Is Osteoarthritis a State of Joint Dysbiosis?
Abstract
1. Introduction
2. Current Perspective on Etiology and Pathophysiology of OA
3. Emerging Hypothesis: Dysbiosis as a Driver of OA
4. Evidence for the Existence of a Joint Microbiome
5. Contaminants in Joint Microbiome
6. Hypotheses on Microbial Origins
6.1. Gut–Joint Axis
6.2. Oral–Joint Axis
6.3. Post-Surgical and Environmental Contaminants
7. Potential Mechanisms Linking Dysbiosis and Pathophysiology of OA
8. The Effect of Antibiotic-Induced Gut Microbiome Dysbiosis on OA
9. Current Controversies and the Future
10. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
OA | Osteoarthritis |
MMPs | Metalloproteases |
TNF α | Tumor necrosis factor α |
TGF β | Transforming growth factor beta |
RA | Rheumatoid arthritis |
SCFAs | Short-chain fatty acids |
LPS | Lipopolysaccharides |
TLRs | Toll-like receptors |
NF-κB | Nuclear Factor kappa-B |
NGS | Next-generation sequencing |
SF | Synovial fluid |
PCR | Polymerase chain reaction |
ITS | Internal Transcribed Spacer |
References
- Sharma, L. Osteoarthritis of the Knee. N. Engl. J. Med. 2021, 384, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Quicke, J.G.; Conaghan, P.G.; Corp, N.; Peat, G. Osteoarthritis year in review 2021: Epidemiology & therapy. Osteoarthr. Cartil. 2022, 30, 196–206. [Google Scholar] [CrossRef]
- Krakowski, P.; Rejniak, A.; Sobczyk, J.; Karpinski, R. Cartilage Integrity: A Review of Mechanical and Frictional Properties and Repair Approaches in Osteoarthritis. Healthcare 2024, 12, 1648. [Google Scholar] [CrossRef] [PubMed]
- Long, H.; Liu, Q.; Yin, H.; Wang, K.; Diao, N.; Zhang, Y.; Lin, J.; Guo, A. Prevalence Trends of Site-Specific Osteoarthritis from 1990 to 2019: Findings from the Global Burden of Disease Study 2019. Arthritis Rheumatol. 2022, 74, 1172–1183. [Google Scholar] [CrossRef]
- Hunter, D.J.; Schofield, D.; Callander, E. The individual and socioeconomic impact of osteoarthritis. Nat. Rev. Rheumatol. 2014, 10, 437–441. [Google Scholar] [CrossRef]
- Hunter, D.J.; Bierma-Zeinstra, S. Osteoarthritis. Lancet 2019, 393, 1745–1759. [Google Scholar] [CrossRef] [PubMed]
- Hao, X.; Shang, X.; Liu, J.; Chi, R.; Zhang, J.; Xu, T. The gut microbiota in osteoarthritis: Where do we stand and what can we do? Arthritis Res. Ther. 2021, 23, 42. [Google Scholar] [CrossRef]
- Li, Y.; Luo, W.; Deng, Z.; Lei, G. Diet-Intestinal Microbiota Axis in Osteoarthritis: A Possible Role. Mediat. Inflamm. 2016, 2016, 3495173. [Google Scholar] [CrossRef]
- Gelber, A.C. Knee Osteoarthritis. Ann. Intern. Med. 2024, 177, ITC129–ITC144. [Google Scholar] [CrossRef]
- Du, X.; Liu, Z.Y.; Tao, X.X.; Mei, Y.L.; Zhou, D.Q.; Cheng, K.; Gao, S.L.; Shi, H.Y.; Song, C.; Zhang, X.M. Research Progress on the Pathogenesis of Knee Osteoarthritis. Orthop. Surg. 2023, 15, 2213–2224. [Google Scholar] [CrossRef]
- Westacott, C.I.; Barakat, A.F.; Wood, L.; Perry, M.J.; Neison, P.; Bisbinas, I.; Armstrong, L.; Millar, A.B.; Elson, C.J. Tumor necrosis factor alpha can contribute to focal loss of cartilage in osteoarthritis. Osteoarthr. Cartil. 2000, 8, 213–221. [Google Scholar] [CrossRef] [PubMed]
- Jenei-Lanzl, Z.; Meurer, A.; Zaucke, F. Interleukin-1beta signaling in osteoarthritis—Chondrocytes in focus. Cell Signal. 2019, 53, 212–223. [Google Scholar] [CrossRef] [PubMed]
