Antimicrobial-Resistant Staphylococcus spp. Harbored by Hedgehogs (Erinaceus europaeus) in Central Italy
Abstract
1. Introduction
2. Results
2.1. Animals
2.2. Bacteriological Analyses
2.2.1. Staphylococcus Isolation
2.2.2. Antimicrobial Sensitivity Tests
2.3. Molecular Analyses
3. Discussion
4. Materials and Methods
4.1. Sampling
4.2. Staphylococcus spp. Isolation and Characterization
4.3. Antimicrobial Susceptibility Tests
4.4. Molecular Analyses
Target Gene | Primers | Oligonucleotide Sequence (5′–3′) | Annealing Temperature (°C) | Amplicon Size (bp) | Ref. |
---|---|---|---|---|---|
16S rRNA | Staph756F Staph750R | AACTCTGTTATTAGGGAAGAACA CCACCTTCCTCCGGTTTGTCACC | 58 | 756 | [49] |
nuc | Nuc1 Nuc2 | GCGATTGATGGTGATACGGTT AGCCAAGCCTTGACGAACTAAAGC | 58 | 279 | [49] |
eta | etaF etaR | ATATCAACGTGAGGGCTCTAGTAC ATGCAGTCAGCTTCTTACTGCTA | 52 | 1155 | [56] |
etb | etbF etbR | CACACATTACGGATAATGCAAG TCAACCGAATAGAGTGAACTTATCT | 52 | 604 | [56] |
blaZ | bla-Z F bla-Z R | CAGTTCACATGCCAAAGAG TACACTCTTGGCGGTTTC | 50 | 772 | [57] |
mecA | MecA147F MecA147R | GTGAAGATATACCAAGTGATT ATGCGCTATAGATTGAAAGGAT | 50 | 147 | [58] |
mecC | mecLGA251F mecLGA251R | GCTCCTAATGCTAATGCA TAAGCAATAATGACTACC | 50 | 304 | [59] |
vanA | vanAF vanAR | GGGAAAACGACAATTGC GTACAATGCGGCCGTTA | 54 | 732 | [61] |
vanB | vanBF vanBR | ATGGGAAGCCGATAGTC GATTTCGTTCCTCGACC | 54 | 635 | [61] |
4.5. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Arnold, K.E.; Williams, N.J.; Bennett, M. Disperse abroad in the land’: The role of wildlife in the dissemination of antimicrobial resistance. Biol. Lett. 2016, 12, 20160137. [Google Scholar] [CrossRef]
- Davoust, B.; Laidoudi, Y. Wildlife, Reservoir of Zoonotic Agents: Moving beyond Denial and Fear. Pathogens 2023, 12, 1081. [Google Scholar] [CrossRef]
- Hubert, P.; Julliard, R.; Biagianti, S.; Poulle, M.L. Ecological factors driving the higher hedgehog (Erinaceus europeaus) density in an urban area compared to the adjacent rural area. Landsc. Urban Plan. 2011, 103, 34–43. [Google Scholar] [CrossRef]
- Rasmussen, S.L.; Larsen, J.; Van Wijk, R.E.; Jones, O.R.; Berg, T.B.; Angen, O.; Larsen, A.R. European hedgehogs (Erinaceus europaeus) as a natural reservoir of methicillin-resistant Staphylococcus aureus carrying mecC in Denmark. PLoS ONE 2019, 14, e0222031. [Google Scholar] [CrossRef] [PubMed]
- Ruszkowski, J.J.; Hetman, M.; Turlewicz-Podbielska, H.; Pomorska-Mól, M. Hedgehogs as a Potential Source of Zoonotic Pathogens—A Review and an Update of Knowledge. Animals 2021, 11, 1754. [Google Scholar] [CrossRef]
- Aslam, B.; Khurshid, M.; Arshad, M.I.; Muzammil, S.; Rasool, M.; Yasmeen, N.; Shah, T.; Chaudhry, T.H.; Rasool, M.H.; Shahid, A.; et al. Antibiotic Resistance: One Health One World Outlook. Front. Cell. Infect. Microbiol. 2021, 11, 771510. [Google Scholar] [CrossRef]
