Antibiotic Elution from Cement Spacers and Its Influencing Factors
Abstract
1. Introduction
- Factors influencing the elution of antibiotics from methacrylate spacers
- Antibiotics and antibiotic combinations for impregnation of ALCS
2. Porosity of the Cured Cement
3. Choice of Cement
4. Geometry of the Cement Body
5. Cement Mixing Technique
- Time of sufficient elution from spacers
- In vitro studies
Author | Reference | Antibiotic | Dosages | Cement | Method | Test Duration | Duration of Sufficient Antibiotic Release |
---|---|---|---|---|---|---|---|
Gálvez-López | [47] | 11 different | 10% and 20% (4 g and 8 g per 40 g cement); Results for 10% | Medium viscosity cement from DePuy | Beads: HPLC + DAA | 30 days | 30 days Vancomycin, Gentamicin, Moxifloxacin, Daptomycin, Ertapenem, Meropenem, Cefotaxime |
Bitsch | [49] | Ofloxacin, Vancomycin, Clindamycin, Gentamicin | 2 g, 4 g and 6 g in 40 g cement | Copal spacem (no antibiotics) | area of clearance | 50 days | 2, 4 and 6 g for 50 days, Vancomycin: 2 g 20 days, 4 g 43 days |
Stevens | [55] | Vancomycin, Tobramycin | different (suff: 3.6 g Tobramycin and 3.0 g Vancomycin = 14.2 wt%) | Simplex and Palacos | DAA with ZI | 80 days | 14.2 wt%: 80 days MIC; 25 days Tobramycin, 4 days Vancomycin in Palacos |
Anagnostakos | [56] | Linezolid | Palacos R+G (0.5 g Gentamicin) | HPLC, FPIA + Photometric (bacterial growth) | 8 days | 8 days | |
Andollina | [57] | Vancomycin, Meropenem | different | Cemex XL | CA + microbiological investigation | 5 weeks | 5 weeks for 1 g Vancomycin + 1 g Meropenem |
Boelch | [61] | Vancomycin | Copal spacem (no antibiotics) and Palacos R+G (0.5 Gentamicin) | HEIA | 28 days | 28 days Gentamicin, Vancomycin | |
Greene | [62] | Tobramycin, Vancomycin | each 4 g on 40 g Simplex or Palacos R | Simplex or Palacos R | ZI | 100 days | 100 days Tobramycin, 32 Vancomycin in Palacos |
Shiramizu | [70] | Cefazolin | 2 g Cefazolin in 40 g cement | Simplex and CMW 3 | HPLC | 7 days | 7 days |
Kummer | [95] | Vancomycin, Daptomycin, Fosfomycin | 2 g Vancomycin, 1.5 g Daptomycin, 1.5 g Fosfomycin per 40 g cement | Palacos R+G (0.5 g Gentamicin) | LCMS | 6 weeks | 6 weeks for Vancomycin, Gentamicin, Daptomycin |
Anagnostakos | [96] | Gentamicin (G), Vancomycin (V) Teicoplanin | different (0.5 g G + 1 g V in 40 g cement) | Palacos R+G (0.5 g Gentamicin) | FPIA + Photometric (bacterial growth) | 20 days | 20 days Gentamicin + Vancomycin, 4 days Teicoplanin |
Humez | [97] | Daptomycin | 1.5 g in 40 g cement | Palacos R+G (0.5 g Gentamicin) | HPLC | 2 days | 2 days |
Moore | [104] | Vancomycin, Tobramycin | 2.0 g in 40 g cement | Simplex | LCMS | 2 days | 48 h = 2 days |
Liawrun-rueang | [105] | Gentamicin | 2.0 g in 40 g cement | Palacos R+G (0.5 g Gentamicin) | EMIA; FPIA | 6 weeks | 6 weeks |
Allen | [98] | Gentamicin | 0.5 g in 40 g cement | Palacos R+G (0.5 g Gentamicin) | DDA | 12 days | 12 days sufficient |
Haseeb | [99] | Ceftaroline, Vancomycin | Ceftraroline 3 wt% (1.2 g), Vancomycin 2.5 wt% (1 g) liquid | SmartSet | HPLC + ZI | 8 weeks | 6 weeks Ceftaroline, 3 weeks Vancomycin |
Ikeda | [100] | Vancomycin | 5 wt% | Cemex RX | HPLC | 84 days (12 weeks) | 56 days (8 weeks) |
Slane | [101] | Vanocmycin, Tobramycin | Different | Palacos R | HPLC | 28 days | 28 days |
Goltzer | [102] | Gentamicin | Different | different prefabricated spacers + hand mixed Palacos | NA | 7 days | 7 days |
Salih | [106] | Gentamicin | 0.5 g; 1.5 g; 23 g in 40 g cement | Palacos and Copal G+C | LCMS | 9 weeks | 9 weeks |
Oungeun | [103] | Hydrophilic Vancomycin, Erythromycin | 55 mg Vancomycin/55 mg Erythromycin | Palacos R | UV-S | 6 weeks | 6 weeks for Vancomycin and Erythromycin |
- In vivo studies
Author | Reference | Antibiotic | Dosages | Cement | Spacer | Method | Test Duration | Duration of Sufficient Release | Infection Control |
---|---|---|---|---|---|---|---|---|---|
Hsieh | [16] | Vancomycin + Aztreonam | 4 g in 40 g PMMA | Simplex | Two-part hip | Drainage for 7 days, in joint fluid at spacer removal, HPLC | 32–156 days, Ø107 days | 32–156 days, Ø107 days | 97.8% |
Masri | [53] | Tobramycin + Vancomycin | 3.6 g Tobramycin + 1 g Vancomycin in 40 g Palacos | Simplex P | Two-part hip Two-part knee PROSTALAC | Aspirate joint fluid at spacer removal, FPIA | 42–340 days, Ø 118 days | 4 months Tobramycin | n.a. |
Anagnostakos | [86] | Gentamicin + Vanco | 0,5 Gento + 2 g Vanco in 40 g (80 g spacers in 17 patients) | Refobacin/Palacos | Two-part hip | Drainage, FPIA | 7 days max | 7 days (study period) | n.a. |
Fink | [108] | Gentamicin + Clindamycin, Vancomycin | 2 g Vancomycin in 40 g Copal-Cement | Copal G+C | Two-part hip | Spacer membrane: (LC-MS/MS) | 6 weeks | 6 weeks | n.a. |
