Molecular and Phenotypic Evaluation of Antibiotic Resistance in Enteric Rods Isolated from the Oral Cavity
Abstract
:1. Introduction
2. Results
2.1. Frequency of Enteric Rods in Oral Isolates
2.2. Evaluation of Antibiotic Susceptibility in Oral Isolations of Enteric Rods
2.3. Prevalence of Resistance Genes in Oral Isolates of Enteric Rods
2.4. Genotype–Phenotype Relationship
3. Discussion
4. Materials and Methods
4.1. Sample Collection and Identification
4.2. Antibiotic Susceptibility Testing by Microdilution in Broth
4.3. Detection of Antibiotic Resistance Genes by PCR
4.4. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zaatout, N. Presence of non-oral bacteria in the oral cavity. Arch. Microbiol. 2021, 203, 2747–2760. [Google Scholar] [CrossRef] [PubMed]
- Jepsen, K.; Falk, W.; Brune, F.; Cosgarea, R.; Fimmers, R.; Bekeredjian-Ding, I.; Jepsen, S. Prevalence and antibiotic susceptibility trends of selected enterobacteriaceae, enterococci, and Candida albicans in the subgingival microbiota of German periodontitis patients: A retrospective surveillance study. Antibiotics 2022, 11, 385. [Google Scholar] [CrossRef] [PubMed]
- Caton, J.G.; Armitage, G.; Berglundh, T.; Chapple, I.L.C.; Jepsen, S.; Kornman, K.S.; Mealey, B.L.; Papapanou, P.N.; Sanz, M.; Tonetti, M.S. A new classification scheme for periodontal and peri-implant diseases and conditions—Introduction and key changes from the 1999 classification. J. Clin. Periodontol. 2018, 49, S1–S8. [Google Scholar] [CrossRef]
- Edwardsson, S.; Bing, M.; Axtelius, B.; Lindberg, B.; Söderfeldt, B.; Attström, R. The microbiota of periodontal pockets with different depths in therapy-resistant periodontitis. J. Clin. Periodontol. 1999, 26, 143–152. [Google Scholar] [CrossRef]
- Listgarten, M.A.; Lai, C.H. Comparative microbiological characteristics of failing implants and periodontally diseased teeth. J. Periodontol. 1999, 70, 431–437. [Google Scholar] [CrossRef]
- Espíndola, L.C.P.; Picão, R.C.; Mançano, S.M.C.N.; Martins do Souto, R.; Colombo, A.P.V. Prevalence and antimicrobial susceptibility of gram-negative bacilli in subgingival biofilm associated with periodontal diseases. J. Periodontol. 2022, 93, 69–79. [Google Scholar] [CrossRef]
- Katkowska, M.; Garbacz, K.; Kwapisz, E.; Suligowska, K.; Kusiak, A.; Cichońska, D.; Świetlik, D. High oral carriage of multidrug resistant gram-negative bacilli in adolescents: The Sopkard-junior study. Front. Cell. Infect. Microbiol. 2023, 13, 13. [Google Scholar] [CrossRef]
- Iredell, J.; Brown, J.; Tagg, K. Antibiotic resistance in enterobacteriaceae: Mechanisms and clinical implications. BMJ 2016, 352, h6420. [Google Scholar] [CrossRef]
- Contaldo, M.; D’Ambrosio, F.; Ferraro, G.A.; Di Stasio, D.; Di Palo, M.P.; Serpico, R.; Simeone, M. Antibiotics in dentistry: A narrative review of the evidence beyond the myth. Int. J. Environ. Res. Public Health 2023, 20, 6025. [Google Scholar] [CrossRef]
- Silva, S.S.; Ribeiro, M.d.O.; Gomes, F.I.F.; Chaves, H.V.; e Silva, A.A.R.; Zanin, I.C.J.; Barbosa, F.C.B. Occurrence and antimicrobial susceptibility of enteric rods and pseudomonads isolated from the dental prostheses biofilm. J. Appl. Oral Sci. 2016, 24, 462–471. [Google Scholar] [CrossRef]
