Antimicrobial Resistance Patterns of Staphylococcus aureus Cultured from the Healthy Horses’ Nostrils Sampled in Distant Regions of Brazil
Abstract
1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Bacteria and Staphylococcus aureus Confirmation
4.2. Antimicrobial Susceptibility Test
4.3. MRSA and BORSA Confirmation, and Genotyping
4.4. Data Analyses
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CoPS | Coagulase-positive Staphylococcus |
CoNS | Coagulase-negative Staphylococcus |
MDR | Multidrug-resistant |
MRSA | Methicillin-resistant Staphylococcus aureus |
MSSA | Methicillin-sensitive Staphylococcus aureus |
BORSA | Borderline oxacillin-resistant Staphylococcus aureus |
S. aureus | Staphylococcus aureus |
Appendix A
Gene | Amplicon Size (bp) | Primer Sequence (5′–3′) | Cycling | Reference |
---|---|---|---|---|
coa | (variable) | F: ATA GAG ATG CTG GTA CAG G R: GCT TCC GAT TGT TCG ATG C | 1 | [24] |
blaZ | (517 bp) | F: AAG AGA TTT GCC TAT GCT TC R: GCT TGA CCA CTT TTA TCA GC | 2 | [45] |
femA | (132 bp) | F: AAA AAA GCA CAT AAC AAG CG R: GAT AAA GAA GAA ACC AGC AG | 3 | [24] |
mecA | (162 bp) | F: TCC AGA TTA CAA CTT CAC CAG G R: CCA CTT CAT ATC TTG TAA CG | 4 | [8] |
mecC | (138 bp) | F: GAA AAA AAG GCT TAG AAC GCC TC R: GAA GAT CTT TTC CGT TTT CAG C | 5 | [8] |
nuc | (270 bp) | F: GCG ATT GAT GGT GAT ACG GTT R: AGC CAA GCC TTG ACG AAC TAA AGC | 3 | [24] |
Kappa Values | Concordance |
---|---|
<0 | No Agreement |
0–0.20 | Poor Agreement |
0.21–0.40 | Fair Agreement |
0.41–0.60 | Moderate Agreement |
0.61–0.80 | Substantial Agreement |
References
- Lee, A.S.; Lencastre, H.; Garau, J.; Kluytmans, J.; Malhotra-Kumar, S.; Peschel, A.; Harbarth, S. Methicillin-resistant Staphylococcus aureus. Nat. Rev. Dis. 2018, 4, 18033. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, P.; Wu, J.; Chen, S.; Jin, Y.; Long, J.; Duan, G.; Yang, H. Transmission of livestock-associated methicillin-resistant Staphylococcus aureus between animals, environment, and humans in the farm. Environ. Sci. Pollut. Res. 2023, 30, 86521–86539. [Google Scholar] [CrossRef]
- Marsella, R. Antibiotic resistance in equine dermatology: What should we do? J. Am. Veter Med. Assoc. 2025, 1, 1–5. [Google Scholar] [CrossRef]
- Saraiva, M.M.S.; Lim, K.; Monte, D.F.M.; Givisiez, P.E.N.; Rodrigues Alves, L.B.; Freitas Neto, O.C.; Kariuki, S.; Berchieri Junior, A.; Oliveira, C.J.B.; Gebreyes, W.A. Antimicrobial resistance in the globalized food chain: A One Health perspective applied to the poultry industry. Braz. J. Microbiol. 2022, 53, 465–486. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Antimicrobial Resistance. 2023. Available online: https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance (accessed on 5 February 2025).