- Smith, J.M.B.; Marples, M.J. A natural reservoir of penicillin-resistant strains of Staphylococcus aureus. Nature 1964, 201, 844. [Google Scholar] [CrossRef]
- Bengtsson, B.; Persson, L.; Ekström, K.; Unnerstad, H.E.; Uhlhorn, H.; Börjesson, S. High occurrence of mecC-MRSA in wild hedgehogs (Erinaceus europaeus) in Sweden. Vet. Microbiol. 2017, 207, 103–107. [Google Scholar] [CrossRef]
- Dube, F.; Söderlund, R.; Lampinen Salomonsson, M.; Troell, K.; Börjesson, S. Benzylpenicillin-producing Trichophyton erinacei and methicillin resistant Staphylococcus aureus carrying the mecC gene on European hedgehogs—A pilot-study. BMC Microbiol. 2021, 21, 212. [Google Scholar] [CrossRef]
- Monecke, S.; Gavier-Widen, D.; Mattsson, R.; Rangstrup-Christensen, L.; Lazaris, A.; Coleman, D.C.; Shore, A.C.; Ehricht, R. Detection of mecC-Positive Staphylococcus aureus (CC130-MRSA-XI) in Diseased European Hedgehogs (Erinaceus europaeus) in Sweden. PLoS ONE 2013, 8, e66166. [Google Scholar] [CrossRef]
- Monecke, S.; Gavier-Widén, D.; Hotzel, H.; Peters, M.; Guenther, S.; Lazaris, A.; Loncaric, I.; Müller, E.; Reissig, A.; Ruppelt-Lorz, A.; et al. Diversity of Staphylococcus aureus Isolates in European Wildlife. PLoS ONE 2016, 11, 168433. [Google Scholar] [CrossRef] [PubMed]
- Loncaric, I.; Kübber-Heiss, A.; Posautz, A.; Ruppitsch, W.; Lepuschitz, S.; Schauer, B.; Feßler, A.T.; Krametter-Frötscher, R.; Harrison, E.M.; Holmes, M.A.; et al. Characterization of mecC gene-carrying coagulase-negative Staphylococcus spp. isolated from various animals. Vet. Microbiol. 2019, 230, 138–144. [Google Scholar] [CrossRef] [PubMed]
- Sahin-Tóth, J.; Albert, E.; Juhász, A.; Ghidán, Á.; Juhász, J.; Horváth, A.; Steward, M.C.; Dobay, O. Prevalence of Staphylococcus aureus in wild hedgehogs (Erinaceus europaeus) and first report of mecC-MRSA in Hungary. Sci. Total Environ. 2022, 815, 152858. [Google Scholar] [CrossRef] [PubMed]
- Haenni, M.; Murri, S.; Lefrère, C.; Larsen, J.; Drapeau, A.; Botman, J.; François, P.; Gourlay, P.; Meurens, F.; Madec, J.Y. Methicillin-resistant and methicillin-susceptible Staphylococcus aureus in French hedgehogs admitted to a wildlife health center. One Health 2024, 19, 100938. [Google Scholar] [CrossRef]
- Dordet-Frisoni, E.; Dorchies, G.; De Araujo, C.; Talon, R.; Leroy, S. Genomic Diversity in Staphylococcus xylosus. Appl. Environ. Microbiol. 2007, 73, 7199. [Google Scholar] [CrossRef]
- Hedin, G.; Widerström, M. Endocarditis due to Staphylococcus sciuri. Eur. J. Clin. Microbiol. Infect. Dis. 1998, 17, 673–675. [Google Scholar] [CrossRef]
- Stepanović, S.; Ježek, P.; Dakić, I.; Vuković, D.; Seifert, L. Staphylococcus sciuri: An unusual cause of pelvic inflammatory disease. Int. J. STD AIDS 2005, 16, 452–453. [Google Scholar] [CrossRef]
- Wallet, F.; Stuit, L.; Boulanger, E.; Roussel-Del Vallez, M.; Dequiedt, P.; Courcol, R.J. Peritonitis due to Staphylococcus sciuri in a patient on continuous ambulatory peritoneal dialysis. Scand. J. Infect. Dis. 2000, 32, 697–698. [Google Scholar] [CrossRef]