Chohfi | [112] | Vancomycin | 3 g in 40 g PMMA (Cerafix) | Cerafix (low viscosity) | THA | Drainage 2–5 days, IEA | 5 days max | 4 days | 100% |
Regis | [114] | Gentamicin + Vanco | 2.5% Gentamicin, 2.5% (1 g) Vancomycin manually added | Cemex | Hemi-spacer hip (Spacer-G, Tecres) | Drainage, FPIA | 1 day (24 h) | 1 day (24 h) | n.a. |
Isiklar | [120] | Vancomycin | 2 g Vancomycin in 40 g cement | n.a. | Hemi-spacer hip | Drainage | 2 days | 2 days | 100% |
Balato | [121] | Gentamicin und Clindamycin | 1 g Gentamicin + 1 g Clindamycin in 40 g cement | Refobacin Revision Biomet | Two-part knee Hemi-spacer hip | FPIA | 2 days | Hip: 48 h Gentamicin, knee: 12 h in 75%, 36 h in 50% | 100% |
Mutimer | [116] | Gentamicin | 0.76 g Gentamicin in 40 g cement | Spacer K, Cemex (Tecres) | Two-part knee | Aspirate joint fluid at spacer removal | 99 (63–274) | 99 days median (64–274 days) = 3 months minimum | 100% |
Kelm | [118] | Gentamicin + Vancomycin | 0.5 Gentamicin + 2 g Vancomycin in 40 g cement (80 g spacers in 10 hip spacers) | Refobacin/Palacos | Hemi-spacer hip | Drainage + bacterial growth (photometric) after spacer removed | 3–14 weeks | Vancomycin 17 days, Gentamicin 14 days | n.a. |
Hsieh | [117] | Liquid Gentamicin, Vancomycin | 480 mg/20 mL cement monomer; 3 g Vancomycin in 40 g cement | Simplex | Two-part hip | Aspirate joint fluid at spacer removal, FPIA | Ø 87 days (27–128 days) | 87 days (27–128 days) | 95.2% |
Bertazzoni Minelli | [115] | Gentamicin + Vancomycin in holes | 0.76 g Gentamicin in 40 g Cemex, 1 g. Vanomycin in 40 g cement | Cemex RX | Hemi-spacer hip Spacer-G (Tecres) | Spacer removed in Phosphate buffer, FPIA | 3–6 months | 3–6 months Gentamicin | 100% of 17 of 20 with reimplantation |
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- AOANJRR. Hip, Knee & Shoulder Arthroplasty: 2021 Annual Report; AOA: Adelaide, Australia, 2021. [Google Scholar]
- Springer, B.D.; Etkin, C.D. The American joint replacement registry and arthroplasty today. Arthroplast. Today 2016, 2, 43. [Google Scholar] [CrossRef] [PubMed]
- Porrino, J.; Wang, A.; Moats, A.; Mulcahy, H.; Kani, K. Prosthetic joint infections: Diagnosis, management, and complications of the two-stage replacement arthroplasty. Skelet. Radiol. 2020, 49, 847–859. [Google Scholar] [CrossRef] [PubMed]
- Natsuhara, K.M.; Shelton, T.J.; Meehan, J.P.; Lum, Z.C. Mortality During Total Hip Periprosthetic Joint Infection. J. Arthroplast. 2018, 34, S337–S342. [Google Scholar] [CrossRef] [PubMed]
- Lum, Z.C.; Natsuhara, K.M.; Shelton, T.J.; Giordani, M.; Pereira, G.C.; Meehan, J.P. Mortality During Total Knee Periprosthetic Joint Infection. J. Arthroplast. 2018, 33, 3783–3788. [Google Scholar] [CrossRef]
- Tai, D.B.G.; Patel, T.; Abdel, A.P.; Berbari, E.F.; Tande, A.J. Microbiology of hip and knee periprosthetic joint infections: A database study. Clin. Microbiol. Infect. 2022, 28, 255–259. [Google Scholar] [CrossRef]
- Dragosloveanu, S.; Birlutiu, R.M.; Neamtu, R.; Birlutiu, V. Micorbiological profiles, antibiotic susceptibiity pattern and the role of mulitfrug-resistant organisms in patients diagnosed with periprothetic joint infecton over 8 years: Results from a single-center observational cohort study from Romania. Microorganisms 2025, 13, 2268. [Google Scholar] [CrossRef]
- Anagnostakos, K.; Fink, B. Antibiotic-loaded cement spacers–lessons learned from the past 20 years. Expert Rev. Med. Devices 2018, 15, 231–245. [Google Scholar] [CrossRef]
- Steadman, W.; Chapman, P.R.; Schuetz, M.; Schmutz, B.; Trampuz, A.; Tetsworth, K. Local antibiotic delivery options in prosthetic joint infection. Antibiotics 2023, 12, 752. [Google Scholar] [CrossRef]
- Classen, T.; von Konoch, M.; Wernsmann, M.; Landgraeber, S.; Löer, F.; Jäger, M. Functional interest of an articulating spacer in tow-stage infected total knee arthroplasty revision. Orthop. Traumatol. Surg. Res. 2014, 100, 409–412. [Google Scholar] [CrossRef]
- Nettrour, J.F.; Polikandriotis, J.A.; Bernasek, T.L.; Gustke, K.A.; Lyons, S.T. Articulating spacers for the treatment of infected total knee arthroplasty: Effect of antibiotic combinations and concentrations. Orthopedics 2013, 36, e19–e24. [Google Scholar] [CrossRef]
- Chen, Y.P.; Wu, C.C.; Ho, W.P. Autoclaved metal-on-cement spacer versus static spacer in two-stage revision in periprosthetic knee infection. Indian J. Orthop. 2016, 50, 146–153. [Google Scholar] [CrossRef] [PubMed]
- Juul, R.; Fabrin, J.; Poulson, K.; Schroder, H.M. Use of a new knee prosthesis as an articulating spacer in two-stage revision of infected total knee arthroplasty. Knee Surg. Relat. Res. 2016, 28, 239–244. [Google Scholar] [CrossRef] [PubMed]
