Current Applications and the Future of Phage Therapy for Periprosthetic Joint Infections
Abstract
:1. Introduction
2. Phage Mechanisms
3. Current Applications of Phage Therapy
3.1. Prospective and Comparative Studies
3.2. Case Reports and Series: Therapeutic Approaches and Insights
3.3. Synthesis from Reviews
3.4. Integration into Clinical Practice
4. Advances in Phage Therapy
5. Future Directions and Challenges
6. Regulatory, Ethical, and Economic Aspects
7. Discussion
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PJI | Prosthetic Joint Infection |
MRSA | methicillin-resistant Staphylococcus aureus |
References
- Zmistowski, B.; Karam, J.A.; Durinka, J.B.; Casper, D.S.; Parvizi, J. Periprosthetic joint infection increases the risk of one-year mortality. J. Bone Jt. Surg. Am. 2013, 95, 2177–2184. [Google Scholar] [CrossRef] [PubMed]
- Bozic, K.J.; Ries, M.D. The impact of infection after total hip arthroplasty on hospital and surgeon resource utilization. J. Bone Jt. Surg. Am. 2005, 87, 1746–1751. [Google Scholar] [PubMed]
- Koh, C.K.; Zeng, I.; Ravi, S.; Zhu, M.; Vince, K.G.; Young, S.W. Periprosthetic Joint Infection Is the Main Cause of Failure for Modern Knee Arthroplasty: An Analysis of 11,134 Knees. Clin. Orthop. Relat. Res. 2017, 475, 2194–2201. [Google Scholar] [CrossRef] [PubMed]
- Jafari, S.M.; Coyle, C.; Mortazavi, S.M.; Sharkey, P.F.; Parvizi, J. Revision hip arthroplasty: Infection is the most common cause of failure. Clin. Orthop. Relat. Res. 2010, 468, 2046–2051. [Google Scholar] [CrossRef]
- Ryan, S.P.; Stambough, J.B.; Huddleston, J.I.; Levine, B.R., 3rd. Highlights of the 2023 American Joint Replacement Registry Annual Report. Arthroplast. Today 2024, 26, 101325. [Google Scholar] [CrossRef]
- Parvizi, J.; Zmistowski, B.; Adeli, B. Periprosthetic joint infection: Treatment options. Orthopedics 2010, 33, 659. [Google Scholar] [CrossRef]
- Wouthuyzen-Bakker, M.; Sebillotte, M.; Lomas, J.; Taylor, A.; Palomares, E.B.; Murillo, O.; Parvizi, J.; Shohat, N.; Reinoso, J.C.; Sánchez, R.E.; et al. Clinical outcome and risk factors for failure in late acute prosthetic joint infections treated with debridement and implant retention. J. Infect. 2019, 78, 40–47. [Google Scholar] [CrossRef]
- Edmiston, C.E.; McBain, A.J.; Roberts, C.; Leaper, D. Clinical and Microbiological Aspects of Biofilm-Associated Surgical Site Infections. In Biofilm-Based Healthcare-Associated Infections; Donelli, G., Ed.; Springer International Publishing: Cham, Switzerland, 2015; Volume 830, pp. 47–67. [Google Scholar]
- Flemming, H.-C.; Wingender, J.; Szewzyk, U.; Steinberg, P.; Rice, S.A.; Kjelleberg, S. Biofilms: An emergent form of bacterial life. Nat. Rev. Microbiol. 2016, 14, 563–575. [Google Scholar] [CrossRef]
- Stewart, P.S.; Franklin, M.J. Physiological heterogeneity in biofilms. Nat. Rev. Microbiol. 2008, 6, 199–210. [Google Scholar] [CrossRef]
- Visperas, A.; Santana, D.; Klika, A.K.; Higuera-Rueda, C.A.; Piuzzi, N.S. Current treatments for biofilm-associated periprosthetic joint infection and new potential strategies. J. Orthop. Res. 2022, 40, 1477–1491. [Google Scholar] [CrossRef]
- Xu, Y.; Huang, T.B.; Schuetz, M.A.; Choong, P.F.M. Mortality, patient-reported outcome measures, and the health economic burden of prosthetic joint infection. EFORT Open Rev. 2023, 8, 690–697. [Google Scholar] [CrossRef] [PubMed]
- Leta, T.H.; Lygre, S.H.L.; Schrama, J.C.; Hallan, G.; Gjertsen, J.E.; Dale, H.; Furnes, O. Outcome of Revision Surgery for Infection After Total Knee Arthroplasty: Results of 3 Surgical Strategies. JBJS Rev. 2019, 7, e4. [Google Scholar] [CrossRef] [PubMed]
- Hatfull, G.F.; Dedrick, R.M.; Schooley, R.T. Phage Therapy for Antibiotic-Resistant Bacterial Infections. Annu. Rev. Med. 2022, 73, 197–211. [Google Scholar] [CrossRef] [PubMed]