- Molnar, V.; Matisic, V.; Kodvanj, I.; Bjelica, R.; Jelec, Z.; Hudetz, D.; Rod, E.; Cukelj, F.; Vrdoljak, T.; Vidovic, D.; et al. Cytokines and Chemokines Involved in Osteoarthritis Pathogenesis. Int. J. Mol. Sci. 2021, 22, 9207. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Rigueur, D.; Lyons, K.M. TGFbeta signaling in cartilage development and maintenance. Birth Defects Res. Part C Embryo Today Rev. 2014, 102, 37–51. [Google Scholar] [CrossRef]
- Szychlinska, M.A.; Di Rosa, M.; Castorina, A.; Mobasheri, A.; Musumeci, G. A correlation between intestinal microbiota dysbiosis and osteoarthritis. Heliyon 2019, 5, e01134. [Google Scholar] [CrossRef]
- Wang, T.Q.; Li, L.R.; Tan, C.X.; Yang, J.W.; Shi, G.X.; Wang, L.Q.; Hu, H.; Liu, Z.S.; Wang, J.; Wang, T.; et al. Effect of Electroacupuncture on Gut Microbiota in Participants with Knee Osteoarthritis. Front. Cell. Infect. Microbiol. 2021, 11, 597431. [Google Scholar] [CrossRef]
- Zaiss, M.M.; Joyce Wu, H.J.; Mauro, D.; Schett, G.; Ciccia, F. The gut-joint axis in rheumatoid arthritis. Nat. Rev. Rheumatol. 2021, 17, 224–237. [Google Scholar] [CrossRef]
- Yang, Y.; Hong, Q.; Zhang, X.; Liu, Z. Rheumatoid arthritis and the intestinal microbiome: Probiotics as a potential therapy. Front. Immunol. 2024, 15, 1331486. [Google Scholar] [CrossRef]
- Gracey, E.; Vereecke, L.; McGovern, D.; Frohling, M.; Schett, G.; Danese, S.; De Vos, M.; Van den Bosch, F.; Elewaut, D. Revisiting the gut-joint axis: Links between gut inflammation and spondyloarthritis. Nat. Rev. Rheumatol. 2020, 16, 415–433. [Google Scholar] [CrossRef]
- de Sire, A.; de Sire, R.; Petito, V.; Masi, L.; Cisari, C.; Gasbarrini, A.; Scaldaferri, F.; Invernizzi, M. Gut-Joint Axis: The Role of Physical Exercise on Gut Microbiota Modulation in Older People with Osteoarthritis. Nutrients 2020, 12, 574. [Google Scholar] [CrossRef]
- Zeddou, M. Osteoarthritis Is a Low-Grade Inflammatory Disease: Obesity’s Involvement and Herbal Treatment. Evid. Based Complement. Altern. Med. Ecam 2019, 2019, 2037484. [Google Scholar] [CrossRef] [PubMed]
- Hamamoto, Y.; Ouhara, K.; Munenaga, S.; Shoji, M.; Ozawa, T.; Hisatsune, J.; Kado, I.; Kajiya, M.; Matsuda, S.; Kawai, T.; et al. Effect of Porphyromonas gingivalis infection on gut dysbiosis and resultant arthritis exacerbation in mouse model. Arthritis Res. Ther. 2020, 22, 249. [Google Scholar] [CrossRef] [PubMed]
- Gilat, R.; Yazdi, A.A.; Weissman, A.C.; Joyce, K.M.; Bouftas, F.A.; Muth, S.A.; Chisari, E.; Shohat, N.; Cole, B.J. The Gut Microbiome and Joint Microbiome Show Alterations in Patients with Knee Osteoarthritis Versus Controls: A Systematic Review. Arthrosc. J. Arthrosc. Relat. Surg. Off. Publ. Arthrosc. Assoc. N. Am. Int. Arthrosc. Assoc. 2025, 41, 1226–1238. [Google Scholar] [CrossRef]
- Tsai, J.C.; Casteneda, G.; Lee, A.; Dereschuk, K.; Li, W.T.; Chakladar, J.; Lombardi, A.F.; Ongkeko, W.M.; Chang, E.Y. Identification and Characterization of the Intra-Articular Microbiome in the Osteoarthritic Knee. Int. J. Mol. Sci. 2020, 21, 8618. [Google Scholar] [CrossRef]
- Borsinger, T.; Torchia, M.; Malskis, B.; Levy, B.A.; Werth, P.M.; Moschetti, W.E. Characterizing the Native Microbiome Using Next-Generation Sequencing of Bilateral ‘Aseptic’ Knees. J. Arthroplast. 2024, 39, 1317–1322. [Google Scholar] [CrossRef] [PubMed]