- Kizerwetter-Świda, M.; Chrobak-Chmiel, D.; Rzewuska, M. High-level mupirocin resistance in methicillin-resistant staphylococci isolated from dogs and cats, United Kingdom. BMC Vet. Res. 2019, 15, 238. [Google Scholar] [CrossRef]
- Maksimovic, Z.; Dizdarevic, J.; Babic, S.; Rifatbegovic, M. Antimicrobial resistance in coagulase-positive Staphylococci isolated from various animals in Bosnia and Herzegovina. Microbiol. Drug Resist. 2022, 28, 136–142. [Google Scholar] [CrossRef]
- Santos, S.C.L.; Saraiva, M.M.S.; Moreira Filho, A.L.B.; Silva, N.M.V.; De Leon, C.M.C.G.; Pascoal, L.A.F.; Givisiez, P.E.N.; Gebreyes, W.A.; Oliveira, C.J.B. Swine as reservoirs of zoonotic borderline oxacillin-resistant Staphylococcus aureus ST398. Comp. Immunol. Microbiol. Infect. Dis. 2021, 79, 101697. [Google Scholar] [CrossRef]
- Bastard, J.; Andraud, M.; Chauin, C.; Glaser, P.; Opatowski, L.; Temime, L. Dynamics of livestock-associated methicillin resistant Staphylococcus aureus in pig movement networks: Insight from mathematical modeling and french data, France. Epidemics 2020, 31, 100389–100401. [Google Scholar] [CrossRef]
- Jiang, J.H.; Cameron, D.R.; Nethercott, C.; Aires-de-Souza, M.; Peleg, A.Y. Virulence atributes of successful methicillin-resistant Staphylococcus aureus lineages. Clin. Microbiol. Rev. 2023, 36, e00148-22. [Google Scholar] [CrossRef]
- Anwaar, F.; Ijaz, M.; Rasheed, H.; Shah, S.F.A.; Haider, S.A.R.; Sabir, M.J. Evidence and molecular characterization of multidrug resistant Staphylococcus aureus isolated from equines in Pakistan. J. Equine Vet. Sci. 2023, 126, 104498. [Google Scholar] [CrossRef]
- Pusterla, N.; Rice, M.; Henry, T.; Barnum, S.; James, K. Investigation of the Shedding of Selected Respiratory Pathogens in Healthy Horses Presented for Routine Dental Care, United States. J. Vet. Dent. 2020, 37, 88–93. [Google Scholar] [CrossRef]
- Hryniewicz, M.M.; Garbacz, K. Borderline oxacillin-resistant Staphylococcus aureus (BORSA)–a more common problem than expected? J. Med. Microbiol. 2017, 66, 1367–1373. [Google Scholar] [CrossRef]
- Mama, O.M.; Gómez, P.; Ruiz-Ripa, L.; Gómez-Sanz, E.; Zarazaga, M.; Torres, C. Antimicrobial Resistance, Virulence, and Genetic Lineages of Staphylococci from Horses Destined for Human Consumption: High Detection of S. aureus Isolates of Lineage ST1640 and Those Carrying the lukPQ Gene, Switzerland. Animals 2019, 9, 900–911. [Google Scholar] [CrossRef] [PubMed]
- Isgren, C.M.; Williams, N.J.; Fletcher, O.D.; Timofte, D.; Newton, R.J.; Maddox, T.W.; Clegg, P.D.; Pinchbeck, G.L. Antimicrobial resistance in clinical bacterial isolates from horses in the UK. Equine Vet. J. 2022, 54, 390–414. [Google Scholar] [CrossRef] [PubMed]
- Nwobi, O.C.; Anyanwu, M.U.; Jaja, I.F.; Nwankwo, I.O.; Okolo, C.C.; Nwobi, C.A.; Ezenduka, E.V.; Oguttu, J.W. Staphylococcus aureus in horses in Nigeria: Occurrence, antimicrobial, methicillin and heavy metal resistance and virulence potentials. Antibiotics 2023, 12, 242. [Google Scholar] [CrossRef]