- Sulakvelidze, A.; Alavidze, Z.; Morris, J.G. Bacteriophage Therapy. Antimicrob. Agents Chemother. 2001, 45, 649–659. [Google Scholar] [CrossRef]
- Shaer Tamar, E.; Kishony, R. Multistep diversification in spatiotemporal bacterial-phage coevolution. Nat. Commun. 2022, 13, 7971. [Google Scholar] [CrossRef]
- Domingo-Calap, P.; Delgado-Martínez, J. Bacteriophages: Protagonists of a Post-Antibiotic Era. Antibiotics 2018, 7, 66. [Google Scholar] [CrossRef]
- Lu, T.K.; Collins, J.J. Dispersing biofilms with engineered enzymatic bacteriophage. Proc. Natl. Acad. Sci. USA 2007, 104, 11197–11202. [Google Scholar] [CrossRef]
- Liu, D.; Van Belleghem, J.D.; de Vries, C.R.; Burgener, E.; Chen, Q.; Manasherob, R.; Aronson, J.R.; Amanatullah, D.F.; Tamma, P.D.; Suh, G.A. The Safety and Toxicity of Phage Therapy: A Review of Animal and Clinical Studies. Viruses 2021, 13, 1268. [Google Scholar] [CrossRef]
- Clarke, A.L.; De Soir, S.; Jones, J.D. The Safety and Efficacy of Phage Therapy for Bone and Joint Infections: A Systematic Review. Antibiotics 2020, 9, 795. [Google Scholar] [CrossRef]
- Hays, M.R.; Kildow, B.J.; Hartman, C.W.; Lyden, E.R.; Springer, B.D.; Fehring, T.K.; Garvin, K.L. Increased Incidence of Methicillin-Resistant Staphylococcus aureus in Knee and Hip Prosthetic Joint Infection. J. Arthroplast. 2023, 38, S326–S330. [Google Scholar] [CrossRef]
- Tai, D.B.G.; Patel, R.; Abdel, M.P.; Berbari, E.F.; Tande, A.J. Microbiology of hip and knee periprosthetic joint infections: A database study. Clin. Microbiol. Infect. 2022, 28, 255–259. [Google Scholar] [CrossRef] [PubMed]
- Pires, D.P.; Meneses, L.; Brandão, A.C.; Azeredo, J. An overview of the current state of phage therapy for the treatment of biofilm-related infections. Curr. Opin. Virol. 2022, 53, 101209. [Google Scholar] [CrossRef] [PubMed]
- Salmond, G.P.; Fineran, P.C. A century of the phage: Past, present and future. Nat. Rev. Microbiol. 2015, 13, 777–786. [Google Scholar] [CrossRef] [PubMed]
- Dion, M.B.; Oechslin, F.; Moineau, S. Phage diversity, genomics and phylogeny. Nat. Rev. Microbiol. 2020, 18, 125–138. [Google Scholar] [CrossRef]
- Valencia-Toxqui, G.; Ramsey, J. How to introduce a new bacteriophage on the block: A short guide to phage classification. J. Virol. 2024, 98, e0182123. [Google Scholar] [CrossRef]
- Naureen, Z.; Dautaj, A.; Anpilogov, K.; Camilleri, G.; Dhuli, K.; Tanzi, B.; Maltese, P.E.; Cristofoli, F.; De Antoni, L.; Beccari, T.; et al. Bacteriophages presence in nature and their role in the natural selection of bacterial populations. Acta Biomed. 2020, 91 (Suppl. 13), e2020024. [Google Scholar]
- Hu, B.; Margolin, W.; Molineux, I.J.; Liu, J. The bacteriophage t7 virion undergoes extensive structural remodeling during infection. Science 2013, 339, 576–579. [Google Scholar] [CrossRef]
- Cui, L.; Watanabe, S.; Miyanaga, K.; Kiga, K.; Sasahara, T.; Aiba, Y.; Tan, X.-E.; Veeranarayanan, S.; Thitiananpakorn, K.; Nguyen, H.M.; et al. A Comprehensive Review on Phage Therapy and Phage-Based Drug Development. Antibiotics 2024, 13, 870. [Google Scholar] [CrossRef]
- Liu, S.; Lu, H.; Zhang, S.; Shi, Y.; Chen, Q. Phages against Pathogenic Bacterial Biofilms and Biofilm-Based Infections: A Review. Pharmaceutics 2022, 14, 427. [Google Scholar] [CrossRef]
- Høiby, N.; Bjarnsholt, T.; Givskov, M.; Molin, S.; Ciofu, O. Antibiotic resistance of bacterial biofilms. Int. J. Antimicrob. Agents 2010, 35, 322–332. [Google Scholar] [CrossRef]
- Tkhilaishvili, T.; Lombardi, L.; Klatt, A.B.; Trampuz, A.; Di Luca, M. Bacteriophage Sb-1 enhances antibiotic activity against biofilm, degrades exopolysaccharide matrix and targets persisters of Staphylococcus aureus. Int. J. Antimicrob. Agents 2018, 52, 842–853. [Google Scholar] [CrossRef] [PubMed]