- Dunn, C.M.; Velasco, C.; Rivas, A.; Andrews, M.; Garman, C.; Jacob, P.B.; Jeffries, M.A. Identification of Cartilage Microbial DNA Signatures and Associations with Knee and Hip Osteoarthritis. Arthritis Rheumatol. 2020, 72, 1111–1122. [Google Scholar] [CrossRef]
- Elsawy, N.A.; Ibrahiem, A.H.; Younis, G.A.; Meheissen, M.A.; Abdel-Fattah, Y.H. Microbiome and Femoral Cartilage Thickness in Knee Osteoarthritis: Is There a Link? Cartilage 2024, 19476035241276852. [Google Scholar] [CrossRef]
- Fernandez-Rodriguez, D.; Baker, C.M.; Tarabichi, S.; Johnson, E.E.; Ciccotti, M.G.; Parvizi, J. Mark Coventry Award: Human Knee Has a Distinct Microbiome: Implications for Periprosthetic Joint Infection. J. Arthroplast. 2023, 38, S2–S6. [Google Scholar] [CrossRef]
- Goswami, K.; Clarkson, S.; Tipton, C.; Phillips, C.D.; Dennis, D.A.; Klatt, B.A.; O’Malley, M.; Smith, E.L.; Gililland, J.; Pelt, C.E.; et al. The Microbiome of Osteoarthritic Hip and Knee Joints: A Prospective Multicenter Investigation. J. Bone Jt. Surg. Am. Vol. 2023, 105, 821–829. [Google Scholar] [CrossRef]
- Siala, M.; Gdoura, R.; Fourati, H.; Rihl, M.; Jaulhac, B.; Younes, M.; Sibilia, J.; Baklouti, S.; Bargaoui, N.; Sellami, S.; et al. Broad-range PCR, cloning and sequencing of the full 16S rRNA gene for detection of bacterial DNA in synovial fluid samples of Tunisian patients with reactive and undifferentiated arthritis. Arthritis Res. Ther. 2009, 11, R102. [Google Scholar] [CrossRef]
- Tarabichi, M.; Shohat, N.; Goswami, K.; Alvand, A.; Silibovsky, R.; Belden, K.; Parvizi, J. Diagnosis of Periprosthetic Joint Infection: The Potential of Next-Generation Sequencing. J. Bone Jt. Surg. Am. Vol. 2018, 100, 147–154. [Google Scholar] [CrossRef] [PubMed]
- Temoin, S.; Chakaki, A.; Askari, A.; El-Halaby, A.; Fitzgerald, S.; Marcus, R.E.; Han, Y.W.; Bissada, N.F. Identification of oral bacterial DNA in synovial fluid of patients with arthritis with native and failed prosthetic joints. J. Clin. Rheumatol. Pract. Rep. Rheum. Musculoskelet. Dis. 2012, 18, 117–121. [Google Scholar] [CrossRef] [PubMed]
- Torchia, M.T.; Amakiri, I.; Werth, P.; Moschetti, W. Characterization of native knee microorganisms using next-generation sequencing in patients undergoing primary total knee arthroplasty. Knee 2020, 27, 1113–1119. [Google Scholar] [CrossRef]
- Zhao, Y.; Chen, B.; Li, S.; Yang, L.; Zhu, D.; Wang, Y.; Wang, H.; Wang, T.; Shi, B.; Gai, Z.; et al. Detection and characterization of bacterial nucleic acids in culture-negative synovial tissue and fluid samples from rheumatoid arthritis or osteoarthritis patients. Sci. Rep. 2018, 8, 14305. [Google Scholar] [CrossRef]
- Gupta, V.K.; Paul, S.; Dutta, C. Geography, Ethnicity or Subsistence-Specific Variations in Human Microbiome Composition and Diversity. Front. Microbiol. 2017, 8, 1162. [Google Scholar] [CrossRef]
- Redondo-Useros, N.; Nova, E.; Gonzalez-Zancada, N.; Diaz, L.E.; Gomez-Martinez, S.; Marcos, A. Microbiota and Lifestyle: A Special Focus on Diet. Nutrients 2020, 12, 1776. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Liu, M.; Furey, A.; Rahman, P.; Zhai, G. Gut Microbiomics of Sustained Knee Pain in Patients with Knee Osteoarthritis. J. Rheumatol. 2024, 51, 1218–1225. [Google Scholar] [CrossRef]