- Lyons, S.T.; Wright, C.A.; Krute, C.N.; Rivera, F.E.; Carroll, R.K.; Shaw, L.N. Confirming sterility of an autoclaved infected femoral component for use in an articulated antibiotic knee spacer: A pilot study. J. Arthroplast. 2016, 31, 245–249. [Google Scholar] [CrossRef]
- Kim, Y.S.; Bae, K.C.; Cho, C.H.; Lee, K.J.; Sohn, E.S.; Kim, B.S. Two-stage revision using a modified articulating spacer in infected total knee arthroplasty. Knee Surg. Relat. Res. 2014, 25, 180–185. [Google Scholar] [CrossRef]
- Hsieh, P.H.; Chang, Y.H.; Chen, S.H.; Ueng, S.W.; Shih, C.H. High concentration and bioactivity of vancomycin and aztreonam eluted from Simplex cement spacers in two-stage revision of infected hip implants: A study of 46 patients at an average follow-up of 107 days. J. Orthop. Res. 2006, 24, 1615–1621. [Google Scholar] [CrossRef]
- Anagnostakos, K. Therapeutic use of antibiotic-loaded bone cement in the treatment of hip and knee joint infections. J. Bone Jt. Infect. 2017, 2, 29–37. [Google Scholar] [CrossRef]
- Jacobs, M.R. Optimisation of antimicrobial therapy using pharmacokinetic and pharmacodynamic parameters. Clin. Microbiol. Infect. 2001, 7, 589–596. [Google Scholar] [CrossRef]
- Schmolders, J.; Hischebeth, G.T.R.; Friedrich, M.J.; Randau, T.M.; Wimmer, M.D.; Kohlhof, H.; Molitor, E. Evidence of MRSE on a gentamicin and vancomycin impregnated polymethyl-methacrylate (PMMA) bone cement spacer after two-stage exchange arthroplasty due to periprosthetic joint infection of the knee. BMC Infect. Dis. 2014, 14, 144. [Google Scholar] [CrossRef]
- Hsieh, P.H.; Tai, C.L.; Lee, P.C.; Chang, Y.H. Liquid gentamicin and vancomycin in bone cement: A potentially more cost-effective regimen. J. Arthroplast. 2009, 24, 125–130. [Google Scholar] [CrossRef]
- van Vugt, T.A.; Arts, J.J.; Geurts, J.A. Antibiotic-loaded polymethylmethacrylate beads and spacers in treatment of orthopedic infections and the role of biofilm formation. Front. Microbiol. 2019, 10, 1626. [Google Scholar] [CrossRef]
- Thomes, B.; Murray, P.; Bouchier-Hayes, D. Development of resistant strains of Staphylococcus epidermidis on gentamicin-loaded bone cement in vivo. J. Bone Jt. Surg. Br. 2002, 84, 758–760. [Google Scholar]
- Anagnostakos, K.; Hitzler, P.; Pape, D.; Kohn, D.; Kelm, J. Persistence of bacterial growth on antibiotic-loaded beads: Is it actually a problem? Acta Orthop. 2008, 79, 302–307. [Google Scholar] [CrossRef] [PubMed]
- Neut, D.; van de Belt, H.; Stokroos, I.; van Horn, J.R.; van der Mei, H.C.; Busscher, H.J. Biomaterial-associated infection of gentamicin-loaded PMMAbeads in orthopaedic revision surgery. J. Antimicrob. Chemother. 2001, 47, 885–891. [Google Scholar] [CrossRef] [PubMed]
- Neut, D.; van de Belt, H.; van Horn, J.R.; van der Mei, H.C.; Busscher, H.J. Residual gentamicin-release from antibiotic-loaded polymethylmethacrylate beads after 5 years of implantation. Biomaterials 2003, 24, 1829–1831. [Google Scholar] [CrossRef]
- Arciola, C.R.; Campoccia, D.; Montanaro, L. Effects on antibiotic resistance of Staphylococcus epidermidis following adhesion to polymethylmethacrylate and to silicone surfaces. Biomaterials 2002, 23, 1495–1502. [Google Scholar] [CrossRef]
- Kendall, R.W.; Duncan, C.P.; Smith, J.A.; Ngui-Yen, J.H. Persistence of bacteria on antibiotic loaded acrylic depots. Clin. Orthop. Relat. Res. 1996, 329, 273–280. [Google Scholar] [CrossRef]
- König, D.P.; Schierholz, J.M.; Hilgers, R.E.; Bertram, C.; Perdreau-Remington, F. In vitro adherence and accumulation of Staphylococcus epidermidis RP 62 A and Staphylococcus epidermidis M7 on four different bone cements. Langenbecks Arch. Surg. 2001, 386, 328–332. [Google Scholar] [CrossRef]
- Ma, D.; Shanks, R.M.; Davis, C.M., III; Craft, D.W.; Wood, T.K.; Hamlin, B.R.; Urish, K.L. Viable bacteria persist on antibiotic spacers following two-stage revision for periprosthetic joint infection. J. Orthop. Res. 2018, 36, 452–458. [Google Scholar] [CrossRef]
- Gomez, M.M.; Tan, T.L.; Manrique, J.; Deirmengian, G.K.; Parvizi, J. The fate of spacers in the treatment of periprosthetic joint infection. J. Bone Jt. Surg. Am. 2015, 97, 1495–1502. [Google Scholar] [CrossRef]
- Villanueva-Martínez, M.; Ríos-Luna, A.; Chana-Rodriguez, F.; De Pedro, J.A.; Pérez-Caballer, A. Articulating spacers in infection of total knee arthroplasty—state of the art. In Arthroplasty-Update; Kinov, P., Ed.; Intech Open: London, UK, 2013. [Google Scholar] [CrossRef]
- Anagnostakos, K.; Meyer, C. Antibiotic elution from hip and knee acrylic bone cement spacers: A systematic review. BioMed Res. Int. 2017, 2017, 4657874. [Google Scholar] [CrossRef]