- Gonçalves, M.O.; Coutinho-Filho, W.P.; Pimenta, F.P.; Pereira, G.A.; Pereira, J.A.A.; Mattos-Guaraldi, A.L.; Hirata, R. Periodontal disease as reservoir for multi-resistant and hydrolytic enterobacterial species. Lett. Appl. Microbiol. 2007, 44, 488–494. [Google Scholar] [CrossRef] [PubMed]
- Iroha, I.R.; Mohammed, I.D.; Moses, I.B.; Ngwu, N.J.; Uzoeto, H.O.; Oladimeji, A.S.; Ikemesit, U.P.; Onuora, L.A.; Ewa, N.J.; Edemekong, C.I. Molecular characterization of enterobacteriacea isolated from gingivitis and periodontitis patients and the antimicrobial activity of mouth wash agents. Sci. Afr. 2022, 15, e01106. [Google Scholar] [CrossRef]
- Basic, A.; Blomqvist, S.; Charalampakis, G.; Dahlén, G. Antibiotic resistance among aerobic gram-negative bacilli isolated from patients with oral inflammatory dysbiotic conditions—A retrospective study. Front. Dent. Med. 2024, 5, 1293202. [Google Scholar] [CrossRef]
- Kawayanagi, T.; Kawada-Matsuo, M.; Takeshita, T.; Nguyen-Tra Le, M.; Asakawa, M.; Sugawara, Y.; Arai, C.; Ouhara, K.; Nishi, H.; Mizuno, N.; et al. The oral cavity is a potential reservoir of gram-negative antimicrobial-resistant bacteria, which are correlated with ageing and the number of teeth. Heliyon 2024, 10, e39827. [Google Scholar] [CrossRef]
- Lafaurie, G.I.; Contreras, A.; Barón, A.; Botero, J.; Mayorga-Fayad, I.; Jaramillo, A.; Giraldo, A.; González, F.; Mantilla, S.; Botero, A.; et al. Demographic, clinical, and microbial aspects of chronic and aggressive periodontitis in Colombia: A multicenter study. J. Periodontol. 2007, 78, 629–639. [Google Scholar] [CrossRef]
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing, M100, 32nd ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2022. [Google Scholar]
- Goldberg, S.; Cardash, H.; Browning, H.; Sahly, H.; Rosenberg, M. Isolation of enterobacteriaceae from the mouth and potential association with malodor. J. Dent. Res. 1997, 76, 1770–1775. [Google Scholar] [CrossRef]
- Botero, J.E.; Contreras, A.; Lafaurie, G.; Jaramillo, A.; Betancourt, M.; Arce, R.M. Occurrence of periodontopathic and superinfecting bacteria in chronic and aggressive periodontitis subjects in a colombian population. J. Periodontol. 2007, 78, 696–704. [Google Scholar] [CrossRef]
- Mayorga-Fayad, I.; Lafaurie, G.I.; Contreras, A.; Castillo, D.M.; Barón, A.; Aya, M.; Del, R. Subgingival microbiota in chronic and aggressive periodontitis in Bogotá, Colombia: An epidemiological approach. Biomédica 2007, 27, 21–33. [Google Scholar] [CrossRef]
- Duytschaever, G.; Huys, G.; Boulanger, L.; De Boeck, K.; Vandamme, P. Amoxicillin–clavulanic acid resistance in fecal enterobacteriaceae from patients with cystic fibrosis and healthy siblings. J. Cyst. Fibros. 2013, 12, 780–783. [Google Scholar] [CrossRef]
- Nguyen, M.C.P.; Woerther, P.-L.; Bouvet, M.; Andremont, A.; Leclercq, R.; Canu, A. Escherichia coli as reservoir for macrolide resistance genes. Emerg. Infect. Dis. 2009, 15, 1648–1650. [Google Scholar] [CrossRef]
- Gomes, C.; Martínez-Puchol, S.; Palma, N.; Horna, G.; Ruiz-Roldán, L.; Pons, M.J.; Ruiz, J. Macrolide resistance mechanisms in enterobacteriaceae: Focus on azithromycin. Crit. Rev. Microbiol. 2017, 43, 1–30. [Google Scholar] [CrossRef]
- Pawlowski, A.C.; Stogios, P.J.; Koteva, K.; Skarina, T.; Evdokimova, E.; Savchenko, A.; Wright, G.D. The evolution of substrate discrimination in macrolide antibiotic resistance enzymes. Nat. Commun. 2018, 9, 112. [Google Scholar] [CrossRef]