- Sanchez Romero, E.A.; Melendez Oliva, E.; Alonso Perez, J.L.; Martin Perez, S.; Turroni, S.; Marchese, L.; Villafane, J.H. Relationship between the Gut Microbiome and Osteoarthritis Pain: Review of the Literature. Nutrients 2021, 13, 716. [Google Scholar] [CrossRef]
- Litvak, Y.; Byndloss, M.X.; Tsolis, R.M.; Baumler, A.J. Dysbiotic Proteobacteria expansion: A microbial signature of epithelial dysfunction. Curr. Opin. Microbiol. 2017, 39, 1–6. [Google Scholar] [CrossRef]
- Li, J.; Zhao, F.; Wang, Y.; Chen, J.; Tao, J.; Tian, G.; Wu, S.; Liu, W.; Cui, Q.; Geng, B.; et al. Gut microbiota dysbiosis contributes to the development of hypertension. Microbiome 2017, 5, 14. [Google Scholar] [CrossRef]
- Salter, S.J.; Cox, M.J.; Turek, E.M.; Calus, S.T.; Cookson, W.O.; Moffatt, M.F.; Turner, P.; Parkhill, J.; Loman, N.J.; Walker, A.W. Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biol. 2014, 12, 87. [Google Scholar] [CrossRef] [PubMed]
- Borst, A.; Box, A.T.; Fluit, A.C. False-positive results and contamination in nucleic acid amplification assays: Suggestions for a prevent and destroy strategy. Eur. J. Clin. Microbiol. Infect. Dis. Off. Publ. Eur. Soc. Clin. Microbiol. 2004, 23, 289–299. [Google Scholar] [CrossRef]
- Satam, H.; Joshi, K.; Mangrolia, U.; Waghoo, S.; Zaidi, G.; Rawool, S.; Thakare, R.P.; Banday, S.; Mishra, A.K.; Das, G.; et al. Next-Generation Sequencing Technology: Current Trends and Advancements. Biology 2023, 12, 997. [Google Scholar] [CrossRef] [PubMed]
- Lozupone, C.A.; Stombaugh, J.I.; Gordon, J.I.; Jansson, J.K.; Knight, R. Diversity, stability and resilience of the human gut microbiota. Nature 2012, 489, 220–230. [Google Scholar] [CrossRef] [PubMed]
- Kemp, K.M.; Orihuela, C.A.; Morrow, C.D.; Judd, S.E.; Evans, R.R.; Mrug, S. Associations between dietary habits, socio-demographics and gut microbial composition in adolescents. Br. J. Nutr. 2024, 131, 809–820. [Google Scholar] [CrossRef]
- Carr, C.; Wilcox, H.; Burton, J.P.; Menon, S.; Al, K.F.; O’Gorman, D.; Lanting, B.A.; Vasarhelyi, E.M.; Neufeld, M.; Teeter, M.G. Deciphering the low abundance microbiota of presumed aseptic hip and knee implants. PLoS ONE 2021, 16, e0257471. [Google Scholar] [CrossRef]
- Glassing, A.; Dowd, S.E.; Galandiuk, S.; Davis, B.; Chiodini, R.J. Inherent bacterial DNA contamination of extraction and sequencing reagents may affect interpretation of microbiota in low bacterial biomass samples. Gut Pathog. 2016, 8, 24. [Google Scholar] [CrossRef]
- Eisenhofer, R.; Minich, J.J.; Marotz, C.; Cooper, A.; Knight, R.; Weyrich, L.S. Contamination in Low Microbial Biomass Microbiome Studies: Issues and Recommendations. Trends Microbiol. 2019, 27, 105–117. [Google Scholar] [CrossRef]
- Luo, J.M.; Guo, L.; Chen, H.; Yang, P.F.; Xiong, R.; Peng, Y.; Yang, L. A study of pre-operative presence of micro-organisms in affected knee joints of rheumatoid arthritis patients who need total knee arthroplasty. Knee 2017, 24, 409–418. [Google Scholar] [CrossRef]
- Siala, M.; Jaulhac, B.; Gdoura, R.; Sibilia, J.; Fourati, H.; Younes, M.; Baklouti, S.; Bargaoui, N.; Sellami, S.; Znazen, A.; et al. Analysis of bacterial DNA in synovial tissue of Tunisian patients with reactive and undifferentiated arthritis by broad-range PCR, cloning and sequencing. Arthritis Res. Ther. 2008, 10, R40. [Google Scholar] [CrossRef]