- Topka-Bielecka, G.; Dydecka, A.; Necel, A.; Bloch, S.; Nejman-Faleńczyk, B.; Węgrzyn, G.; Węgrzyn, A. Bacteriophage-Derived Depolymerases against Bacterial Biofilm. Antibiotics 2021, 10, 175. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez, D.; Briers, Y.; Rodríguez-Rubio, L.; Martínez, B.; Rodríguez, A.; Lavigne, R.; García, P. Role of the Pre-neck Appendage Protein (Dpo7) from Phage vB_SepiS-phiIPLA7 as an Anti-biofilm Agent in Staphylococcal Species. Front. Microbiol. 2015, 6, 1315. [Google Scholar] [CrossRef] [PubMed]
- Fedorov, E.; Samokhin, A.; Kozlova, Y.; Kretien, S.; Sheraliev, T.; Morozova, V.; Tikunova, N.; Kiselev, A.; Pavlov, V. Short-Term Outcomes of Phage-Antibiotic Combination Treatment in Adult Patients with Periprosthetic Hip Joint Infection. Viruses 2023, 15, 499. [Google Scholar] [CrossRef]
- Gu Liu, C.; Green, S.I.; Min, L.; Clark, J.R.; Salazar, K.C.; Terwilliger, A.L.; Kaplan, H.B.; Trautner, B.W.; Ramig, R.F.; Maresso, A.W. Phage-Antibiotic Synergy Is Driven by a Unique Combination of Antibacterial Mechanism of Action and Stoichiometry. mBio 2020, 11, e01462-20. [Google Scholar] [CrossRef]
- Joo, H.; Wu, S.M.; Soni, I.; Wang-Crocker, C.; Matern, T.; Beck, J.P.; Loc-Carrillo, C. Phage and Antibiotic Combinations Reduce Staphylococcus aureus in Static and Dynamic Biofilms Grown on an Implant Material. Viruses 2023, 15, 460. [Google Scholar] [CrossRef]
- Wang, H.; Liu, Y.; Bai, C.; Leung, S.S.Y. Translating bacteriophage-derived depolymerases into antibacterial therapeutics: Challenges and prospects. Acta Pharm. Sin. B 2024, 14, 155–169. [Google Scholar] [CrossRef]
- Munteanu, D.I.; Dunn, J.; Apjok, G.; Kintses, B.; Griselain, J.; Steurs, G.; Cochez, C.; Djebara, S.; Merabishvili, M.; Pirnay, J.-P.; et al. Phage Therapy for Orthopaedic Infections: The First Three Cases from the United Kingdom. Antibiotics 2025, 14, 114. [Google Scholar] [CrossRef]
- Yang, S.; Mukh, A.A.; Abdelatif, E.; Schmidt, A.; Batailler, C.; Ferry, T.; Lustig, S. Bacteriophage therapy as an innovative strategy for the treatment of Periprosthetic Joint Infection: A systematic review. Int. Orthop. 2024, 48, 2809–2825. [Google Scholar] [CrossRef]
- Eiselt, V.A.; Bereswill, S.; Heimesaat, M.M. Phage therapy in prosthetic joint infections caused by Staphylococcus aureus—A literature review. Eur. J. Microbiol. Immunol. 2024, 14, 75–85. [Google Scholar] [CrossRef]
- Ferry, T.; Leboucher, G.; Fevre, C.; Herry, Y.; Conrad, A.; Josse, J.; Batailler, C.; Chidiac, C.; Medina, M.; Lustig, S.; et al. Salvage Debridement, Antibiotics and Implant Retention (“DAIR”) with Local Injection of a Selected Cocktail of Bacteriophages: Is It an Option for an Elderly Patient with Relapsing Staphylococcus aureus Prosthetic-Joint Infection? Open Forum Infect. Dis. 2018, 5, ofy269. [Google Scholar] [CrossRef] [PubMed]
- Patey, O.; McCallin, S.; Mazure, H.; Liddle, M.; Smithyman, A.; Dublanchet, A. Clinical Indications and Compassionate Use of Phage Therapy: Personal Experience and Literature Review with a Focus on Osteoarticular Infections. Viruses 2018, 11, 18. [Google Scholar] [CrossRef] [PubMed]
- Tkhilaishvili, T.; Winkler, T.; Müller, M.; Perka, C.; Trampuz, A. Bacteriophages as Adjuvant to Antibiotics for the Treatment of Periprosthetic Joint Infection Caused by Multidrug-Resistant Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2019, 64, e00924-19. [Google Scholar] [CrossRef] [PubMed]
- Doub, J.B.; Ng, V.Y.; Johnson, A.J.; Slomka, M.; Fackler, J.; Horne, B.A.; Brownstein, M.J.; Henry, M.; Malagon, F.; Biswas, B. Salvage Bacteriophage Therapy for a Chronic MRSA Prosthetic Joint Infection. Antibiotics 2020, 9, 241. [Google Scholar] [CrossRef]