- Horii, T.; Suzuki, Y.; Kimura, T.; Kanno, T.; Maekawa, M. Intravenous catheter-related septic shock caused by Staphylococcus sciuri and Escherichia vulneris. Scand. J. Infect. Dis. 2001, 33, 930–932. [Google Scholar] [CrossRef]
- Martel, A.; Boyen, F.; Rau, J.; Eisenberg, T.; Sing, A.; Berger, A.; Chiers, K.; Van Praet, S.; Verbanck, S.; Vervaeke, M.; et al. Widespread Disease in Hedgehogs (Erinaceus europaeus) Caused by Toxigenic Corynebacterium ulcerans. Emerg. Infect. Dis. 2021, 27, 2686. [Google Scholar] [CrossRef]
- Han, J.I.; Lee, S.J.; Jang, H.J.; Kim, J.H.; Na, K.J. Isolation of Staphylococcus simulans from Dermatitis in a Captive African Pygmy Hedgehog. J. Zoo Wildl. Med. 2011, 42, 277–280. [Google Scholar] [CrossRef]
- Mørk, T.; Jørgensen, H.J.; Sunde, M.; Kvitle, B.; Sviland, S.; Waage, S.; Tollersrud, T. Persistence of staphylococcal species and genotypes in the bovine udder. Vet. Microbiol. 2012, 159, 171–180. [Google Scholar] [CrossRef] [PubMed]
- Garcês, A.; Poeta, P.; Soeiro, V.; Lóio, S.; Cardoso-Gomes, A.; Torres, C.; Pires, I. Pyometra Caused by Staphylococcus lentus in a Wild European Hedgehog (Erinaceus europaeus). J. Wildl. Dis. 2019, 55, 724–727. [Google Scholar] [CrossRef] [PubMed]
- Rautio, A.; Isomursu, M.; Valtonen, A.; Hirvelä-Koski, V.; Kunnasranta, M. Mortality, diseases and diet of European hedgehogs (Erinaceus europaeus) in an urban environment in Finland. Mammal Res. 2016, 61, 161–169. [Google Scholar] [CrossRef]
- Aarestrup, F.M.; Jensen, L.B. Trends in antimicrobial susceptibility in relation to antimicrobial usage and presence of resistance genes in Staphylococcus hyicus isolated from exudative epidermitis in pigs. Vet. Microbiol. 2002, 89, 83–94. [Google Scholar] [CrossRef]
- Becker, K.; Heilmann, C.; Peters, G. Coagulase-negative staphylococci. Clin. Microbiol. Rev. 2014, 27, 870–926. [Google Scholar] [CrossRef]
- Malachowa, N.; Deleo, F.R. Mobile genetic elements of Staphylococcus aureus. Cell. Mol. Life Sci. 2010, 67, 3057–3071. [Google Scholar] [CrossRef]
- Brdová, D.; Ruml, T.; Viktorová, J. Mechanism of staphylococcal resistance to clinically relevant antibiotics. Drug Resist. Updat. 2024, 77, 101147. [Google Scholar] [CrossRef]
- Concepción Porrero, M.; Valverde, A.; Fernández-Llario, P.; Díez-Guerrier, A.; Mateos, A.; Lavín, S.; Cantón, R.; Fernández-Garayzabal, J.F.; Domínguez, L. Staphylococcus aureus Carrying mecC Gene in Animals and Urban Wastewater, Spain. Emerg. Infect. Dis. 2014, 20, 899. [Google Scholar] [CrossRef]
- Lade, H.; Kim, J.S. Molecular Determinants of β-Lactam Resistance in Methicillin-Resistant Staphylococcus aureus (MRSA): An Updated Review. Antibiotics 2023, 12, 1362. [Google Scholar] [CrossRef]
- Yamaguchi, T.; Ono, D.; Sato, A. Staphylococcal cassette chromosome mec (SCCmec) analysis of MRSA. Methods Mol. Biol. 2020, 2069, 59–78. [Google Scholar]