- Laurence, M.; Hatzis, C.; Brash, D.E. Common contaminants in next-generation sequencing that hinder discovery of low-abundance microbes. PLoS ONE 2014, 9, e97876. [Google Scholar] [CrossRef] [PubMed]
- Kulakov, L.A.; McAlister, M.B.; Ogden, K.L.; Larkin, M.J.; O’Hanlon, J.F. Analysis of bacteria contaminating ultrapure water in industrial systems. Appl. Environ. Microbiol. 2002, 68, 1548–1555. [Google Scholar] [CrossRef]
- Jeyaraman, M.; Ram, P.R.; Jeyaraman, N.; Yadav, S. The Gut-Joint Axis in Osteoarthritis. Cureus 2023, 15, e48951. [Google Scholar] [CrossRef]
- de Vos, W.M.; Tilg, H.; Van Hul, M.; Cani, P.D. Gut microbiome and health: Mechanistic insights. Gut 2022, 71, 1020–1032. [Google Scholar] [CrossRef]
- Ansari, M.Y.; Ahmad, N.; Haqqi, T.M. Oxidative stress and inflammation in osteoarthritis pathogenesis: Role of polyphenols. Biomed. Pharmacother. 2020, 129, 110452. [Google Scholar] [CrossRef] [PubMed]
- Boer, C.G.; Radjabzadeh, D.; Medina-Gomez, C.; Garmaeva, S.; Schiphof, D.; Arp, P.; Koet, T.; Kurilshikov, A.; Fu, J.; Ikram, M.A.; et al. Intestinal microbiome composition and its relation to joint pain and inflammation. Nat. Commun. 2019, 10, 4881. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Chen, J.; Li, B.; Zeng, B.; Chou, C.H.; Zheng, X.; Xie, J.; Li, H.; Hao, Y.; Chen, G.; et al. Faecal microbiota transplantation from metabolically compromised human donors accelerates osteoarthritis in mice. Ann. Rheum. Dis. 2020, 79, 646–656. [Google Scholar] [CrossRef]
- Berthelot, J.M.; Sellam, J.; Maugars, Y.; Berenbaum, F. Cartilage-gut-microbiome axis: A new paradigm for novel therapeutic opportunities in osteoarthritis. RMD Open 2019, 5, e001037. [Google Scholar] [CrossRef]
- Chen, B.; Zhao, Y.; Li, S.; Yang, L.; Wang, H.; Wang, T.; Bin, S.; Gai, Z.; Heng, X.; Zhang, C.; et al. Variations in oral microbiome profiles in rheumatoid arthritis and osteoarthritis with potential biomarkers for arthritis screening. Sci. Rep. 2018, 8, 17126. [Google Scholar] [CrossRef]
- Torrens, C.; Bellosillo, B.; Gibert, J.; Alier, A.; Santana, F.; Prim, N.; Corvec, S. Are Cutibacterium acnes present at the end of primary shoulder prosthetic surgeries responsible for infection? Prospective study. Eur. J. Clin. Microbiol. Infect. Dis. Off. Publ. Eur. Soc. Clin. Microbiol. 2022, 41, 169–173. [Google Scholar] [CrossRef]
- Binvignat, M.; Sokol, H.; Mariotti-Ferrandiz, E.; Berenbaum, F.; Sellam, J. Osteoarthritis and gut microbiome. Jt. Bone Spine Rev. Du Rhum. 2021, 88, 105203. [Google Scholar] [CrossRef] [PubMed]
- Weiss, G.A.; Hennet, T. Mechanisms and consequences of intestinal dysbiosis. Cell. Mol. Life Sci. CMLS 2017, 74, 2959–2977. [Google Scholar] [CrossRef]
- Rahman, S.O.; Bariguian, F.; Mobasheri, A. The Potential Role of Probiotics in the Management of Osteoarthritis Pain: Current Status and Future Prospects. Curr. Rheumatol. Rep. 2023, 25, 307–326. [Google Scholar] [CrossRef]
- Mendez, M.E.; Murugesh, D.K.; Sebastian, A.; Hum, N.R.; McCloy, S.A.; Kuhn, E.A.; Christiansen, B.A.; Loots, G.G. Antibiotic Treatment Prior to Injury Improves Post-Traumatic Osteoarthritis Outcomes in Mice. Int. J. Mol. Sci. 2020, 21, 6424. [Google Scholar] [CrossRef]