- Lewis, G.; Janna, S. The in vitro elution of gentamicin sulfate from a commercially available gentamicin- loaded acrylic bone cement, VersaBond AB. J. Biomed. Mater. Res. B Appl. Biomater. 2004, 71, 77–83. [Google Scholar] [CrossRef] [PubMed]
- Van De Belt, J.; Neut, D.; Uges, D.R.A.; Schenk, W.; van Horn, J.R.; van der Mei, H.C.; Bussche, H.J. Surface roughness, porosity and wettability of gentamicin-loaded bone cements and their antibiotic release. Biomaterials 2000, 21, 1981–1987. [Google Scholar] [CrossRef] [PubMed]
- Masters, E.A.; Trombetta, R.P.; de Mesy Bentley, K.L.; Boyce, B.F.; Gill, A.L.; Gill, S.R.; Nishitani, K.; Ishikawa, M.; Morita, Y.; Ito, H.; et al. Evolving concepts in bone infection: Redefining “biofilm”, “acute vs. Chronic osteomyelitis”, “the immune proteome” and “local antibiotic therapy”. Bone Res. 2019, 7, 20. [Google Scholar] [CrossRef]
- Kuehn, K.-D. PMMA Cements. In Are We Aware What We Are Using? Springer: Berlin/Heidelberg, Germany, 2014; pp. 58–59, 88–89, 96–109, 157–158. ISBN 13 978-3-642-41535-7. [Google Scholar]
- Anagnostakos, K.; Kelm, J. Enhancement of antibiotic elution from acrylic bone cement. J. Biomed. Mater. Res. B Appl. Biomater. 2009, 90, 467–475. [Google Scholar] [CrossRef]
- Tande, A.J.; Patel, R. Prosthetic joint infection. Clin. Microbiol. Rev. 2014, 27, 302–345. [Google Scholar] [CrossRef]
- Vaishya, R.; Chauhan, M.; Vaish, A. Bone cement. J. Clin. Orthop. Trauma 2013, 4, 157–163. [Google Scholar] [CrossRef]
- Seldes, R.M.; Winiarsky, R.; Jordan, L.C.; Baldini, T.; Brause, B.; Zodda, F.; Sculco, T.P. Liquid gentamicin in bone cement: A laboratory study of a potentially mor cost-effective cement spacer. J. Bone Jt. Surg. 2005, 87, 268–272. [Google Scholar]
- Shahpari, O.; Mousavian, A.; Elahpour, N.; Malahias, M.A.; Ebrahimzadeh, M.H.; Moradi, A. The use of antibiotic impregnated cement spacers in the treatment of infected total joint replacement: Challenges and achievements. Arch. Bone Jt. Surg. 2020, 8, 11–20. [Google Scholar]
- Funk, G.A.; Menuey, E.M.; Cole, K.A.; Schuman, T.P.; Kilway, K.V.; McIff, T.E. Radical scavenging of poly(methyl methacrylate) bone cement by rifampin and clinically relevant properties of the rifampin-loaded cement. Bone Jt. Res. 2019, 8, 81–89. [Google Scholar] [CrossRef]
- Wall, V.; Nguyen, T.-H.; Nguyen, N.; Tran, P. Controlling Antibiotic Release from Polymethylmethacrylate Bone Cement. Biomedicines 2021, 9, 26. [Google Scholar] [CrossRef]
- Joseph, T.N.; Chen, A.L.; Di Cesare, P.E. Use of antibiotic-impregnated cement in total joint arthroplasty. J. Am. Acad. Orthop. Surg. 2003, 11, 38–47. [Google Scholar] [CrossRef] [PubMed]
- Wahlig, H. Über die Freisetzungskinetik von Antibiotika aus Knochenzementen–Ergebnisse vergleichender Untersuchungen in vitro und in vivo. Aktuelle Probl. Chir. Orthop. 1987, 31, 221–226. [Google Scholar]
- Wahlig, H.; Buchholz, H.W. Experimental and clinical studies on the release of gentamicin from bone cement. Chirurgie 1972, 43, 441–445. [Google Scholar]
- Galvez-Lopez, R.; Pena-Monj, A.; Antelo-Lorenzo, R.; Guardia-Olmedo, J.; Moliz, J.; Hernandez-Quero, J.; Parra-Ruiz, J. Elution kinetics, antimicrobial activity, and mechanical properties of 11 different antibiotic loaded acrylic bone cement. Diagn. Microbiol. Infect. Dis. 2014, 78, 70–74. [Google Scholar] [CrossRef] [PubMed]
- Klekamp, J.; Dawson, J.M.; Haas, D.W.; DeBoer, D.; Christie, M. The use of vancomycin and tobramycin in acrylic bone cement: Bio-mechanical effects and elution kinetics for use in joint arthroplasty. J. Arthroplast. 1999, 14, 339–346. [Google Scholar] [CrossRef]
- Bitsch, R.G.; Kretzer, J.P.; Vogt, S.; Büchner, H.; Thomsen, M.N.; Lehner, B. Increased antibiotic release and equivalent biomechanics of a spacer cement without hard ratio contrast agents. Diagn. Microbiol. Infect. Dis. 2015, 83, 203–209. [Google Scholar] [CrossRef]
- Berberich, C.; Josse, J.; Ruiz, P.S. Patients at a high risk of PJI: Can we reduce the incidence of infection using dual antibiotic-loaded bone cement? Arthroplast. 2022, 4, 41. [Google Scholar] [CrossRef]
- Neut, D.; de Groot, E.P.; Kowalski, R.S.; van Horn, J.R.; van der Mei, H.C.; Busscher, H.J. Gentamicin-loaded bone cement with clindamycin or fusidic acid added: Biofilm formation and antibiotic release. J. Biomed. Mater. Res. A 2005, 73, 165–170. [Google Scholar] [CrossRef]
- Penner, M.J.; Masri, B.A.; Duncan, C.P. Elution characteristics of vancomycin and tobramycin combined in acrylic bone cement. J. Arthroplast. 1996, 11, 939–944. [Google Scholar] [CrossRef]
- Masri, B.A.; Duncan, C.P.; Beauchamp, C.P. Long-term elution of antibiotics from bone-cement. An in-vivo study using the prosthesis of antibiotic-loaded acrylic-cement (PROSTALAC). J. Arthroplast. 1998, 13, 331–338. [Google Scholar] [CrossRef]