- Røken, M.; Iakhno, S.; Haaland, A.H.; Bjelland, A.M.; Wasteson, Y. The Home Environment Is a Reservoir for Methicillin-Resistant Coagulase-Negative Staphylococci and Mammaliicocci. Antibiotics 2024, 13, 279. [Google Scholar] [CrossRef]
- Abdullahi, I.N.; Lozano, C.; González-Azcona, C.; Zarazaga, M.; Torres, C. Genetic Diversification and Resistome of Coagulase-Negative Staphylococci from Nostrils of Healthy Dogs and Dog-Owners in La Rioja, Spain. Pathogens 2024, 13, 229. [Google Scholar] [CrossRef] [PubMed]
- Wolska-Gębarzewska, M.; Międzobrodzki, J.; Kosecka-Strojek, M. Current types of staphylococcal cassette chromosome mec (SCCmec) in clinically relevant coagulase-negative staphylococcal (CoNS) species. Crit. Rev. Microbiol. 2023, 50, 1020–1036. [Google Scholar] [CrossRef] [PubMed]
- Couto, I.; De Lencastre, H.; Severina, E.; Kloos, W.; Webster, J.A.; Hubner, R.J.; Sanches, I.S.; Tomasz, A. Ubiquitous presence of a mecA homologue in natural isolates of Staphylococcus sciuri. Microb. Drug Resist. 1996, 2, 377–391. [Google Scholar] [CrossRef] [PubMed]
- Olsen, J.E.; Christensen, H.; Aarestrup, F.M. Diversity and evolution of blaZ from Staphylococcus aureus and coagulase-negative staphylococci. J. Antimicrob. Chemother. 2006, 57, 450–460. [Google Scholar] [CrossRef]
- Mama, O.M.; Ruiz-Ripa, L.; Lozano, C.; González-Barrio, D.; Ruiz-Fons, J.F.; Torres, C. High diversity of coagulase negative staphylococci species in wild boars, with low antimicrobial resistance rates but detection of relevant resistance genes. Comp. Immunol. Microbiol. Infect. Dis. 2019, 64, 125–129. [Google Scholar] [CrossRef]
- Rey Pérez, J.; Zálama Rosa, L.; García Sánchez, A.; Hermoso de Mendoza Salcedo, J.; Alonso Rodríguez, J.M.; Cerrato Horrillo, R.; Zurita, S.G.; Gil Molino, M. Multiple Antimicrobial Resistance in Methicillin-Resistant Staphylococcus sciuri Group Isolates from Wild Ungulates in Spain. Antibiotics 2021, 10, 920. [Google Scholar] [CrossRef]
- Ruiz-Ripa, L.; Gómez, P.; Alonso, C.A.; Camacho, M.C.; Ramiro, Y.; de la Puente, J.; Fernández-Fernández, R.; Quevedo, M.Á.; Blanco, J.M.; Báguena, G.; et al. Frequency and Characterization of Antimicrobial Resistance and Virulence Genes of Coagulase-Negative Staphylococci from Wild Birds in Spain. Detection of tst-Carrying S. sciuri Isolates. Microorganisms 2020, 8, 1317. [Google Scholar] [CrossRef]
- Du, J.; Liu, Q.; Pan, Y.; Xu, S.; Li, H.; Tang, J. The Research Status, Potential Hazards and Toxicological Mechanisms of Fluoroquinolone Antibiotics in the Environment. Antibiotics 2023, 12, 1058. [Google Scholar] [CrossRef]
- Zhou, X.; Chen, C.; Yue, L.; Sun, Y.; Ding, H.; Liu, Y. Excretion of enrofloxacin in pigs and its effect on ecological environment. Environ. Toxicol. Pharmacol. 2008, 26, 272–277. [Google Scholar] [CrossRef]