- Ferry, T.; Kolenda, C.; Batailler, C.; Gustave, C.A.; Lustig, S.; Malatray, M.; Fevre, C.; Josse, J.; Petitjean, C.; Chidiac, C.; et al. Phage Therapy as Adjuvant to Conservative Surgery and Antibiotics to Salvage Patients With Relapsing S. aureus Prosthetic Knee Infection. Front. Med. 2020, 7, 570572. [Google Scholar] [CrossRef]
- Ferry, T.; Batailler, C.; Petitjean, C.; Chateau, J.; Fevre, C.; Forestier, E.; Brosset, S.; Leboucher, G.; Kolenda, C.; Laurent, F.; et al. The Potential Innovative Use of Bacteriophages Within the DAC® Hydrogel to Treat Patients With Knee Megaprosthesis Infection Requiring “Debridement Antibiotics and Implant Retention” and Soft Tissue Coverage as Salvage Therapy. Front. Med. 2020, 7, 342. [Google Scholar] [CrossRef]
- Cano, E.J.; Caflisch, K.M.; Bollyky, P.L.; Van Belleghem, J.D.; Patel, R.; Fackler, J.; Brownstein, M.J.; Horne, B.A.; Biswas, B.; Henry, M.; et al. Phage Therapy for Limb-threatening Prosthetic Knee Klebsiella pneumoniae Infection: Case Report and In Vitro Characterization of Anti-biofilm Activity. Clin. Infect. Dis. 2021, 73, e144–e151. [Google Scholar] [CrossRef]
- Doub, J.B.; Ng, V.Y.; Wilson, E.; Corsini, L.; Chan, B.K. Successful Treatment of a Recalcitrant Staphylococcus epidermidis Prosthetic Knee Infection with Intraoperative Bacteriophage Therapy. Pharmaceuticals 2021, 14, 231. [Google Scholar] [CrossRef]
- Ferry, T.; Kolenda, C.; Batailler, C.; Gaillard, R.; Gustave, C.A.; Lustig, S.; Fevre, C.; Petitjean, C.; Leboucher, G.; Laurent, F.; et al. Case Report: Arthroscopic “Debridement Antibiotics and Implant Retention” With Local Injection of Personalized Phage Therapy to Salvage a Relapsing Pseudomonas aeruginosa Prosthetic Knee Infection. Front. Med. 2021, 8, 569159. [Google Scholar] [CrossRef]
- Neuts, A.S.; Berkhout, H.J.; Hartog, A.; Goosen, J.H.M. Bacteriophage therapy cures a recurrent Enterococcus faecalis infected total hip arthroplasty? A case report. Acta Orthop. 2021, 92, 678–680. [Google Scholar] [CrossRef]
- Ramirez-Sanchez, C.; Gonzales, F.; Buckley, M.; Biswas, B.; Henry, M.; Deschenes, M.V.; Horne, B.A.; Fackler, J.; Brownstein, M.J.; Schooley, R.T.; et al. Successful Treatment of Staphylococcus aureus Prosthetic Joint Infection with Bacteriophage Therapy. Viruses 2021, 13, 1182. [Google Scholar] [CrossRef] [PubMed]
- Schoeffel, J.; Wang, E.W.; Gill, D.; Frackler, J.; Horne, B.A.; Manson, T.; Doub, J.B. Successful Use of Salvage Bacteriophage Therapy for a Recalcitrant MRSA Knee and Hip Prosthetic Joint Infection. Pharmaceuticals 2022, 15, 177. [Google Scholar] [CrossRef] [PubMed]
- Racenis, K.; Rezevska, D.; Madelane, M.; Lavrinovics, E.; Djebara, S.; Petersons, A.; Kroica, J. Use of Phage Cocktail BFC 1.10 in Combination With Ceftazidime-Avibactam in the Treatment of Multidrug-Resistant Pseudomonas aeruginosa Femur Osteomyelitis-A Case Report. Front. Med. 2022, 9, 851310. [Google Scholar] [CrossRef] [PubMed]
- Cesta, N.; Pini, M.; Mulas, T.; Materazzi, A.; Ippolito, E.; Wagemans, J.; Kutateladze, M.; Fontana, C.; Sarmati, L.; Tavanti, A.; et al. Application of Phage Therapy in a Case of a Chronic Hip-Prosthetic Joint Infection due to Pseudomonas aeruginosa: An Italian Real-Life Experience and In Vitro Analysis. Open Forum Infect. Dis. 2023, 10, ofad051. [Google Scholar] [CrossRef]
- Doub, J.B.; Chan, B.; Johnson, A.J. Salphage: Salvage bacteriophage therapy for a chronic Enterococcus faecalis prosthetic joint infection. IDCases 2023, 33, e01854. [Google Scholar] [CrossRef]
- Young, J.; Mehta, N.; Lee, S.W.; Rodriguez, E.K. How Effective Is Phage Therapy for Prosthetic Joint Infections? A Preliminary Systematic Review and Proportional Meta-Analysis of Early Outcomes. Medicina 2024, 60, 790. [Google Scholar] [CrossRef]