- Mendez, M.E.; Murugesh, D.K.; Christiansen, B.A.; Loots, G.G. Antibiotic Treatment Prior to Injury Abrogates the Detrimental Effects of LPS in STR/ort Mice Susceptible to Osteoarthritis Development. J. Bone Miner. Res. Plus 2023, 7, e10759. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.P., Jr.; Smith, G.N., Jr.; Brandt, K.D.; Myers, S.L.; O’Connor, B.L.; Brandt, D.A. Reduction of the severity of canine osteoarthritis by prophylactic treatment with oral doxycycline. Arthritis Rheum. 1992, 35, 1150–1159. [Google Scholar] [CrossRef] [PubMed]
- Brandt, K.D.; Mazzuca, S.A.; Katz, B.P.; Lane, K.A.; Buckwalter, K.A.; Yocum, D.E.; Wolfe, F.; Schnitzer, T.J.; Moreland, L.W.; Manzi, S.; et al. Effects of doxycycline on progression of osteoarthritis: Results of a randomized, placebo-controlled, double-blind trial. Arthritis Rheum. 2005, 52, 2015–2025. [Google Scholar] [CrossRef]
- Moore, N.F.; Batten, T.J.; Hutton, C.E.; White, W.J.; Smith, C.D. The management of the shoulder skin microbiome (Cutibacterium acnes) in the context of shoulder surgery: A review of the current literature. Shoulder Elb. 2021, 13, 592–599. [Google Scholar] [CrossRef]
Author (Year) | Joint | Sex of Patients (M/W) | Case Numbers | Sample | Age | Detection Method | Positive Rate | Finding (in OA Subgroup) |
---|---|---|---|---|---|---|---|---|
Siala et al. (2009) [30] | Knee | 16/11 | n = 27 (RA = 7 ReA = 5 OA = 6 UA = 9) | SF | 58 (44 to 70) | 16S rRNA | 20/27 74.1% | The first study using the full-length 16S rRNA gene to detect bacterial DNA in SF. Mixtures of bacterial nucleic acids, including Stenotrophomonas maltophilia, and Shigella species mainly, were detectable in the SF samples from patients who have OA. |
Temoin et al. (2012) [32] | Knee | 9/27 | n = 36 (RA = 11 OA = 25) | SF | 61.6 (45 to 84) | 16S rRNA | 5/36, 13.9% | Fusobacterium nucleatum was the most prevalent in positive samples in the OA group. The findings of bacterial DNA in the SF suggest the possibility of organisms translocating from the periodontal tissue to the synovium. |
Tarabichi et al. (2018) [31] | Knee and Hip | - | n = 82; Revision arthroplasties (n = 65) primary arthroplasties (n = 17) | SF, ST, and swabs | / | NGS (16S rRNA and ITS) | 6 of 17 (in the primary arthroplasty group) | Proteobacteria phylum was found to represent 98, 66, and 50% of the three bacteria. Fusobacteria and Actinobacteria phyla were detected with high percentages in other samples. |
Zhao et al. (2018) [34] | Knee | 31/152 | n = 183 (RA = 125 OA = 58) | SF and ST | Not mentioned | 16S rRNA | Not mentioned | The most abundant phyla in OA synovial samples were Proteobacteria (ST, 55.1%; SF, 39.1%), Bacteroidetes (ST, 20.4%; SF, 29.4%), and Firmicutes (ST, 17.0%; SF, 24.0%). |
Torchia et al. (2019) [33] | Knee | 19/21 | n = 40 | SF | 65.8 ± 9.38 | NGS (16S rRNA and ITS) | 12/40, 30.0% | The most common organism identified in the native knee was Escherichia coli, implicating the idea of a link between the gut microbiome and knee pathology. Also, fungi (Cladosporium herbarum and Alternaria alternata) were found by NGS. |