- Venla, J.; Ahmad, A.M.; Viivi, H.; Laura, L.; Saara, S.; Sanna, S.; Annamari, H. Clonal dissemination of successful emerging clone mecA-MRSA t304/ST6 among humans and hedgehogs in the Helsinki metropolitan area in Finland. One Health 2023, 16, 100516. [Google Scholar] [CrossRef] [PubMed]
- Futagawa-Saito, K.; Makino, S.; Sunaga, F.; Kato, Y.; Sakurai-Komada, N.; Ba-Thein, W.; Fukuyasu, T. Identification of first exfoliative toxin in Staphylococcus pseudintermedius. FEMS Microbiol. Lett. 2009, 301, 176–180. [Google Scholar] [CrossRef] [PubMed]
- Fazal, M.A.; Rana, E.A.; Akter, S.; Alim, M.A.; Barua, H.; Ahad, A. Molecular identification, antimicrobial resistance and virulence gene profiling of Staphylococcus spp. associated with bovine sub-clinical mastitis in Bangladesh. Vet. Anim. Sci. 2023, 21, 100297. [Google Scholar] [CrossRef] [PubMed]
- Imanishi, I.; Nicolas, A.; Barbosa Caetano, A.C.; de Paula Castro, T.L.; Tartaglia, N.R.; Mariutti, R.; Guédon, E.; Even, S.; Berkova, N.; Arni, R.K.; et al. Author Correction: Exfoliative toxin E, a new Staphylococcus aureus virulence factor with host-specific activity. Sci Rep. 2020, 10, 2460, Erratum in Sci. Rep. 2019, 9, 16336. https://doi.org/10.1038/s41598-019-52777-3. [Google Scholar] [CrossRef]
- Mariutti, R.B.; Tartaglia, N.R.; Seyffert, N.; de Paula Castro, T.L.; Arni, R.K.; Azevedo, V.A.; Le Loir, Y.; Nishifuji, K. Exfoliative Toxins of Staphylococcus aureus. In The Rise of Virulence and Antibiotic Resistance in Staphylococcus aureus; InTech: London, UK, 2017. [Google Scholar] [CrossRef]
- Cong, Y.; Yang, S.; Rao, X. Vancomycin resistant Staphylococcus aureus infections: A review of case updating and clinical features. J Adv. Res. 2019, 21, 169–176. [Google Scholar] [CrossRef]
- Haigh, A.; Kelly, M.; Butler, F.; O’Riordan, R.M. Non-invasive methods of separating hedgehog (Erinaceus europaeus) age classes and an investigation into the age structure of road kill. Acta Theriol. 2014, 59, 165–171. [Google Scholar] [CrossRef]
- Zhang, K.; Sparling, J.; Chow, B.L.; Elsayed, S.; Hussain, Z.; Church, D.L.; Gregson, D.B.; Louie, T.; Conly, J.M. New Quadriplex PCR Assay for Detection of Methicillin and Mupirocin Resistance and Simultaneous Discrimination of Staphylococcus aureus from Coagulase-Negative Staphylococci. J. Clin. Microbiol. 2004, 42, 4947. [Google Scholar] [CrossRef]
- CLSI, (Clinical and Laboratory Standards Institute). Performance Standards for Antimicrobial Disk Susceptibility Tests, 13th ed.; CLSI Standard M02; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2018. [Google Scholar]
- CLSI, (Clinical and Laboratory Standards Institute). Methods for Dilution Antimicrobila Susceptibility Tests for Bacteria That Grow Aerobically, 11th ed.; CLSI Standard M07; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2018. [Google Scholar]