- Gonzalez Della Valle, A.; Bostrom, M.; Brause, B.; Harney, C.; Salvati, E.A. Effective bactericidal activity of tobramycin and vancomycin eluted from acrylic bone cement. Acta Orthop. Scand. 2001, 72, 237–240. [Google Scholar] [CrossRef] [PubMed]
- Stevens, C.M.; Tetsworth, K.D.; Calhoun, J.H.; Mader, J.T. An articulated antibiotic spacer used for infected total knee arthroplasty: A comparative in vitro elution study of Simplex and Palacos bone cements. J. Orthop. Res. 2005, 23, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Anagnostakos, K.; Kelm, J.; Grün, S.; Schmitt, E.; Jung, W.; Swoboda, S. Antimicrobial properties and elution kinetics of Linezolid-loaded hip spacers in vitro. J. Biomed. Mater. Res. B Appl. Biomater. 2008, 87, 173–178. [Google Scholar] [CrossRef]
- Andollina, A.; Bertoni, F.; Zolezzi, C.; Trentani, F.; Trentani, P.; Borrelli, A.M.; Tigani, D. Vancomycin and meropenem in acrylic cement: Elution kinetics of in vitro bactericidal action. Chir. Organi Mov. 2008, 91, 151–158. [Google Scholar]
- Baleani, M.; Persson, C.; Zolezzi, C.; Andollina, A.; Borrelli, A.M.; Tigani, D. Biological and biomechanical effects of vancomycin and meropenem in acrylic bone cement. J. Arthroplast. 2008, 23, 1232–1238. [Google Scholar] [CrossRef]
- Kaplan, L.; Kurdziel, M.; Baker, K.C.; Verner, J. Characterization of daptomycin-loaded antibiotic cement. Orthopedics 2012, 335, e503–e509. [Google Scholar] [CrossRef]
- Paz, E.P.; Abenojar, J.; Vaquero-Martín, J.; Forriol, F.; Del Real, J.C. Evaluation of Elution and Mechanical Properties of High-Dose Antibiotic-Loaded Bone Cement: Comparative “In Vitro” Study of the Influence of Vancomycin and Cefazolin. J. Arthroplast. 2015, 30, 1423–1429. [Google Scholar] [CrossRef]
- Boelch, S.P.; Rueckl, K.; Fuchs, C.; Jordan, M.; Knauer, M.; Steinert, A.; Rudert, M.; Luedemann, M. Comparison of Elution Characteristics and Compressive Strength of Biantibiotic-Loaded PMMA Bone Cement for Spacers: Copal(R) Spacem with Gentamicin and Vancomycin versus Palacos(R) R+G with Vancomycin. Biomed. Res. Int. 2018, 2018, 4323518. [Google Scholar] [CrossRef]
- Greene, N.; Holtom, P.D.; Warren, C.A.; Ressler, R.L.; Sherpherd, L.; McPherson, E.J.; Patzakis, M.J. In vitro elution of tobramycin and vancomycin polymethylmethacrylate beads and spacers from Simplex and Palacos. Am. J. Orthop. 1998, 27, 201–205. [Google Scholar]
- Zahar, A.; Hannah, P. Addition of antibiotics to bone cement for septic prosthesis exchange. Oper. Orthop. Traumatol. 2016, 28, 138–144. [Google Scholar] [CrossRef]
- Kuehn, K.D.; Renz, N.; Trampuz, A. Local antibiotic therapy. Unfallchirurgie 2017, 120, 561–572. [Google Scholar]
- Lilikakis, A. The effect of vancomycin addition to the compression strength of antibiotic-loaded bone cements. Int. Orthop. 2009, 33, 815–819. [Google Scholar] [CrossRef] [PubMed]
- Lachiewicz, P.F.; Wellman, S.S.; Peterson, J.R. Antibiotic Cement Spacers for Infected Total Knee Arthroplasties. J. Am. Acad. Orthop. Surg. 2020, 28, 180–188. [Google Scholar] [CrossRef] [PubMed]
- Lunz, A.; Schonhoff, M.; Omlor, G.W.; Knappe, K.; Bangert, Y.; Lehner, B.; Renkawitz, T.; Jaeger, S. Enhanced antibiotic release from bone cement spacers utilizing dual antibiotic loading with elevated vancomycin concentrations in two-stage revision for periprosthetic joint infection. Int. Orthop. 2023, 47, 2655–2661. [Google Scholar] [CrossRef]
- Dunne, N.J.; Hill, J.; McAfee, P.; Kirkpatrick, R.; Patrick, S.; Tunney, M. Incorporation of large amounts of gentamicin sulphate into acrylic bone cement: Effect on handling and mechanical properties, antibiotic release, and biofilm formation. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2008, 222, 355–365. [Google Scholar] [CrossRef]
- Lautenschlager, E.P.; Jacobs, J.J.; Marshall, G.W.; Meyer, P.R., Jr. Mechanical properties of bone cements containing large doses of antibiotic powders. J. Biomed. Mater. Res. 1976, 10, 929–938. [Google Scholar] [CrossRef]
- Shiramizu, K.; Lovric, V.; Leung, A.; Walsh, W.R. How do porosity-inducing techniques affect antibiotic elution from bone cement? An in vitro comparison between hydrogen peroxide and a mechanical mixer. J. Orthop. Traumatol. Off. J. Ital. Soc. Orthop. Traumatol. 2008, 9, 17–22. [Google Scholar] [CrossRef]
- Wixson, R.L. Do we need to vacuum mix or centrifuge cement? Clin. Orthop. Relat. Res. 1992, 285, 84–90. [Google Scholar] [CrossRef]
- Neut, D.; van de Belt, H.; van Horn, J.; van der Mei, H.; Busscher, M. The effect of mixing on gentamicin release from polymethylmethacrylate bone cements. Acta Orthop. Scand. 2003, 74, 670–676. [Google Scholar] [CrossRef]