- Gallacher, D.J.; Zhang, L.; Aboklaish, A.F.; Mitchell, E.; Wach, R.; Marchesi, J.R.; Kotecha, S. Baseline azithromycin resistance in the gut microbiota of preterm born infants. Pediatr. Res. 2024, 95, 205–212. [Google Scholar] [CrossRef]
- Brooks, L.; Narvekar, U.; McDonald, A.; Mullany, P. Prevalence of antibiotic resistance genes in the oral cavity and mobile genetic elements that disseminate antimicrobial resistance: A systematic review. Mol. Oral Microbiol. 2022, 37, 133–153. [Google Scholar] [CrossRef]
- Deekshit, V.K.; Srikumar, S. ‘To be, or not to be’-the dilemma of “silent” antimicrobial resistance genes in bacteria. J. Appl. Microbiol. 2022, 133, 2902–2914. [Google Scholar] [CrossRef]
- Rasheed, J.K.; Jay, C.; Metchock, B.; Berkowitz, F.; Weigel, L.; Crellin, J.; Steward, C.; Hill, B.; Medeiros, A.A.; Tenover, F.C. Evolution of extended-spectrum beta-lactam resistance (SHV-8) in a strain of escherichia coli during multiple episodes of bacteremia. Antimicrob. Agents Chemother. 1997, 41, 647–653. [Google Scholar] [CrossRef]
- Ioannidis, I.; Sakellari, D.; Spala, A.; Arsenakis, M.; Konstantinidis, A. Prevalence of tetM, tetQ, Nim and Bla(TEM) genes in the oral cavities of Greek subjects: A Pilot Study. J. Clin. Periodontol. 2009, 36, 569–574. [Google Scholar] [CrossRef]
- Lacroix, J.M.; Walker, C.B. Detection and incidence of the tetracycline resistance determinant tet(m) in the microflora associated with adult periodontitis. J. Periodontol. 1995, 66, 102–108. [Google Scholar] [CrossRef]
- Lacroix, J.M.; Walker, C.B. Detection and prevalence of the tetracycline resistance determinant tet Q in the microbiota associated with adult periodontitis. Oral Microbiol. Immun. 1996, 11, 282–288. [Google Scholar] [CrossRef]
- Jlili, N.E.-H.; Réjiba, S.; Smaoui, H.; Guillard, T.; Chau, F.; Kechrid, A.; Cambau, E. Trend of plasmid-mediated quinolone resistance genes at the children’s hospital in Tunisia. J. Med. Microbiol. 2014, 63, 195–202. [Google Scholar] [CrossRef]
Organisms | n | Frequency (%) |
---|---|---|
Enterobacter cloacae | 26 | 28.9 |
Klebsiella oxytoca | 19 | 21.1 |
Cronobacter sakazakii | 14 | 15.6 |
Serratia marcescens | 13 | 14.4 |
Klebsiella pneumoniae | 6 | 6.7 |
Serratia liquefaciens | 6 | 6.7 |
Enterobacter gergoviae | 5 | 5.6 |
Klebsiella aerogenes | 1 | 1.1 |
Antibiotic | n | Range 1 | MIC50 2 | MIC90 3 | R % |
---|---|---|---|---|---|
AMX | 90 | 8–32 | 32 | 32 | 97.8 |
AMC | 90 | 4–32 | 32 | 32 | 91.1 |
AZT | 90 | 2–>64 | 32 | 64 | 53.3 |
DO | 90 | 0.5–32 | 4 | 8 | 18.8 |
CIP | 90 | 0.0004–32 | 0.0312 | 0.125 | 1.1 |
TMP/SMX | 68 | <0.25–8 | <0.25 | <0.25 | 1.4 |
Antibiotic | AMX | AMC | AZT | CIP | DO |
---|---|---|---|---|---|
Enterobacter cloacae | |||||
Range 1 | 32 | 8–16 | 4–64 | 0.004–0.25 | 0.5–16 |
MIC50 2 | 32 | 32 | 32 | 0.156 | 2 |
MIC90 3 | 32 | 32 | 32 | 0.312 | 8 |
Klebsiella oxytoca | |||||
Range 1 | 16–32 | 16–32 | 16–64 | 0.007–0.25 | 1–32 |
MIC50 2 | 32 | 32 | 32 | 0.0625 | 4 |
MIC90 3 | 32 | 32 | 64 | 0.125 | 8 |
Cronobacter sakazakii | |||||
Range 1 | 32 | 8–16 | 4–>64 | 0.004–0.125 | 0.5–32 |
MIC50 2 | 32 | 32 | 4 | 0.156 | 4 |
MIC90 3 | 32 | 32 | 32 | 0.25 | 32 |
Serratia marcescens | |||||
Range 1 | 32 | 4–32 | 4–64 | 0.004–0.125 | 0.5–8 |