- CLSI, (Clinical and Laboratory Standards Institute). M100 Performance Standards for Antimicrobial Susceptibility Testing a CLSI Supplement for Global Application, 33th ed.; CLSI Supplement M100; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2023. [Google Scholar]
- CLSI, (Clinical and Laboratory Standards Institute). Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals, 5th ed.; CLSI Supplement VET01S; Clinical and Laboratory Standars Institute: Wayne, PA, USA, 2020. [Google Scholar]
- EUCAST, (The European Committee on Antimicrobial Susceptibility Testing). Breakpoint Tables for Interpretation of MICs and Zone Diameters. Version 15.0; EUCAST: Växjö, Sweden, 2025. [Google Scholar]
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef]
- Noguchi, N.; Nakaminami, H.; Nishijima, S.; Kurokawa, I.; So, H.; Sasatsu, M. Antimicrobial agent of susceptibilities and antiseptic resistance gene distribution among methicillin-resistant Staphylococcus aureus isolates from patients with impetigo and staphylococcal scalded skin syndrome. J. Clin. Microbiol. 2006, 44, 2119–2125. [Google Scholar] [CrossRef]
- Schnellmann, C.; Gerber, V.; Rossano, A.; Jaquier, V.; Panchaud, Y.; Doherr, M.G.; Thomann, A.; Straub, R.; Perreten, V. Presence of New mecA and mph(C) Variants Conferring Antibiotic Resistance in Staphylococcus spp. Isolated from the Skin of Horses before and after Clinic Admission. J. Clin. Microbiol. 2006, 44, 4444. [Google Scholar] [CrossRef]
- Zhang, K.; McClure, J.A.; Elsayed, S.; Louie, T.; Conly, J.M. Novel multiplex PCR assay for characterization and concomitant subtyping of staphylococcal cassette chromosome mec types I to V in methicillin-resistant Staphylococcus aureus. J. Clin. Microbiol. 2005, 43, 5026–5033. [Google Scholar] [CrossRef]
- Cuny, C.; Layer, F.; Strommenger, B.; Witte, W. Rare Occurrence of Methicillin-Resistant Staphylococcus aureus CC130 with a Novel mecA Homologue in Humans in Germany. PLoS ONE 2011, 6, e24360. [Google Scholar] [CrossRef]
- Kondo, Y.; Ito, T.; Ma, X.X.; Watanabe, S.; Kreiswirth, B.N.; Etienne, J.; Hiramatsu, K. Combination of Multiplex PCRs for Staphylococcal Cassette Chromosome mec Type Assignment: Rapid Identification System for mec, ccr, and Major Differences in Junkyard Regions. Antimicrob. Agents Chemother. 2007, 51, 264. [Google Scholar] [CrossRef]
- Dutka-Malen, S.; Evers, S.; Courvalin, P. Detection of glycopeptide resistance genotypes and identification to the species level of clinically relevant enterococci by PCR. J. Clin. Microbiol. 1995, 33, 24. [Google Scholar] [CrossRef]
Hedgehogs | Sex | Age | Body Length (cm) | Hindfoot Length (cm) | Jaw Length (cm) | Body Weight (g) |
---|---|---|---|---|---|---|
H1 | M | J | 12 | 2.4 | 1.3 | 65.97 |
H2 | F | A | 16 | 3.6 | 2.5 | 377 |
H3 | M | A | 19 | 3.6 | 3.3 | 427.30 |
H4 | F | J | 13 | 2.7 | 1.7 | 92.13 |
H5 | F | A | 19 | 3.6 | 2.5 | 345.7 |
H6 | F | A | 23 | 4.3 | 4 | 734.77 |
H7 | M | A | 19.5 | 3.9 | 3.7 | 554.56 |