- Samelis, P.V.; Papagrigorakis, E.; Sameli, E.; Mavrogenis, A.; Savvidou, O.; Koulouvaris, P. Current Concepts on the Application, Pharmacokinetics and Complications of Antibiotic-Loaded Cement Spacers in the Treatment of Prosthetic Joint Infections. Cureus 2022, 14, e20968. [Google Scholar] [CrossRef]
- Frommelt, L.; Kühn, K.D. Properties of Bone Cement–Antibiotic Loaded Bone Cement; Frommelt, L., Kühn, K.D., Eds.; Springer: Berlin, Germany, 2005. [Google Scholar]
- McLaren, A.C.; Nugent, M.; Economopoulos, K.; Kaul, H.; Vernon, B.L.; McLemore, R. Hand-mixed and premixed antibiotic- loaded bone cement have similar homogeneity. Clin. Orthop. Relat. Res. 2009, 467, 1693–1698. [Google Scholar] [CrossRef] [PubMed]
- Miller, R.; Leon, C.; McLemore, R. Mixing method affects elution and strength of high-dose ALBC: A pilot study. Clin. Orthop. Relat. Res. 2012, 470, 2677–2683. [Google Scholar] [CrossRef] [PubMed]
- Wu, K.; Chen, Y.C.; Hsu, Y.M.; Chang, C.H. Enhancing Drug Release from Antibiotic-loaded Bone Cement Using Porogens. J. Am. Acad. Orthop. Surg. 2016, 24, 188–195. [Google Scholar] [CrossRef]
- Shi, M.; Kretlow, J.D.; Spicer, P.P.; Tabata, Y.; Demian, N.; Wong, M.E.; Kasper, F.K.; Mikos, A.G. Antibiotic-releasing porous polymethylmethacrylate/gelatin/antibiotic constructs for craniofacial tissue engineering. J. Control Release 2011, 152, 196–205. [Google Scholar] [CrossRef]
- Chen, L.; Tang, Y.; Zhao, K.; Zha, X.; Liu, J.; Bai, H.; Wu, Z. Fabrication of the antibiotic-releasing gelatin/PMMA bone cement. Colloids Surf. B Biointerfaces 2019, 183, 110448. [Google Scholar] [CrossRef]
- Fini, G.G.; Aldini, N.N.; Torricelli, P.; Botter, R.; Beruto, D.; Giardino, R. A bone substitute composed of polymethylmethacrylate and α-tricalcium phosphate: Results in terms of osteoblast function and bone tissue formation. Biomaterials 2002, 23, 196. [Google Scholar] [CrossRef]
- Von Hertzberg-Boelch, S.P.; Luedemann, M.; Rudert, M.; Steinert, A.F. PMMA bone cement: Antibiotic elution and mechanical properties in the context of clinical use. Biomedicines 2022, 10, 1830. [Google Scholar] [CrossRef]
- Schurman, D.J.; Trindade, C.; Hirshman, H.P.; Moser, K.; Kajiyama, G.; Stevens, P. Antibiotic-acrylic bone cement composites. Stud. Gentamicin Palacos J. Bone Jt. Surg. Am. 1978, 60, 978–984. [Google Scholar] [CrossRef]
- Walenkamp, G.H.I.M. Antibiotic loaded cement: From research to clinical evidence. In Infection and Local Treatment in Orthopedic Surgery; Meani, E., Romanò, C., Crosby, L., Hofmann, G., Calonego, G., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 170–175. [Google Scholar]
- Duey, R.E.; Chong, A.C.; McQueen, D.A.; Womack, J.L.; Song, Z.; Steinberger, T.A.; Wooley, P.H. Mechanical properties and elution characteristics of polymethylmethacrylate bone cement impregnated with antibiotics for various surface area and volume constructs. Orthop. J. 2012, 32, 104–115. [Google Scholar]
- Masri, B.A.; Duncan, C.P.; Beauchamp, C.P.; Paris, N.J.; Arntorp, J. Effect of varying surface patterns on antibiotic elution from antibiotic-loaded bone cement. J. Arthroplast. 1995, 10, 453–459. [Google Scholar] [CrossRef]
- Anagnostakos, K.; Wilmes, P.; Schmitt, E.; Kelm, J. Elution of gentamicin and vancomycin from polymethylmethacrylate beads and hip spacers in vivo. Acta Orthop. 2009, 80, 193–197. [Google Scholar] [CrossRef] [PubMed]
- Frew, N.M.; Cannon, T.; Nichol, T.; Smith, T.; Stockley, I. Comparison of the elution properties of commercially available gentamicin and bone cement containing vancomycin with ‘home-made’ preparations. Bone Jt. J. 2017, 99, 73–77. [Google Scholar] [CrossRef] [PubMed]
- Meyer, J.; Piller, G.; Spiegel, C.A.; Hetzel, S.; Squire, M. Vacuum-mixing significantly changes antibiotic elution characteristics of commercially available antibiotic-impregnated bone cements. J. Bone Jt. Surg. Am. 2011, 93, 2049–2056. [Google Scholar] [CrossRef] [PubMed]
- Parvizi, J. Antibiotic Spacers in the Infected Hip: Optimizing Placement. Curr. Concepts Jt. Replacement. Orthop. Proc. 2017, 99, 126. [Google Scholar]
- Laine, J.C.; Nguyen, T.Q.; Buckley, J.M.; Kim, H.T. Effects of mixing techniques on vancomycin-impregnated polymethylmethacrylate. J. Arthroplast. 2011, 26, 1562–1566. [Google Scholar] [CrossRef]
- Cerretani, D.; Giorgi, G.; Fornara, P.; Bocchi, L.; Neri, L.; Ceffa, R.; Ghisellini, F.; Ritter, M.A. The in vitro elution characteristics of vancomycin combined with imipenem-cilastatin in acrylic bone-cements: A pharmacokinetic study. J. Arthroplast. 2002, 17, 619–626. [Google Scholar] [CrossRef]
- Scott, C.P.; Higham, P.A. Antibiotic bone cement for the treatment of pseudomonas aeruginosa in joint arthroplasty: Comparison of tobramycin and gentamicin-loaded cements. J. Biomed. Mater. Res. 2003, 64, 94–98. [Google Scholar] [CrossRef]
