.H.M.E.; Wade, N.; Lysenko, V.; Stel, F.M.; Zwerus, J.T.; De Benedetti, S.; et al. Semisynthetic Guanidino Lipoglycopeptides with Potent in Vitro and in Vivo Antibacterial Activity. Sci. Transl. Med. 2024, 16, eabo4736. [Google Scholar] [CrossRef]
- Koch, B.C.P.; Muller, A.E.; Hunfeld, N.G.M.; de Winter, B.C.M.; Ewoldt, T.M.J.; Abdulla, A.; Endeman, H. Therapeutic Drug Monitoring of Antibiotics in Critically Ill Patients: Current Practice and Future Perspectives With a Focus on Clinical Outcome. Ther. Drug Monit. 2022, 44, 11. [Google Scholar] [CrossRef]
- Forge, A.; Schacht, J. Aminoglycoside Antibiotics. Audiol. Neurotol. 2000, 5, 3–22. [Google Scholar] [CrossRef]
- Steyger, P.S. Mechanisms of Aminoglycoside-and Cisplatin-Induced Ototoxicity. Am. J. Audiol. 2021, 30, 887–900. [Google Scholar] [CrossRef] [PubMed]
- Poirrier, A.L.; Pincemail, J.; Ackerveken, P.V.D.; Lefebvre, P.P.; Malgrange, B. Oxidative Stress in the Cochlea: An Update. Curr. Med. Chem. 2010, 17, 3591–3604. [Google Scholar] [CrossRef] [PubMed]
- Selimoglu, E. Aminoglycoside-Induced Ototoxicity. Curr. Pharm. Des. 2006, 13, 119–126. [Google Scholar] [CrossRef]
- Lanvers-Kaminsky, C.; Zehnhoff-Dinnesen, A.A.; Parfitt, R.; Ciarimboli, G. Drug-Induced Ototoxicity: Mechanisms, Pharmacogenetics, and Protective Strategies. Clin. Pharmacol. Ther. 2017, 101, 491–500. [Google Scholar] [CrossRef]
- Buetti, N.; Tabah, A.; Setti, N.; Ruckly, S.; Barbier, F.; Akova, M.; Aslan, A.T.; Leone, M.; Bassetti, M.; Morris, A.C.; et al. The Role of Centre and Country Factors on Process and Outcome Indicators in Critically Ill Patients with Hospital-Acquired Bloodstream Infections. Intensive Care Med. 2024, 50, 873–889. [Google Scholar] [CrossRef] [PubMed]
- Edmondson, A.C.; DeFelice, M.L. Neuromuscular Blockade Induced by Aminoglycosides: Case Reports Review. J. Clin. Pharmacol. 2007, 47, 956–964. [Google Scholar]
- McWilliam, S.J.; Antoine, D.J.; Smyth, R.L.; Pirmohamed, M. Aminoglycoside-Induced Nephrotoxicity in Children. Pediatr. Nephrol. 2017, 32, 2015–2025. [Google Scholar] [CrossRef]
- Huth, M.E.; Ricci, A.J.; Cheng, A.G. Mechanisms of Aminoglycoside Ototoxicity and Targets of Hair Cell Protection. Int. J. Otolaryngol. 2011, 2011, 937861. [Google Scholar] [CrossRef]
- Fischel-Ghodsian, N. Genetic Factors in Aminoglycoside Toxicity. Pharmacogenomics 2005, 6, 27–36. [Google Scholar] [CrossRef]
- Bitner-Glindzicz, M.; Rahman, S. Ototoxicity Caused by Aminoglycosides. Br. Med. J. 2007, 335, 784–785. [Google Scholar] [CrossRef]
- Kim, J.; Ohtani, H.; Tsujimoto, M.; Sawada, Y. Quantitative Comparison of the Convulsive Activity of Combinations of Twelve Fluoroquinolones with Five Nonsteroidal Antiinflammatory Agents. Drug Metab. Pharmacokinet. 2009, 24, 167–174. [Google Scholar] [CrossRef] [PubMed]
- Hori, S.; Kawamura, M.; Kizu, J. Effects of Anti-Inflammatory Drugs on Convulsant Activity of Quinolones: A Comparative Study of Drug Interaction between Quinolones and Anti-Inflammatory Drugs. J. Infect. Chemother. 2003, 9, 314–320. [Google Scholar] [CrossRef] [PubMed]
- Gatti, M.; Raschi, E.; De Ponti, F. Serotonin Syndrome by Drug Interactions with Linezolid: Clues from Pharmacovigilance-Pharmacokinetic/Pharmacodynamic Analysis. Eur. J. Clin. Pharmacol. 2021, 77, 233–239. [Google Scholar] [CrossRef] [PubMed]
- Tchapyjnikov, D.; Luedke, M.W. Cefepime-Induced Encephalopathy and Nonconvulsive Status Epilepticus: Dispelling an Artificial Dichotomy. Neurohospitalist 2019, 9, 100–104. [Google Scholar] [CrossRef]
Antibiotic Group | Key Representatives | Mechanism of Neurotoxicity | Most Common Neurotoxic Effects |
---|---|---|---|
Beta-lactams | Penicillins: penicillin G, piperacillin, amoxicillin, oxacillin, ticarcillin, ampicillin | Inhibition of GABAA receptors (penicillins—non-competitive), reduced GABA release, mitochondrial dysfunction | Seizures, confusion, myoclonus, non-convulsive status epilepticus, encephalopathy |