MIC50 2 | 32 | 32 | 16 | 0.0312 | 2 |
MIC90 3 | 32 | 32 | 64 | 0.125 | 4 |
Klebsiella pneumoniae | |||||
Range 1 | 32 | 4–32 | 2–64 | 0.0312–32 | 1–4 |
MIC50 2 | 32 | 32 | 16 | 0.0625 | 4 |
MIC90 3 | 32 | 32 | 32 | 0.125 | 4 |
Serratia liquefaciens | |||||
Range 1 | 32 | 32 | 2–32 | 0.004–0.0625 | 0.5–16 |
MIC50 2 | 32 | 32 | 16 | 0.0156 | 0.5 |
MIC90 3 | 32 | 32 | 32 | 0.0625 | 2 |
Enterobacter gergoviae | |||||
Range 1 | 8–32 | 8–32 | 8–16 | 0.007–0.125 | 2–8 |
MIC50 2 | 32 | 32 | 8 | 0.0156 | 4 |
MIC90 3 | 32 | 32 | 16 | 0.0312 | 4 |
Klebsiella aerogenes | |||||
Range 1 | 32 | 32 | 32 | 0.125 | 4 |
MIC50 2 | 32 | 32 | 32 | 0.125 | 4 |
MIC90 3 | 32 | 32 | 32 | 0.125 | 4 |
Organism | blaTEM F (%) | blaSHV F (%) | tetM F (%) | TetQ F (%) | qnrB F (%) | qnrS F (%) | mph(A) F (%) |
---|---|---|---|---|---|---|---|
Enterobacter cloacae | 8 (2.1) | 3 (80.8) | 15 (57.7) | 1 (3.8) | 4 (1) | 0 | 0 |
Klebsiella oxytoca | 6 (31.6) | 4 (21.1) | 10 (52.6) | 0 | 7 (36.8) | 0 | 0 |
Cronobacter sakazakii | 2 (14.3) | 2 (14.3) | 9 (64.3) | 0 | 3 (21.49) | 0 | 0 |
Serratia marcescens | 4 (30.8) | 2 (15.4) | 3 (23.1) | 0 | 2 (15.4) | 0 | 0 |
Klebsiella pneumoniae | 2 (33.3) | 1 (16.7) | 4 (66.7) | 0 | 0 | 1 (16.7) | 0 |
Serratia liquefaciens | 0 | 0 | 1 (16.7) | 0 | 0 | 0 | 0 |
Enterobacter gergoviae | 1 (20) | 0 | 4 (80) | 0 | 0 | 0 | 0 |
Klebsiella aerogenes | 1 (100) | 1 (100) | 0 | 0 | 0 | 0 | 0 |
Total | 24 (26.6) | 13 (14.4) | 46 (51.1) | 1 (1.1) | 16 (17.7) | 1 (1.1) | 0 |
Gene | Sequence (5′–3′) | Amplicon Size (bp) | Reference |
---|---|---|---|
mph(A) | GTGAGGAGGAGCTTCGCGAG TGCCGCAGGACTCGGAGGTC | 403 | [21] |
blaSHV | TCGTTATGCGTTATATTCGCC GGTTAGCGTTGCCAGTGCT | 868 | [27] |
blaTEM | ATGAGTATTCAACATTTCCG CCAATGCTTAATCAGTGAGG | 858 | [28] |
tetM | GACACGCCAGGACATATGG TGCTTTCCTCTTGTTCGAG | 397 | [29] |
tetQ | GGCTTCTACGACATCTATTA CATCAACATTTATCTCTCTG | 755 | [30] |
qnrS | GGAAACCTACAATCATACATA GTCAGGATAAACAACAATACC | 657 | [31] |
qnrB | GACAGAAACAGGTTCACCGGT CAAGACGTTCCAGGAGCAACG | 594 | [31] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Neuta, Y.; Leguizamon, N.; Pajaro, P.; Zarate, M.; Julio, M.; Pantoja, M.; Llerena, I.; Delgadillo, N.A. Molecular and Phenotypic Evaluation of Antibiotic Resistance in Enteric Rods Isolated from the Oral Cavity. Antibiotics 2025, 14, 564. https://doi.org/10.3390/antibiotics14060564
Neuta Y, Leguizamon N, Pajaro P, Zarate M, Julio M, Pantoja M, Llerena I, Delgadillo NA. Molecular and Phenotypic Evaluation of Antibiotic Resistance in Enteric Rods Isolated from the Oral Cavity. Antibiotics. 2025; 14(6):564. https://doi.org/10.3390/antibiotics14060564
Chicago/Turabian StyleNeuta, Yineth, Natalia Leguizamon, Paula Pajaro, Manuela Zarate, Mauricio Julio, Manuela Pantoja, Isabella Llerena, and Nathaly Andrea Delgadillo. 2025. "Molecular and Phenotypic Evaluation of Antibiotic Resistance in Enteric Rods Isolated from the Oral Cavity" Antibiotics 14, no. 6: 564. https://doi.org/10.3390/antibiotics14060564
APA StyleNeuta, Y., Leguizamon, N., Pajaro, P., Zarate, M., Julio, M., Pantoja, M., Llerena, I., & Delgadillo, N. A. (2025). Molecular and Phenotypic Evaluation of Antibiotic Resistance in Enteric Rods Isolated from the Oral Cavity. Antibiotics, 14(6), 564. https://doi.org/10.3390/antibiotics14060564