- Streuli, J.C.; Exner, G.U.; Reize, C.L.; Merkofer, C.; Scott, C.P.; Zbinden, R. In vitro inhibition of coagulase-negative staphylococci by vancomycin/aminoglycoside-loaded cement spacers. Infection 2006, 34, 81–86. [Google Scholar] [CrossRef]
- Holtom, P.D.; Warren, C.A.; Greene, N.W.; Bravos, P.D.; Ressler, R.L.; Shepherd, L.; McPherson, E.J.; Patzakis, M.J. Relation of surface area to in vitro elution characteristics of vancomycin- impregnated polymethylmethacrylate spacers. Am. J. Orthop. 1998, 27, 207–210. [Google Scholar]
- Kummer, A.; Furunstrand Tafin, U.; Borens, O. Effect of sonication on the elution of antibiotics from polymethyl methacrylate (PMMA). J. Bone Jt. Infect. 2017, 2, 208–212. [Google Scholar] [CrossRef]
- Anagnostakos, K.; Kelm, J.; Regitz, T.; Schmitt, E.; Jung, W. In vitro evaluation of antibiotic release from and bacteria growth inhibition by antibiotic-loaded acrylic bone cement spacers. J. Biomed. Mater. Res. B Appl. Biometer 2005, 72, 373–378. [Google Scholar] [CrossRef] [PubMed]
- Humez, M.; Domann, E.; Thormann, K.M.; Fölsch, C.; Strathausen, R.; Vogt, S.; Alt, V.; Kühn, K.D. Dapotmycin-impregnated PMMA cement against vancomycin-resistant germs: Dosage, handling, elution, mechanical stability, and effectiveness. Antibtiotics 2023, 12, 1567. [Google Scholar] [CrossRef] [PubMed]
- Allen, B.; Moore, C.; Seyler, T.; Gall, K. Modulating antibiotic release from reservoirs in 3D-printed orthopedic devices to treat periprosthetic joint infection. J. Orthop. Res. 2020, 38, 2239–2249. [Google Scholar] [CrossRef] [PubMed]
- Haseeb, A.; Singh, V.A.; Teh, C.S.J.; Loke, M.F. Addition of ceftaroline, fosamil, or vancomycin to PMMA: An in vitro comparison of biomechanical properties and anti-MRSA efficacy. J. Orthop. Surg. 2019, 27, 1–9. [Google Scholar] [CrossRef]
- Ikeda, S.; Uchiyama, K.; Minegishi, Y.; Ohno, K.; Nakamura, M.; Yoshida, K.; Fukushima, K.; Takahira, N.; Takaso, M. Double-layered antibiotic-loaded cement spacer as a novel alternative for managing periprosthetic joint infection: An in vitro study. J. Orthop. Surg. Res. 2018, 13, 322. [Google Scholar] [CrossRef]
- Slane, J.; Gietman, B.; Squire, M. Antibiotic elution from acrylic bone cement loaded with high doses of tobramycin and vancomycin. J. Orthop. Res. 2018, 36, 1078–1085. [Google Scholar] [CrossRef]
- Goltzer, O.; McLaren, A.; Overstreet, D.; Galli, C.; McLemore, R. Antimicrobial release from prefabricated spacers is variable and the dose is low. Clin. Orthop. Relat. Res. 2015, 473, 2253–2261. [Google Scholar] [CrossRef]
- Oungeun, P.; Rojanathanes, R.; Pinsornsak, P.; Wanichwecharungruang, S. Sustaining antibiotic release from a poly(methylmethacrylate) bone-spacer. ACS Omega 2019, 4, 14860–14867. [Google Scholar] [CrossRef]
- Moore, K.; Wilson-van Os, R.; Dusane, D.H.; Brooks, J.R.; Delury, C.; Aiken, S.S.; Laycok, P.A.; Sullian, A.C.; Granger, J.F.; Dipane, M.V.; et al. Elution kinetics from antibiotic-loaded calcium sulfate beads, antibiotic-loaded polymethacrylate spacers, and a powdered antibiotic bolus for surgical site infections in a novel in vitro draining knee model. Antibiotics 2021, 10, 270. [Google Scholar] [CrossRef]
- Liawrungrueang, W.; Ungphaiboon, S.; Jitsurong, A.; Ingviya, N.; Tangtrakulwanich, B.; Yuenyongviwat, V. In vitro elution characteristics of gentamicin-impregnated polymethylmethacrylate: Premixed with a second powder vs. liquid lyophilization. BMC Muscoloskeletal Disord. 2021, 22, 5. [Google Scholar] [CrossRef]
- Salih, S.; Pskins, A.; Nichol, T.; Smith, T.; Hamer, A. The cement spacer with multiple indentations. Increasing antibiotic elution using a cement spacer “teabag”. J. Bone Jt. Surg. 2015, 97, 1519–1524. [Google Scholar] [CrossRef] [PubMed]
- Fink, B.; Rechtenbach, A.; Büchner, H.; Vogt, S.; Hahn, M. Articulating spacers used in two-stage revision of infected hip and knee prostheses abrade with time. Clin. Orthop. Relat. Res. 2011, 469, 1095–1102. [Google Scholar] [CrossRef] [PubMed]
- Fink, B.; Vogt, S.; Reinsch, M.; Büchner, H. Sufficient release of antibiotic by a spacer 6 weeks after implantation in two-stage revision of infected hip prostheses. Clin. Orthop. Relat. Res. 2011, 469, 3141–3147. [Google Scholar] [CrossRef]
- Adams, K.; Coud, L.; Cierny, G.; Calhoun, J.; Mader, J.T. In vitro and in vivo evaluation of antibiotic diffusion from antibiotic-impregnated polymethylmethacrylate beads. Clin. Orthop. Relat. Res. 1992, 278, 244–252. [Google Scholar] [CrossRef]
- Chapman, M.W.; Hadley, K. The effect of polymethylmethacrylate and antibiotic combinations on bacterial viability. An in vitro and preliminary in vivo study. J. Bone Jt. Surg. 1976, 58, 76–81. [Google Scholar] [CrossRef]