- Olivo, G.; Zakia, L.S.; Ribeiro, M.G.; Cunha, M.L.R.S.; Riboli, D.F.M.; Mello, P.L.; Teixeira, N.B.; Araújo, C.E.T.; Oliveira-Filho, J.P.; Borges, A.S. Methicillin-resistant Staphylococcus spp. investigation in hospitalized horses and contacting personnel in a teaching veterinary hospital. J. Equine Vet. Sci. 2024, 134, 105031. [Google Scholar] [CrossRef]
- Silva, A.T.F.; Silva, J.G.; Aragão, B.B.; Silva, N.M.V.; Vasconcelos, P.C.; Oliveira, C.J.B.; Mota, R.A. Genetic traceability of Staphylococcus aureus strains isolated from primiparous dairy cows mastitis, humans and environment in the Northeast region of Brazil. Microbiology: Cienc. Rural. 2021, 51, e20200679. [Google Scholar] [CrossRef]
- De Leon, C.M.C.G.; Sousa, F.G.C.; Saraiva, M.M.S.; Givisiez, P.E.N.; Silva, N.M.V.; Vieira, R.F.C.; Oliveira, C.J.B. Equipment contact surfaces as sources of Staphylococcus carrying enterotoxin-encoding genes in goat milk dairy plants. Int. Dairy J. 2020, 111, 104827. [Google Scholar] [CrossRef]
- Mota, S.L.; Santos, L.O.; Vidaletti, M.R.; Rodrigues, R.O.; Coppola, M.M.; Mayer, F.Q. Antimicrobial resistance of Coagulase-positive Staphylococcus isolated from healthy crioulo horses and associated risk factors. J. Equine Vet. Sci. 2021, 107, 103779. [Google Scholar] [CrossRef]
- Hurni, J.I.; Kaiser-Thom, S.; Gerber, V.; Keller, J.; Colaude, U.; Fernández, J.; Schwendener, S.; Perreten, V. Prevalence and whole genome-based phylogenetic, virulence, and antibiotic-resistance characteristics of nasal Staphylococcus aureus in healthy Swiss horses. Schweiz Arch Tierheilkd 2022, 164, 499–512. [Google Scholar] [CrossRef]
- Othman, A.A.; Hiblu, M.A.; Abbassi, M.S.; Abouzeed, Y.M.; Ahmed, M.O. Nasal colonization and antibiotic resistance patterns of Staphylococcus species isolated from healthy horses in Tripoli, Libya. J. Equine Vet. Sci. 2021, 32, 61–65. [Google Scholar] [CrossRef]
- Locatelli, C.; Gattolin, S.; Monistero, V.; Castiglioni, B.; Moroni, P.; Addis, M.F.; Cremonesi, P. Staphylococcus aureus coa gene sequence analysis can prevent misidentification of coagulase-negative strains and contribute to their control in dairy cow herds. Front. Microbiol. 2023, 14, 1120305. [Google Scholar] [CrossRef]
- Saraiva, M.M.S.; De Leon, C.M.C.G.; Santos, S.C.L.; Stipp, D.T.; Souza, M.M.; Santos Filho, L.; Gebreyes, W.A.; Oliveira, C.J.B. Accuracy of PCR targeting different markers for Staphylococcus aureus identification: A comparative study using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry as the gold standard. J. Vet. Diagn. Investig. 2018, 30, 252–255. [Google Scholar] [CrossRef]
- Srisrattakarn, A.; Panpru, P.; Tippayawat, P.; Chanawong, A.; Tavichakorntrakool, R.; Daduang, J.; Wonglakorn, L.; Lulitanond, A. Rapid detection of methicillin-resistant Staphylococcus aureus in positive blood-cultures by recombinase polymerase amplification combined with lateral flow strip. PLoS ONE 2022, 17, e0270686. [Google Scholar] [CrossRef] [PubMed]
- Sawhney, S.S.; Ransom, E.M.; Wallace, M.A.; Reich, P.J.; Dantas, G.; Burnham, C.A.D. Comparative genomics of Borderline Oxacillin-Resistant Staphylococcus aureus detected during a pseudo-outbreak of Methicillin-Resistant S. aureus in a Neonatal Intensive Care Unit. mBio 2022, 13, e03196-21. [Google Scholar] [CrossRef]