- Stacey, H.J.; De Soir, S.; Jones, J.D. The Safety and Efficacy of Phage Therapy: A Systematic Review of Clinical and Safety Trials. Antibiotics 2022, 11, 1340. [Google Scholar] [CrossRef]
- Young, J.; Lee, S.W.; Shariyate, M.J.; Cronin, A.; Wixted, J.J.; Nazarian, A.; Rowley, C.F.; Rodriguez, E.K. Bacteriophage therapy and current delivery strategies for orthopedic infections: A SCOPING review. J. Infect. 2024, 88, 106125. [Google Scholar] [CrossRef]
- Ferry, T.; Onsea, J.; Roussel-Gaillard, T.; Batailler, C.; Moriarty, T.F.; Metsemakers, W.J. Bacteriophage therapy in musculoskeletal infections: From basic science to clinical application. EFORT Open. Rev. 2024, 9, 339–348. [Google Scholar] [CrossRef]
- Le Pogam, A.; Medina, F.; Belkacem, A.; Raffetin, A.; Jaafar, D.; Wodecki, P.; Corlouer, C.; Dublanchet, A.; Caraux-Paz, P.; Diallo, K. Proportion of patients with prosthetic joint infection eligible for adjuvant phage therapy: A French single-centre retrospective study. BMC Infect. Dis. 2024, 24, 923. [Google Scholar] [CrossRef]
- Kumar, M.; Parkhey, P.; Mishra, S.K.; Paul, P.K.; Singh, A.; Singh, V. Phage for drug delivery vehicles. Prog. Mol. Biol. Transl. Sci. 2023, 201, 191–201. [Google Scholar] [PubMed]
- Chang, C.; Yu, X.; Guo, W.; Guo, C.; Guo, X.; Li, Q.; Zhu, Y. Bacteriophage-Mediated Control of Biofilm: A Promising New Dawn for the Future. Front. Microbiol. 2022, 13, 825828. [Google Scholar] [CrossRef] [PubMed]
- Wroe, J.A.; Johnson, C.T.; García, A.J. Bacteriophage delivering hydrogels reduce biofilm formation in vitro and infection in vivo. J. Biomed. Mater. Res. A 2020, 108, 39–49. [Google Scholar] [CrossRef] [PubMed]
- Alt, V.; Gessner, A.; Merabishvili, M.; Hitzenbichler, F.; Mannala, G.K.; Peterhoff, D.; Walter, N.; Pirnay, J.P.; Hiergeist, A.; Rupp, M. Case report: Local bacteriophage therapy for fracture-related infection with polymicrobial multi-resistant bacteria: Hydrogel application and postoperative phage analysis through metagenomic sequencing. Front. Med. 2024, 11, 1428432. [Google Scholar] [CrossRef]
- Müller, M.; Urban, B.; Mannala, G.; Alt, V. Poly(ethyleneimine)/Poly(acrylic acid) Multilayer Coatings with Peripherally Bound Staphylococcus aureus Bacteriophages Have Antibacterial Properties. ACS Appl. Polym. Mater. 2021, 3, 6230–6237. [Google Scholar] [CrossRef]
- Kaur, S.; Harjai, K.; Chhibber, S. In Vivo Assessment of Phage and Linezolid Based Implant Coatings for Treatment of Methicillin Resistant S. aureus (MRSA) Mediated Orthopaedic Device Related Infections. PLoS ONE 2016, 11, e0157626. [Google Scholar] [CrossRef]
- Ju, Z.; Sun, W. Drug delivery vectors based on filamentous bacteriophages and phage-mimetic nanoparticles. Drug Deliv. 2017, 24, 1898–1908. [Google Scholar] [CrossRef]
- Naskalska, A.; Heddle, J.G. Virus-like particles derived from bacteriophage MS2 as antigen scaffolds and RNA protective shells. Nanomedicine 2024, 19, 1103–1115. [Google Scholar] [CrossRef]
- Jończyk-Matysiak, E.; Łodej, N.; Kula, D.; Owczarek, B.; Orwat, F.; Międzybrodzki, R.; Neuberg, J.; Bagińska, N.; Weber-Dąbrowska, B.; Górski, A. Factors determining phage stability/activity: Challenges in practical phage application. Expert Rev. Anti. Infect. Ther. 2019, 17, 583–606. [Google Scholar] [CrossRef]
- Sauvageau, D.; Cooper, D.G. Two-stage, self-cycling process for the production of bacteriophages. Microb. Cell Fact. 2010, 9, 81. [Google Scholar] [CrossRef]
- Verbeken, G.; De Vos, D.; Vaneechoutte, M.; Merabishvili, M.; Zizi, M.; Pirnay, J.P. European regulatory conundrum of phage therapy. Future Microbiol. 2007, 2, 485–491. [Google Scholar] [CrossRef] [PubMed]
- Faltus, T. The Medicinal Phage-Regulatory Roadmap for Phage Therapy under EU Pharmaceutical Legislation. Viruses 2024, 16, 443. [Google Scholar] [CrossRef] [PubMed]