- Bunetel, L.; Segui, A.; Langlais, F.; Cornier, M. Osseous concentration of gentamicin after implantation of acrylic bone cement in sheep femora. Eur. J. Drug Metab. Pharmacokinet. 1994, 19, 99–105. [Google Scholar] [CrossRef]
- Chohfi, M.; Langlais, F.; Fourastier, J.; Minet, J.; Thomazeau, H.; Cormier, M. Pharmacokinetics, uses and limitations of vancomycin-loaded bone cement. Inter. Orthop. 1998, 22, 171–177. [Google Scholar] [CrossRef]
- Gatin, L.; Saleh Mghir, A.; Mouton, W.; Laurent, F.; Ghout, I.; Rioux-Leclercq, N.; Tattevin, P.; Verdier, M.C.; Cremieux, A.C. Colistin-containing cement spacer for treatment of experimental carbapenemase-producing Klebsiella pneumoniae prosthetic joint infection. Int. J. Antimicrob. Agents 2019, 54, 456–462. [Google Scholar] [CrossRef]
- Regis, D.; Sandri, A.; Samaila, E.; Benini, A.; Bondi, M.; Magnan, B. Release of gentamicin and vancomycin form preformed spacers in infected total hip arthroplasties: Measurement of concentrations and inhibitory activity in patients’ drainage fluid and serum. Sci. World J. 2013, 752184. [Google Scholar] [CrossRef]
- Bertazzoni Minelli, E.; Benini, A.; Magnan, B.; Bertazolli, P. Release of gentamicin and vancomycin from temporary human hip spacers in two-stage revision of infected arthroplasty. J. Antimicrob. Chemother. 2004, 53, 329–334. [Google Scholar] [CrossRef]
- Mutimer, J.; Gillespie, G.; Lovering, A.M.; Porteous, A.J. Measurements of in vivo intra-articular gentamicin levels from antibiotic loaded articulating spacers in revision total knee replacement. Knee 2009, 16, 39–41. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, P.H.; Huang, K.C.; Tai, C.L. Liquid gentamicin in bone cement spacers: In vivo antibiotic release and systemic safety in two-stage revision of infected hip arthroplasty. J. Trauma. 2009, 66, 804–808. [Google Scholar] [CrossRef] [PubMed]
- Kelm, J.; Regitz, T.; Schmitt, E.; Jung, W.; Anagnostakos, K. In vivo and in vitro studies of antibiotic release from and bacterial growth inhibition by antibiotic-impregnated polymethylmethacrylate hip spacers. Antimicrob. Agents Chemother. 2006, 50, 332–335. [Google Scholar] [CrossRef] [PubMed]
- Griffin, J.W.; Guillot, S.; Redick, J.A.; Browne, J.A. Removed antibiotic-impregnated cement spacers in two-stage revision joint arthroplasty do not show biofilm formation in vivo. J. Arthroplast. 2012, 27, 1769–1799. [Google Scholar] [CrossRef]
- Isiklar, Z.U.; Demirörs, D.; Akpina, S.; Tandogan, R.N.; Alparsian, M. Two-stage treatment of chronic staphylococcal orthopaedic implant-related infections using vancomycin impregnated PMMA spacer and rifampicin containing antibiotic protocol. Bull. Hosp. Jt. Dis. 1999, 58, 79–85. [Google Scholar]
- Balato, G.; Ascione, T.; Rosa, D.; Pagliano, P.; Solarino, G.; Moretti, B.; Mariconda, M. Release of gentamicin from cement spacers in two-stage procedures for hip and knee prosthetic infection: An in vivo pharmacokinetic study with clinical follow-up. J. Biol. Regul. Homeost. Agents 2015, 29, 63–72. [Google Scholar]
Cements | CMW® 1 G | SmartSet® GHV | Palacos® R+G | Copal® G+C | Copal® G+V | Refobacin® B.C.R | Antibiotic Simplex® P with T | Tianjin Joint Cement | |
---|---|---|---|---|---|---|---|---|---|
Powder | PMMA | √ | √ | √ | |||||
MA/MMA | √ | √ | √ | √ | √ | ||||
Styrene copolymer | √ | ||||||||
Styrene butadine copolymer | √ | ||||||||
Antibiotic | G | G | G | G+C | G+V | G | T | ||
Benzoyl peroxide | √ | √ | √ | √ | √ | √ | √ | √ | |
Zirconium dicoxide | √ | √ | √ | √ | √ | ||||
Barium sulfate | √ | √ | √ | ||||||
Sterilized | R | EO | EO | EO | R | EO | R | R | |
Coloring agent | √ | √ | √ | ||||||
Liquid | MMA | √ | √ | √ | √ | √ | √ | √ | √ |
N, N Dimethyl- (-toluidine) | √ | √ | √ | √ | √ | √ | |||
Sterilized | A | A | A | A | A | A | A | A | |
Coloring agent | √ | √ | √ | √ | |||||
Hydroquinone | √ | √ | √ | √ | √ | √ | √ | √ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fink, B.; Tetsworth, K.D. Antibiotic Elution from Cement Spacers and Its Influencing Factors. Antibiotics 2025, 14, 705. https://doi.org/10.3390/antibiotics14070705
Fink B, Tetsworth KD. Antibiotic Elution from Cement Spacers and Its Influencing Factors. Antibiotics. 2025; 14(7):705. https://doi.org/10.3390/antibiotics14070705
Chicago/Turabian StyleFink, Bernd, and Kevin D. Tetsworth. 2025. "Antibiotic Elution from Cement Spacers and Its Influencing Factors" Antibiotics 14, no. 7: 705. https://doi.org/10.3390/antibiotics14070705
APA StyleFink, B., & Tetsworth, K. D. (2025). Antibiotic Elution from Cement Spacers and Its Influencing Factors. Antibiotics, 14(7), 705. https://doi.org/10.3390/antibiotics14070705