Dunn et al. (2020) [26] | Knee and Hip | 15/16 | n = 31 (OA = 21 Con (cadaver) n = 10) | Cartilage | OA: 59 ± 2, Control: 68 ± 4 | 16S rRNA | - | Clostridium and phylum Bacteroidetes were found to be significantly increased in the control group, and Betaproteobacteria and order Burkholderiales were increased in the OA group. This finding was also verified by in vivo research in a mouse OA model. |
Tsai et al. (2020) [24] | Knee | 11/13 | n = 24; OA = 14; Con = 10 | SF | OA = 50.2 (19 to 69), Control = 37.8 (22 to 63) | Separated microbe-specific reads from RNA-seq GSE89408; | Not mentioned | Pseudomonas species was found to be the most abundant species in the OA patients among 43 differential microbes compared to the control group. Parts of them (9/43) were revealed to relate to increased inflammation-induced extracellular matrix remodeling and decreased cellular communication essential for joint function and immune function in the OA pathological process. |
Borsinger et al. (2023) [25] | Knee | 18/22 | n = 80 (TKA knee = 50 Con = 30 | SF, ST, and swabs (combined) | 67 (41 to 84) | NGS (16S rRNA and ITS) | 3/80, 3.8% | Cutibacterium acnes was the most common in the OA group. |
Fernandez et al. (2023) [28] | Knee | n = 65 (OA = 14 Con = 15 NOA Contra = 10 Aseptic revision = 14 PJI = 12 | SF | 61 (50 to 66) | 16S rRNA | 55.8% | Staphylococcus and Paracoccus species consisted of 75% of bacterial abundance in the healthy control group, while the abundance of Proteobacteria, which is a major member of the gut microbiome in the neonatal period during the gut microbiome instauration, was significantly higher in the OA group. It may reveal the existence of a cause–and-effect relationship between Proteobacteria abundance and OA in the knee joint. | |
Goswami et al. (2023) [29] | Hip or knee | - | n = 117 (from 13 academic institutions) | SF, ST, and swabs | Not mentioned | 16S rRNA | 113/117, SF = 38%; Swabs = 43% ST = 36% | Representing the largest characterization of the composition of native joint microbiota to date. The first five most prevalent genera were Escherichia, Cutibacterium, Staphylococcus, Acinetobacter, and Pseudomonas. |
Elsawy et al. (2024) [27] | Knee | 11/29 | n = 40 | SF | 60 (43 to 72) | RT-PCR (for specific bacterial phyla) | 40/40, 100% | The most abundant bacterial phyla were Firmicutes (63.6%), Actinobacteria (24.1%), and Proteobacteria (11.5%). Firmicutes was associated with decreased lateral femoral cartilage thickness. |
Author (Year) | Detection Method | Positive Rate | Contaminant Control Strategies |
---|---|---|---|
Siala et al. (2009) [30] | 16S rRNA | 20/27 74.1% | The ST samples were collected from the knee joint using the biopsy procedure without skin incision after skin surface disinfection. Additional precautionary measures were taken to prevent DNA contamination during DNA extraction and manipulation [50]. |
Temoin et al. (2012) [32] | 16S rRNA | 5/36, 13.9% | Sterile saline solution was aspirated out of a surgical basin and transferred to sterile microcentrifuge tubes in the same manner as control samples after synovial fluid aspiration as control samples. |
Tarabichi et al. (2018) [31] | NGS (16S rRNA and ITS) | Six of 17 (in the primary arthroplasty group) | The ST samples were collected from the knee using an 18-gauge needle prior to arthrotomy. Deep tissue specimens were taken from the synovium and medullary canals. Swabs from the medullary canal of the femur and tibia were obtained from knees. |