- Pirnay, J.-P.; Verbeken, G.; Ceyssens, P.-J.; Huys, I.; De Vos, D.; Ameloot, C.; Fauconnier, A. The Magistral Phage. Viruses 2018, 10, 64. [Google Scholar] [CrossRef] [PubMed]
- Sacher, J. Belgium’s New Brand of Phage Therapy. Capsid & Tail. 2018. Available online: https://phage.directory/capsid/belgium-therapy (accessed on 14 May 2025).
- Fauconnier, A. Guidelines for Bacteriophage Product Certification. Methods Mol. Biol. 2018, 1693, 253–268. [Google Scholar]
- Therapeutics, A.P. Adaptive Phage Therapeutics Announces Frst Patient Dosed in the DANCE Trial, a Phase 1/2 Study Evaluating APT Phage Bank in Diabetic Foot Osteomyelitis. 2022. Available online: https://www.biospace.com/adaptive-phage-therapeutics-announces-first-patient-dosed-in-the-dance-trial-a-phase-1-2-study-evaluating-apt-phage-bank-in-diabetic-foot-osteomyelitis (accessed on 14 May 2025).
- Administration USFaD. Science and Regulation of Bacteriophage Therapy. 2021. Available online: https://www.fda.gov/media/159399/download (accessed on 14 May 2025).
Study | Country | N | Joint(s) | Pathogens | Phage Matching Performed? | Phage Treatment | Surgery | Outcome |
---|---|---|---|---|---|---|---|---|
Ferry et al. [42] | France | 1 | Hip | Multidrug-resistant Pseudomonas aeruginosa and Methicillin-susceptible Staphylococcus aureus | Yes | Cocktail. Local injection. Systemic antibiotic treatment. | Planned DAIR, mobile component exchange not possible. Number of surgery: six. | Following a repeat DAIR procedure and the addition of ciprofloxacin, the patient demonstrated no clinical signs of persistent infection and no complications at the 18-month follow-up. |
Patey et al. [43] | France | Knee | Pseudomonas aeruginosa | NR | Cocktail. Local injection. | Type of surgery: NR. Number of surgery: NR. | Clearance of Pseudomonas aeruginosa but the appearance of Enterococcus sp. | |
Hip | Methicillin-resistant Staphylococcus aureus, MRSA | NR | Single (local application and via a catheter in the 10 days following the operation) | Type of surgery: NR. Number of surgery: NR. | No recurrence after 1 year with retention of prosthesis and osteosynthesis material in situ. | |||
Knee | Staphylococcus spp. | NR | Single local application | Type of surgery: NR. Number of surgery: NR. | Fistula closure and partial disinfection, followed by stabilization. | |||
Tkhilaaishvili et al. [44] | Germany | 1 | Knee | Multidrug resistant Pseudomonas aeruginosa | Yes, phage matching performed using isolate-specific selection from phage collection | Single intraoperative loading dose, followed by 5 mL phage every 8 h via four drains for 5 days, plus 6 weeks of systemic antibiotics | Explantation and debridement. Number of surgery: four. | Favorable recovery after debridement and spacer exchange 2 weeks post-exploration and prosthesis reimplantation after 4 weeks. No complications. Follow-up was not reported |
Doub et al. [45] | USA | 1 | Knee | Methicillin-resistant Staphylococcus aureus, MRSA | Yes | Single (two intraarticular doses + three IV doses starting the next day). Systemic antibiotic treatment for 6 weeks | Prosthesis explant with placement of static spacer containing vancomycin and tobramycin. Number of surgery: six. | Intraoperative cultures negative; discharged after 1 week. Follow-up was not reported. |
Ferry et al. [46] | France | 3 | Knee | Methicillin-susceptible Staphylococcus aureus, MSSA | Yes | Cocktail (PhagoDAIR procedure *) plus systemic antibiotic treatment for 3 months. | DAIR. Number of surgery: two. | New DAIR performed at 3 months; outcome favorable at 30-month follow-up. No complications. |
Knee | Methicillin-susceptible Staphylococcus aureus, MSSA | Yes | Cocktail (PhagoDAIR * procedure) plus systemic antibiotic treatment for 3 weeks | DAIR. Number of Surgery: five. | No signs of infection at 7-month follow-up. No complications. | |||