- Salemi, R.; Zega, A.; Aguglia, E.; Lo Verde, F.; Pigola, G.; Stefani, S.; Cafiso, V. Balancing the virulence and antimicrobial resistance in VISA DAP-R CA-MRSA Superbug. Antibiotics 2022, 11, 1159. [Google Scholar] [CrossRef]
- Saber, T.; Samir, M.; Mekkawy, R.M.; Ariny, E.; El-Sayed, S.R.; Enan, G.; Abdelatif, S.H.; Askora, A.; Merwad, A.M.A.; Tartor, Y.H. Methicillin and Vancomycin-Resistant Staphylococcus aureus from humans and ready-to-eat meat: Characterization of antimicrobial resistance and biofilm formation ability. Front. Microbiol. 2022, 12, 735494. [Google Scholar] [CrossRef]
- Yamaguchi, T.; Ando, R.; Matsumoto, T.; Ishii, Y.; Tateda, K. Association between cell growth and vancomycin resistance in clinical community-associated Methicillin-Resistant Staphylococcus aureus. Infect. Drug Resist. 2019, 12, 2379–2390. [Google Scholar] [CrossRef]
- Walter, C.; Weissert, C.; Gizewski, E.; Burckhardt, I.; Mannsperger, H.; Hanselmann, S.; Busch, W.; Zimmermann, S.; Noite, O. Performance evaluation of machine-assisted interpretation of Gram strains from positive blood cultures. J. Clin. Microbiol. 2024, 62, e0087623. [Google Scholar] [CrossRef]
- Albert, E.; Sahin-Tóth, J.; Horváth, A.; Papp, M.; Biksi, I.; Dobay, O. Genomic evidence for direct transmission of mecC-MRSA between a horse and its veterinarian. Antibiotics 2023, 12, 408. [Google Scholar] [CrossRef]
- Ciesielczuk, H.; Xenophontos, M.; Lambourne, J. Methicillin-Resistant Staphylococcus aureus Harboring mecC Still Eludes Us in East London, United Kingdom. J. Clin. Microbiol. 2019, 57, e00020-19. [Google Scholar] [CrossRef]
- Algammal, A.M.; Hetta, H.F.; Elkelish, A.; Alkhalifah, D.H.H.; Hozzein, W.N.; Batiha, G.E.; Nahhas, N.E.; Mabrok, M.A. Methicillin-resistant Staphylococcus aureus (MRSA): One Health perspective approach to the bacterium epidemiology, virulence factors, antibiotic-resistance, and zoonotic impact. Dovepress 2020, 13, 3255–3265. [Google Scholar] [CrossRef]
- Tabuchi, F.; Lulitanond, A.; Lulitanond, V.; Thunyaharn, S.; Kaito, C. Epidemiological study on the relationship between toxin production and psm-mec mutations in MRSA isolates in Thailand. Microbiol. Immunol. 2020, 64, 219–225. [Google Scholar] [CrossRef] [PubMed]
- Anderson, M.E.C.; Lefebvre, S.L.; Rankin, S.C.; Aceto, H.; Morley, P.S.; Caron, J.P.; Galês, R.D.; Holbrook, T.C.; Moore, B.; Taylor, D.R.; et al. Retrospective multicentre study of methicillin-resistant Staphylococcus aureus infections in 115 horses. Equine Vet. J. 2009, 41, 401–405. [Google Scholar] [CrossRef]
- Konstantinovski, M.M.; Veldkamp, K.E.; Lavrijsen, A.P.M.; Bosch, T.; Kraakman, M.E.M.; Nooij, S.; Claas, E.C.J.; Gooskens, J. Hospital transmission of borderline oxacillin-resistant Staphylococcus aureus evaluated by whole-genome sequencing. J. Med. Microbiol. 2021, 70, 001384. [Google Scholar] [CrossRef]
- Huang, Y.T.; Liao, C.H.; Chen, S.Y.; Hsu, H.S.; Teng, L.J.; Hsueh, P.R. Emergence of multidrug-resistant sequence type 45 strains among mecA-positive borderline oxacillin-resistant Staphylococcus aureus causing bacteraemia in a medical centre in Taiwan. Int. J. Antim. A 2018, 52, 70–75. [Google Scholar] [CrossRef]