H8 | M | A | 22.5 | 4 | 3 | 425.74 |
H9 | M | A | 26 | 4 | 3.5 | 662.40 |
H10 | M | A | 24 | 4.3 | 2.5 | 571.24 |
H11 | M | A | 20 | 3.9 | 4 | 611.70 |
H12 | F | A | 22 | 4 | 4.3 | 574 |
H13 | F | A | 21 | 3.8 | 4.2 | 469 |
H14 | F | A | 23 | 4,5 | 3.8 | 540.50 |
H15 | M | A | 24 | 4.0 | 4.0 | 638 |
H16 | F | A | 20 | 3.6 | 3 | 750.68 |
H17 | F | A | 19.5 | 3.6 | 3 | 400 |
H18 | M | J | 12 | 2.5 | 2.4 | 87.27 |
Samples | Staphylococcal Species | Resistance Profile | Resistance Class | Oxacillin MIC | blaZ | mecA | mecC | vanA/ vanB |
---|---|---|---|---|---|---|---|---|
H1A | S. sciuri | P | 1 * | − | + | − | NE | |
H1B | S. epidermidis | P FOX C ENR CN SXT E | XDR | 1 * | + | + | − | NE |
H1C | S. epidermidis | P AMC FOX C ENR CIP CN SXT E | XDR | 1 * | + | + | − | NE |
H2A | S. sciuri | P RD VA | MDR | 1 * | − | + | − | − |
H2B | S. xylosus | P E RD | MDR | 0.25 | − | − | − | NE |
H2C | S. xylosus | E | NE | NE | NE | NE | NE | |
H3A | S. xylosus | P RD | 0.5 | − | − | − | NE | |
H3B | S. xylosus | P RD | 0.25 | − | − | − | NE | |
H3C | S. sciuri | NE | NE | NE | NE | NE | ||
H4A | S. xylosus | P RD | 0.25 | − | − | − | NE | |
H4B | S. sciuri | NE | NE | NE | NE | NE | ||
H4C | S. sciuri | P | 0.5 | − | − | − | NE | |
H5A | S. sciuri | NE | NE | NE | NE | NE | ||
H5B | S. lentus | TE | NE | NE | NE | NE | NE | |
H5C | S. xylosus | P C TE ENR CIP | MDR | 0.5 | − | − | − | NE |
H6A | S. aureus | VA | NE | NE | NE | NE | − | |
H6B | S. aureus | NE | NE | NE | NE | NE | ||
H6C1 | S. aureus | RD | NE | NE | NE | NE | NE | |
H6C2 | S. hyicus | NE | NE | NE | NE | NE | ||
H7A | S. simulans | NE | NE | NE | NE | NE | ||
H7B | S. simulans | NE | NE | NE | NE | NE | ||
H7C | S. simulans | NE | NE | NE | NE | NE | ||
H8A | S. aureus | P AMC FOX EFT | 4 * | − | − | − | NE | |
H8B | S. aureus | P AMC FOX EFT | 0.5 | − | − | − | NE | |
H8C | S. simulans | NE | NE | NE | NE | NE | ||
H9A | S. aureus | RD | NE | NE | NE | NE | NE | |
H9B | S. xylosus | P | 0.5 | − | − | − | NE | |
H9C | S. pseudintermedius | P | 0.5 | − | − | − | − | |
H10A | S. chromogenes | NE | NE | NE | NE | NE | ||
H10B | S. chromogenes | RD | NE | NE | NE | NE | NE | |
H10C | S. chromogenes | NE | NE | NE | NE | NE | ||
H11A | S. xylosus | P RD | 0.25 | − | − | − | NE | |
H11B | S. xylosus | NE | NE | NE | NE | NE | ||
H11C | S. hyicus | NE | NE | NE | NE | NE | ||
H12A | S. xylosus | RD | NE | NE | NE | NE | NE | |
H12B | S. xylosus | P | 0.5 | − | − | − | − | |
H12C | S. xylosus | P E RD | MDR | 0.5 | − | − | − | NE |
H13A | S. xylosus | P C TE ENR CIP E | MDR | ≤0.125 | − | − | − | NE |
H13B | S. xylosus | P C TE ENR CIP | MDR | ≤0.125 | − | − | − | NE |
H14A | S. sciuri | P TE | 1 * | − | + | − | NE | |
H14B | S. xylosus | P RD | 0.5 | − | − | − | NE | |
H14C | S. pseudintermedius | P | 0.5 | − | − | − | NE | |
H15A | S. pseudintermedius | RD | NE | NE | NE | NE | NE | |