Knee | Methicillin-susceptible Staphylococcus aureus, MSSA | Yes | Cocktail (PhagoDAIR procedure *) plus systemic antibiotic treatment. | DAIR. Number of surgery: three. | New DAIR performed at 4 months. No infection was diagnosed at 11-month follow-up. No complications. | |||
Ferry et al. [47] | France | 1 | Knee | Methicillin-susceptible Staphylococcus aureus, MSSA | Yes | Cocktail. DAC® hydrogel mixed with sterile water and bacteriophage cocktail (1 mL of each phage). Systemic antibiotic treatment. | DAIR + the DIEP free flap. Number of surgery: four. | Two DAIR procedures post-phage; transfemoral amputation at 1 year. Follow-up: 12 months. No complications to phage therapy were reported. |
Cano et al. [48] | USA | 1 | Knee | Klebsiella pneumoniae complex | Yes | Single. Daily infusions for a total of 40 doses. Systemic antibiotic infusion. | No surgery. Most recent surgery: Incision and drainage. Number of surgery: 14. | Symptoms resolved; able to perform daily activities to some extent, with a follow-up of 8.5 months. No complications were reported. |
Doub et al. [49] | USA | 1 | Knee | Multidrug resistant Staphylococcus epidermidis | Yes | Single. injected into the intraarticular space. Systemic antibiotic treatment for 6 weeks. | DAIR. Number of surgery: five. | No clinical recurrence at 5-month follow-up. Transient liver function abnormality noted on postoperative day 2. |
Ferry et al. [50] | France | 1 | Knee | Pseudomonas aeruginosa | Yes | Cocktail. Injected through the arthroscope. Systemic antibiotic treatment > 6 months. | Arthroscopic DAIR. Number of surgery: two. | Resolved pain during motion. Twelve-month follow-up. No complications to phage therapy. |
Neuts et al. [51] | The Netherlands | 1 | Hip | Enterococcus faecalis | Yes, isolate specific susceptibility testing on commercial phage cocktails | Cocktail. Oral suspension. Systemic antibiotic therapy. | No surgery. Number of prior surgeries: eight. | At 36-month follow-up, no complaints and no new cultures obtained after treatment. No complications. |
Rairez-Sanchez et al. [52] | USA | 1 | Knee | Methicillin-susceptible Staphylococcus aureus, MSSA | Yes | Cocktail. Cycle 1: Single intra-articular dose + IV every 12 h for 2 weeks; Cycle 2: Intraoperative dose + IV every 12 h for 6 weeks. Systemic antibiotic treatment. | Two-stage exchange. Number of surgeries > six. | Negative bacterial culture and stable weekly labs at 14-month follow-up. No complications. |
Schoeffel et al. [53] | USA | 1 | Hip and Knee | Methicillin-resistant Staphylococcus aureus, MRSA | Yes | Single. Intra-articular bacteriophage injection followed by daily IV bacteriophage for 3 days postoperatively. Systemic antibiotic therapy. | Single-stage exchange hip and knee. Number of surgery: four. | No recurrence at 11-month follow-up. The patient retained normal function. Mild liver function abnormalities on postoperative day 1 after phage therapy, with no further deterioration. |
Racenis et al. [54] | Latvia | 1 | Hip | Multidrug resistant Pseudomonas aeruginosa Vancomycin-resistant enterococci and Staphylococcus epidermidis | Yes | Cocktail: Intraoperative wound rinsing, followed by local irrigation three times daily for 7 days, then twice daily for another 7 days via a catheter. Systemic antibiotic treatment. | Two-stage exchange. Number of surgery: nine. | No local sign of infections at 15-month follow-up. Acute kidney injury related to prior treatment with meropenem and colistin. |
Cesta et al. [55] | Italy | 1 | Hip | Pseudomonas aeruginosa | Yes | Single, 10 mL on day 1, then 5 mL via joint drain for 2 weeks. Twelve weeks of systemic antibiotic treatment. | DAIR and mobile component exchange. Number of surgery: three. | No local signs of infection relapse at 24-month follow-up. Fever and chills after the first dose; resolved with dose reduction. |