- Scholtzek, A.D.; Hanke, D.; Walther, B.; Eichhorn, I.; Stockle, S.D.; Klein, K.S.; Gehlen, H.; Lubke-Becker, A.; Scwartz, S.; Febler, A.T. Molecular characterization of equine Staphylococcus aureus isolates exhibiting reduced oxacillin susceptibility. Toxins 2019, 11, 535. [Google Scholar] [CrossRef]
- Little, S.V.; Hillhouse, A.E.; Lawhon, S.D.; Bryan, L.K. Analysis of virulence and antimicrobial resistance gene carriage in Staphylococcus aureus infections in equids using whole-genome sequencing. Msphere 2021, 6, e00196-20. [Google Scholar] [CrossRef]
- Nobre, M.L.M.; Santos, L.S.; Silva, D.R.P.; Oliveira, F.A.A.; Araújo, A.R.; Campos, M.A.S.; Sousa, B.C.; Figuerêdo, A.V.; Muratori, M.C.S.; Soares, M.J.S. Multiresistance and virulence factors of Staphylococcus aureus isolated from pigs. Arq. Bras. Med. Vet. E Zootec. 2021, 73, 343–351. [Google Scholar] [CrossRef]
- Arntzen, V.H.; Feenstra, S.G.; Beninca, E.; Le, T.T.N.; Mascini, E.M.; Nabuurs-Franssen, M.H.; Voss, A.; Marik, A.M.; Jong, E.; Silvis, W.; et al. Spatial analysis of methicillin-resistant Staphylococcus aureus carriage (MRSA) at hospital admission in a livestock dense region. MedRxiv 2023. [Google Scholar] [CrossRef]
- Ajibade, O.A.; Akinduro, A.O.; Omojufehinsi, G.; Odetoyin, B.; Olaniyi, O.O. Molecular characterization of antibiotic-resistant bacteria associated with maggots obtained from chicken droppings. Environm. Sci. Eur. 2024, 36, 26. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing, 34th ed.; CLSI document VET08Ed4E; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2024; ISBN 978-1-68440-011-9. [Google Scholar]
- Sambrook, J.; Russel, D.W. Molecular Cloning: A Laboratory Manual, 3rd ed.; Cold Spring Harbor Laboratory: New York, NY, USA, 2001. [Google Scholar]
- Gao, J.; Ferreri, M.; Liu, X.Q.; Chen, L.B.; Su, J.L.; Han, B. Development of multiplex polymerase chain reaction assay for rapid detection of Staphylococcus aureus and selected antibiotic resistance genes in bovine mastitic milk samples. J. Vet. Diagn. Invest. 2011, 23, 894–901. [Google Scholar] [CrossRef]
- Zee, A.V.D.; Verbakel, H.; Zon, J.C.V.; Frenay, I.; Belkum, A.V.; Peeters, M.; Buiting, A.; Bergmans, A. Molecular Genotyping of Staphylococcus aureus Strains: Comparison of Repetitive Element Sequence-Based PCR with Various Typing Methods and Isolation of a Novel Epidemicity Marker, Netherlands. J. Clin. Microbiol. 1999, 37, 342–349. [Google Scholar] [CrossRef]
- Landis, J.R.; Koch, G.G. An Application of Hierarchical Kappa-type Statistics in the Assessment of Majority Agreement among Multiple Observers, United Kigndom. Biometrics 1977, 33, 363–374. [Google Scholar]
- Hunter, P.R. Reproducibility, and indices of discriminatory power of microbial typing methods, United Kingdom. J. Clin. Microbiol. 1990, 28, 1903–1905. [Google Scholar] [CrossRef]
Patterns | Values of Kappa | p-Values | Confidence Interval |
---|---|---|---|
Coagulase-femA | 0.295 | 0.172 | sup: 0.719 |
inf: −0.128 | |||
Coagulase-nuc | 0.295 | 0.172 | sup: 0.719 |
inf: −0.128 | |||