Cephalosporins: cefazolin, cefuroxime, ceftazidime, cefepime | GABA inhibition (competitive), NMDA receptor activation, mitochondrial toxicity | EEG abnormalities, delirium, seizures, encephalopathy | |
Carbapenems: imipenem, meropenem, ertapenem, doripenem | Inhibition of GABA release, blockade of NMDA and AMPA receptors, interaction with VPA | Headache, encephalopathy, seizures (especially imipenem) | |
Monobactams: aztreonam | Possible GABA inhibition, poorly understood mechanism | Rare cases of seizures | |
Beta-lactamase inhibitors: tazobactam, sulbactam | Possible neurotoxicity due to high doses and metabolic interactions | Encephalopathy, status epilepticus, altered mental status | |
Fluoroquinolones | Ciprofloxacin, norfloxacin, ofloxacin, levofloxacin | NMDA receptor activation, GABA inhibition, oxidative stress | Seizures, peripheral neuropathy, delirium, psychosis, insomnia, |
Macrolides | Azithromycin, erythromycin, clarithromycin | GABA receptor inhibition, altered cortisol and prostaglandin metabolism, drug interactions (CYP3A4) | Disorientation, psychosis, hallucinations, ototoxicity |
Aminoglycosides | Gentamycin Amikacin Tobramycin | generation of reactive oxygen species, inhibition of ACTH, and possibly NMDA receptor-mediated excitotoxicity | Ototoxicity, tinnitus, seizures, encephalopathy, and altered mental status |
Linezolid (Oxazolidinones) | Linezolid | MAO inhibition, excessive serotonin accumulation, mitochondrial toxicity | Serotonin syndrome, peripheral and optic neuropathy, |
Metronidazole | Metronidazole | Free radical formation, GABA receptor inhibition, protein synthesis disruption | Disorientation, headache, dizziness, insomnia, rare seizures |
Glycopeptides | Vancomycin, teicoplanin | Free radical-induced damage to cochlear sensory cells and auditory neurons | Ototoxicity, tinnitus, dizziness |
Polymyxins | Colistin, polymyxin B | Inhibition of acetylcholine release, mitochondrial toxicity | Seizures, paraesthesia, neuromuscular blockade, muscle weakness |
Drug Combination | Mechanism | Clinical Effects | Ref. |
---|---|---|---|
Fluoroquinolone + NSAID | Fluoroquinolones antagonise GABAA→ NSAIDs further enhance convulsant activity. | Seizures, tremors, confusion, hallucinations | [105,106] |
Linezolid + SSRI/SNRI | Linezolid is a reversible MAOI → co-administration with serotonergic antidepressants elevates serotonin levels. | Serotonin syndrome: agitation, hyperthermia, rigidity | [107] |
Cefepime + benzodiazepine | Cefepime crosses BBB and antagonises GABAA; benzodiazepines are used to treat resultant neurotoxicity. | Encephalopathy, myoclonus, seizures—especially in renal dysfunction | [108] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Radkowski, P.; Oszytko, J.; Sobolewski, K.; Trachte, F.; Onichimowski, D.; Majewska, M. The Effect of Antibiotics on the Nervous System: Importance for Anesthesiology and Intensive Care. Antibiotics 2025, 14, 622. https://doi.org/10.3390/antibiotics14060622
Radkowski P, Oszytko J, Sobolewski K, Trachte F, Onichimowski D, Majewska M. The Effect of Antibiotics on the Nervous System: Importance for Anesthesiology and Intensive Care. Antibiotics. 2025; 14(6):622. https://doi.org/10.3390/antibiotics14060622
Chicago/Turabian StyleRadkowski, Paweł, Julia Oszytko, Kamil Sobolewski, Florian Trachte, Dariusz Onichimowski, and Marta Majewska. 2025. "The Effect of Antibiotics on the Nervous System: Importance for Anesthesiology and Intensive Care" Antibiotics 14, no. 6: 622. https://doi.org/10.3390/antibiotics14060622
APA StyleRadkowski, P., Oszytko, J., Sobolewski, K., Trachte, F., Onichimowski, D., & Majewska, M. (2025). The Effect of Antibiotics on the Nervous System: Importance for Anesthesiology and Intensive Care. Antibiotics, 14(6), 622. https://doi.org/10.3390/antibiotics14060622