Fedorov et al. [35] | Russia | 23 | Hips | Staphylococcus epidermidis, MSSE: 8 Staphylococcusepidermidis, MRSE: 6 Staphylococcus aureus, MSSA: 8 Staphylococcus aureus, MRSA: 1 | No, only spot-assay used to assess susceptibility to commercial phage preparation | Cocktail. Phage was added to bone cement, and 20 mL was injected daily via drain for 10 days. Systemic antibiotic treatment, IV for 2 weeks, followed by personal treatment. | One-stage revision. Number of prior surgeries NR. | One case of PJI relapse at 12-month follow-up. Two patients with febrile complications at phage preparation. A combination of phage and antibiotic therapy was found to be more effective than phage alone. |
Doub et al. [56] | USA | 1 | Knee | Enterococcus faecalis | Yes | Single. Intra-articular injection via arthrocentesis for 2 days, followed by 4 days of IV phage therapy. Six weeks of systemic antibiotic treatment. | No surgery. Number of prior surgeries > three. | No clinical signs of infection relapse at 24-month follow-up. |
Munteanu et al. [39] | UK | 3 | Hip | Methicillin-sensitive Staphylococcus aureus (MSSA) | Yes | Single. Washout with suspension of phage followed by administration through drain three times a day for a total of four days post-surgery. Systemic antibiotic therapy. | Surgical debridement. Number of surgery: four. | Two weeks post-op: repeat washout/debridement. Cultures positive for P. aeruginosa, MSSA negative. Antibiotics adjusted. At 9-month follow-up: wound healed, CRP normal, patient walking independently. Non-irritable erythema around the surgical wound after phage therapy resolved. The fever on the fourth day of drain therapy caused the discontinuation of phage therapy; fever resolved. |
Hip | Klebsiella pneumoniae, Corynebacterium striatum, and methicillin-sensitive Staphylococcus aureus (MSSA) | Yes | Cocktail. Intraoperative local application after surgical washout and seven postoperative doses via drain over 4 days. Systemic antibiotic therapy. | Surgical debridement. Number of surgery: five. | Post-op fever and nausea resolved. The wound reopened and persisted, requiring further washout and partial hardware removal at 2 months. Cultures negative; PCR positive for K. pneumoniae and MSSA. Completed 12-week antibiotics; wound closed and dry at discharge. | |||
Knee | Staphylococcus epidermidis | Yes | Single. At the time of spacer removal, the joint was washed out with the phage suspension. Systemic antibiotic therapy. | Spacer removal and reimplantation. Number of surgery: three. | At 6-month follow-up. Pain-free and wound completely healed. No complications to phage therapy. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abedi, A.O.; Abedi, A.A.; Ferry, T.; Citak, M. Current Applications and the Future of Phage Therapy for Periprosthetic Joint Infections. Antibiotics 2025, 14, 581. https://doi.org/10.3390/antibiotics14060581
Abedi AO, Abedi AA, Ferry T, Citak M. Current Applications and the Future of Phage Therapy for Periprosthetic Joint Infections. Antibiotics. 2025; 14(6):581. https://doi.org/10.3390/antibiotics14060581
Chicago/Turabian StyleAbedi, Arian Ocean, Armita Armina Abedi, Tristan Ferry, and Mustafa Citak. 2025. "Current Applications and the Future of Phage Therapy for Periprosthetic Joint Infections" Antibiotics 14, no. 6: 581. https://doi.org/10.3390/antibiotics14060581
APA StyleAbedi, A. O., Abedi, A. A., Ferry, T., & Citak, M. (2025). Current Applications and the Future of Phage Therapy for Periprosthetic Joint Infections. Antibiotics, 14(6), 581. https://doi.org/10.3390/antibiotics14060581