Zhao et al. (2018) [34] | 16S rRNA | Not mentioned | The SF samples were collected aseptically during therapeutic aspiration from knee joints. Sample collection, reaction mixture controls, and an environmental control (a tube filled with sterile phosphate-buffered saline was left open for the duration of the surgical procedure and then processed in parallel with the samples) were included for negative control. |
Torchia et al. (2019) [33] | NGS (16S rRNA and ITS) | 12/40, 30.0% | The SF was aspirated from the knee joint prior to the arthrotomy, but after the skin was incised. Four sterile water controls were also sent as part of the protocol. Four sterile water samples from a container on the operative field at the time of synovial fluid and tissue sampling were collected as negative controls. |
Dunn et al. (2020) [26] | 16S rRNA | - | Identifying microbial DNA signatures in cartilage samples and comparing them to those found in SF or other joint tissues. |
Tsai et al. (2020) [24] | Separated microbe-specific reads from RNA-seq GSE89408; | Not mentioned | Employing Spearman’s correlation to compare individual microbe abundance levels to total microbial reads based on the idea that contaminant microbes would reveal a similar microbial abundance in all samples, regardless of the size of the tissue. The microbe was considered to be of contamination if the regression line was vertical (no contaminant microbes were found). |
Borsinger et al. (2023) [25] | NGS (16S rRNA and ITS) | 3/80, 3.8% | The SF samples were aspirated from the knee joint prior to the arthrotomy but after the skin was incised. Three negative controls were run for every 92 samples in the DNA extraction procedure. |
Fernandez et al. (2023) [28] | 16S rRNA | 55.8% | SF samples were aspirated from the knee joint prior to the arthrotomy but after the skin was incised. The bacteria that are well-known contaminants of chemical reagents (such as Bradyrhizobium species) were discarded from the sequencing results [51,52]. |
Goswami et al. (2023) [29] | 16S rRNA | 113/117, SF = 38%; Swabs = 43% ST = 36% | The SF samples were obtained using an 18-gauge needle before arthrotomy. Samples were compared to negative controls with no PCR template. |
Elsawy et al. (2024) [27] | RT-PCR (for specific bacterial phyla) | 40/40, 100% | Sterile distilled water as RT-PCR control samples. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, M.; Kolhoff, F.; Mont, M.A.; Parvizi, J. Is Osteoarthritis a State of Joint Dysbiosis? Antibiotics 2025, 14, 609. https://doi.org/10.3390/antibiotics14060609
He M, Kolhoff F, Mont MA, Parvizi J. Is Osteoarthritis a State of Joint Dysbiosis? Antibiotics. 2025; 14(6):609. https://doi.org/10.3390/antibiotics14060609
Chicago/Turabian StyleHe, Mincong, Frank Kolhoff, Michael A. Mont, and Javad Parvizi. 2025. "Is Osteoarthritis a State of Joint Dysbiosis?" Antibiotics 14, no. 6: 609. https://doi.org/10.3390/antibiotics14060609
APA StyleHe, M., Kolhoff, F., Mont, M. A., & Parvizi, J. (2025). Is Osteoarthritis a State of Joint Dysbiosis? Antibiotics, 14(6), 609. https://doi.org/10.3390/antibiotics14060609