H15B | S. pseudintermedius | RD | NE | NE | NE | NE | NE | |
H15C | S. pseudintermedius | RD | NE | NE | NE | NE | NE | |
H16A | S. aureus | P AMC FOX EFT | 8 * | − | − | − | NE | |
H16B | S. aureus | P AMC FOX EFT | 16 * | − | − | − | NE | |
H16C | S. xylosus | P FOX EFT CN AK RD | MDR | 0.5 | − | − | − | NE |
H17A | S. chromogenes | P FOX RD | MDR | 1 * | − | + | − | NE |
H17B | S. aureus | NE | NE | NE | NE | NE | ||
H17C | S. simulans | NE | NE | NE | NE | NE | ||
H18A | S. pseudintermedius | P FOX EFT AK RD | MDR | ≤0.125 | − | − | NE | |
H18B | S. chromogenes | P | 1 * | − | + | − | NE | |
H18C | S. sciuri | P | 1 * | − | + | − | NE |
Antimicrobial Class | Molecule | Susceptible | Intermediate | Resistant | Not Susceptible | ||||
---|---|---|---|---|---|---|---|---|---|
n. of Isolates | % | n. of Isolates | % | n. of Isolates | % | n. of Isolates | % | ||
penicillins | P | 25 | 46.30 | 0 | 0.00 | 29 | 53.70 | 29 | 53.70 |
AMC | 49 | 90.74 | 0 | 0.00 | 5 | 9.26 | 5 | 9.26 | |
cephalosporins | FOX | 45 | 83.33 | 0 | 0.00 | 9 | 16.67 | 9 | 16.67 |
EFT | 43 | 79.63 | 5 | 9.26 | 6 | 11.11 | 11 | 20.37 | |
phenicols | C | 42 | 77.78 | 7 | 12.96 | 5 | 9.26 | 12 | 22.22 |
tetracyclines | TE | 44 | 81.48 | 5 | 9.26 | 5 | 9.26 | 10 | 18.52 |
fluoroquinolones | ENR | 27 | 50.00 | 22 | 40.74 | 5 | 9.26 | 27 | 50.00 |
CIP | 38 | 70.37 | 12 | 22.22 | 4 | 7.41 | 16 | 29.63 | |
aminoglycosides | CN | 49 | 90.74 | 2 | 3.70 | 3 | 5.56 | 5 | 9.26 |
AK | 52 | 96.30 | 0 | 0.00 | 2 | 3.70 | 2 | 3.70 | |
sulfonamides | SXT | 51 | 94.44 | 1 | 1.86 | 2 | 3.70 | 3 | 5.56 |
macrolides | E | 8 | 14.81 | 40 | 74.08 | 6 | 11.11 | 46 | 85.19 |
ansamycin | RD | 28 | 51.85 | 8 | 14.81 | 18 | 33.34 | 26 | 48.15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bertelloni, F.; Pauselli, F.; Cagnoli, G.; Biscontri, R.; Ceccherelli, R.; Ebani, V.V. Antimicrobial-Resistant Staphylococcus spp. Harbored by Hedgehogs (Erinaceus europaeus) in Central Italy. Antibiotics 2025, 14, 725. https://doi.org/10.3390/antibiotics14070725
Bertelloni F, Pauselli F, Cagnoli G, Biscontri R, Ceccherelli R, Ebani VV. Antimicrobial-Resistant Staphylococcus spp. Harbored by Hedgehogs (Erinaceus europaeus) in Central Italy. Antibiotics. 2025; 14(7):725. https://doi.org/10.3390/antibiotics14070725
Chicago/Turabian StyleBertelloni, Fabrizio, Francesca Pauselli, Giulia Cagnoli, Roberto Biscontri, Renato Ceccherelli, and Valentina Virginia Ebani. 2025. "Antimicrobial-Resistant Staphylococcus spp. Harbored by Hedgehogs (Erinaceus europaeus) in Central Italy" Antibiotics 14, no. 7: 725. https://doi.org/10.3390/antibiotics14070725
APA StyleBertelloni, F., Pauselli, F., Cagnoli, G., Biscontri, R., Ceccherelli, R., & Ebani, V. V. (2025). Antimicrobial-Resistant Staphylococcus spp. Harbored by Hedgehogs (Erinaceus europaeus) in Central Italy. Antibiotics, 14(7), 725. https://doi.org/10.3390/antibiotics14070725