nuc-femA | 0.213 | 0.33 | sup: 0.64 |
inf: −0.215 | |||
nuc-coa | 0.025 | 0.882 | sup: 0.361 |
inf: −0.31 | |||
nuc-femA-coa | −0.048 | - | sup: 0.199 |
inf: −0.295 | |||
Coagulase-coa | −0.05 | - | sup: 0.255 |
inf: −0.355 | |||
femA-coa | −0.152 | - | sup: 0.184 |
inf: −0.487 |
Patterns of S. aureus Markers (Nº) | % | nuc | femA | coa |
---|---|---|---|---|
1 (7) | 33.34 | + | + | − |
2 (6) | 28.57 | + | + | + |
3 (3) | 14.29 | − | + | − |
4 (2) | 9.52 | + | − | − |
5 (2) | 9.52 | − | − | + |
6 (1) | 4.76 | + | − | + |
TOTAL (21) | 100 |
Isolated | Origin | Resistance Patterns | Gene Patterns | Resistance Genes |
---|---|---|---|---|
1 | A(IV) | Pan-Susceptible | Nuc | - |
2 | A(V) | CloAziVan | nuc-femA | - |
3 | A(II) | OxaPenCloCfoAmpAmcVan | Coa | blaZ |
4 | A(VI) | PenCloAmpTetCliVan | Coa | - |
5 | A(II) | Pan-Susceptible | nuc-femA | - |
6 | A(I) | Pan-Susceptible | nuc-femA | - |
7 | A(I) | Pan-Susceptible | nuc-femA | - |
8 | A(I) | Van | femA | - |
9 | A(I) | Pan-Susceptible | femA | - |
10 | A(VII) | CliEno | nuc-coa | - |
11 | B | PenAmpTetCliVan | nuc-femA-coa | - |
12 | B | CliAmp | nuc-femA-coa | - |
13 | B | PenCloAmpTet | Nuc | - |
14 | B | OxaPenCfoAmpCliGenAzi | nuc-femA | blaZ |
15 | B | TetVan | nuc-femA-coa | - |
16 | B | PenCfoAmpTetCliVan | nuc-femA | - |
17 | B | OxaPenCfoAmpTetVan | nuc-femA-coa | blaZ |
18 | B | OxaPenCfoAmpCli | nuc-femA | blaZ |
19 | B | Pan-Susceptible | femA | - |
20 | B | OxaPenCfoAmpTetCliGen | nuc-femA-coa | blaZ |
21 | B | Tet | nuc-femA-coa | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saraiva, M.M.S.; Rodrigues, H.L.d.S.; Benevides, V.P.; de Leon, C.M.C.G.; Santos, S.C.L.; Stipp, D.T.; Givisiez, P.E.N.; Vieira, R.F.C.; Oliveira, C.J.B. Antimicrobial Resistance Patterns of Staphylococcus aureus Cultured from the Healthy Horses’ Nostrils Sampled in Distant Regions of Brazil. Antibiotics 2025, 14, 693. https://doi.org/10.3390/antibiotics14070693
Saraiva MMS, Rodrigues HLdS, Benevides VP, de Leon CMCG, Santos SCL, Stipp DT, Givisiez PEN, Vieira RFC, Oliveira CJB. Antimicrobial Resistance Patterns of Staphylococcus aureus Cultured from the Healthy Horses’ Nostrils Sampled in Distant Regions of Brazil. Antibiotics. 2025; 14(7):693. https://doi.org/10.3390/antibiotics14070693
Chicago/Turabian StyleSaraiva, Mauro M. S., Heitor Leocádio de Souza Rodrigues, Valdinete Pereira Benevides, Candice Maria Cardoso Gomes de Leon, Silvana C. L. Santos, Danilo T. Stipp, Patricia E. N. Givisiez, Rafael F. C. Vieira, and Celso J. B. Oliveira. 2025. "Antimicrobial Resistance Patterns of Staphylococcus aureus Cultured from the Healthy Horses’ Nostrils Sampled in Distant Regions of Brazil" Antibiotics 14, no. 7: 693. https://doi.org/10.3390/antibiotics14070693
APA StyleSaraiva, M. M. S., Rodrigues, H. L. d. S., Benevides, V. P., de Leon, C. M. C. G., Santos, S. C. L., Stipp, D. T., Givisiez, P. E. N., Vieira, R. F. C., & Oliveira, C. J. B. (2025). Antimicrobial Resistance Patterns of Staphylococcus aureus Cultured from the Healthy Horses’ Nostrils Sampled in Distant Regions of Brazil. Antibiotics, 14(7), 693. https://doi.org/10.3390/antibiotics14070693