Antibacterial Activity of Some Essential Oils/Herbal Extracts Against Bacteria Isolated from Ball Pythons (Python regius) with Respiratory Infections
Abstract
:1. Introduction
2. Results
2.1. Identification of Bacterial Strains
2.2. Antimicrobial Susceptibility Testing
2.3. Minimum Inhibitory Concentration of Essential Oils
2.4. Essential Oils Analysis
3. Discussion
4. Materials and Methods
4.1. Bacterial Isolation
- Each dispersion from the initial plate was examined by at least 2 examiners, and one sample from each isolated colony with individual morphological aspect, resulting after incubation at 37 °C for 18–24 h, was prelevated and applied on the MALDI-TOF-Ms plate in duplicate;
- After drying, it was applied to 1 µL matrix 4-HCCA (acid α-Cyano-4-hydroxycinnamic, α-Cyano-4-hydroxycinnamic acid) and we waited until it was dry again. The plate was supposed for identification using the MALDI-TOF-Ms Bruker mark, model autoFlex Speed (Bremen, Germany).
4.2. Antimicrobial Susceptibility Testing
4.3. Determination of the Minimum Inhibitory Concentration (MIC) by Broth Microdilution Method
- Citrosol (grapefruit seed extract—GSE), Interherb Targu Mures, Romania;
- Lemongrass essential oil (Cymbopogon citratus essential oil—LGEO), Solaris, Bucharest, Romania;
- Oregano essential oil (Origanum vulgare essential oil—OEO), Solaris, Bucharest, Romania;
- Rosemary essential oil (Rosmarinus Officinalis essential oil—REO), Solaris, Bucharest, Romania;
- Sage essential oil (Salvia Officinalis essential oil—SEO), Solaris, Bucharest, Romania.
- Well A1—200 microliters of essential oil;
- Wells A2 to A9—100 microliters of BHI broth (Oxoid, Basingstoke, UK) in each well;
- The serial dilution was carried out—for this, 100 microliters of the pure extract was taken and transferred to serial wells, until the 8th dilution was reached, i.e., the 1/256 dilution. (1/2, 1/4, 1/16, 1/32, 1/64, 1/128, 1/256);
- This serial dilution was performed for the five analyzed essential oils.
4.4. Gas Chromatography–Mass Spectrometry (GC–MS)
4.5. Sample Preparation for HPLC
4.6. Instrumentation and Chromatographic Conditions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Green, J.; Coulthard, E.; Megson, D.; Norrey, J.; Norrey, L.; Rowntree, J.K.; Bates, J.; Dharmpaul, B.; Auliya, M.; D’Cruze, N. A Literature Review of Research Addressing the Welfare of Ball Pythons in the Exotic Pet Trade. Animals 2020, 10, 193. [Google Scholar] [CrossRef]
- Zancolli, G.; Mahsberg, D.; Sickel, W.; Keller, A. Reptiles as Reservoirs of Bacterial Infections: Real Threat or Methodological Bias? Microb. Ecol. 2015, 70, 579–584. [Google Scholar] [CrossRef] [PubMed]
- Mihalca, D.; Gherman, C.; Ghira, I.; Cozma, V. Helminth parasites of reptiles (Reptilia) in Romania. Parasitol. Res. 2007, 101, 491–492. [Google Scholar] [CrossRef]
- Directive 92/43/EEC of the European Council on the Conservation of Natural Habitats and of Wild Fauna and Flora. Available online: https://www.fao.org/faolex/results/details/en/c/LEX-FAOC034772/ (accessed on 15 April 2025).
- Andrei, M.-D. Contributions to the knowledge of Romania’s herpetofauna: Current status and perspectives. In Travaux du Muséum National d’Histoire Naturelle “Grigore Antipa”; Le Museúm: Sydney, Australia, 2015; Volume 58, pp. 49–66. [Google Scholar]
- Cogalniceanu, D.; Székely, P.; Samoila, C.; Ruben, I.; Tudor, M.; Plaiaşu, R.; Stanescu, F.; Rozylowicz, L. Diversity and distribution of amphibians in Romania. ZooKeys 2013, 296, 35–57. [Google Scholar]
- Schmidt, V.; Marschang, R.E.; Abbas, M.D.; Ball, I.; Szabo, I.; Helmuth, R.; Plenz, B.; Spergser, J.; Pees, M. Detection of pathogens in Boidae and Pythonidae with and without respiratory disease. Vet. Rec. 2013, 72, 236. [Google Scholar] [CrossRef]
- Sala, A.; Di Ianni, F.; Pelizzone, I.; Bertocchi, M.; Santospirito, D.; Rogato, F.; Flisi, S.; Spadini, C.; Iemmi, T.; Moggia, E.; et al. The prevalence of Pseudomonas aeruginosa and multidrug resistant Pseudomonas aeruginosa in healthy captive ophidian. PeerJ 2019, 7, e6706. [Google Scholar] [CrossRef]
- Dipineto, L.; Russo, T.P.; Calabria, M.; De Rosa, L.; Capasso, M.; Menna, L.F.; Borrelli, L.; Fioretti, A. Oral flora of Python regius kept as pets. Lett. Appl. Microbiol. 2014, 58, 462–465. [Google Scholar] [CrossRef]
- Hoon-Hanks, L.L.; Layton, M.L.; Ossiboff, R.J.; Parker, J.S.; Dubovi, E.J.; Stenglein, M.D. Respiratory disease in ball pythons (Python regius) experimentally infected with ball python nidovirus. Virology 2018, 517, 77–87. [Google Scholar] [CrossRef]
- Lukac, M.; Matanovic, K.; Barbic, L.; Seol, B. Combination treatment of a pneumonad abcess in a western black-tailed rattlesnake Crotalus molossus molossus: A case report. Vet. Med. 2013, 58, 637–640. [Google Scholar] [CrossRef]
- Vieira Batista, A.I.; Freire Pereira, L.M.; de Melo Neto, J.A.; dos Santos, T.Z.B.; de Souza Aranjo, I.; Soares da Silva, J.M.; Prazeres Junior, F.R. Vesicular dermatitis caused by multiresistant Pseudomonas spp. in the carpet python (Morelia spilota Lancepede 1804) (Squamata: Pythonidae)—Case report. Res. Soc. Dev. 2021, 10, e205101320966. [Google Scholar] [CrossRef]
- White, S.D.; Bourdeau, P.; Bruet, V.; Kass, P.H.; Tell, L.; Hawkins, M.G. Reptiles with dermatological lesions: A retrospective study of 301 cases at two university veterinary teaching hospitals (1992–2008). Vet. Dermatol. 2011, 22, 150–161. [Google Scholar] [CrossRef]
- Klinger, C.J.; Dengler, B.; Bauer, T.; Mueller, R.S. Successful treatment of a necrotizing, multi-resistant bacterial pyoderma in a python with cold plasma therapy. Tierarztl. Prax. Ausg. K 2018, 6, 43–48. [Google Scholar]
- Aykac, K.; Ozsurekci, Y.; Tuncer, O.; Sancak, B.; Cengiz, A.B.; Kara, A.; Ceyhan, M. Six cases during 2012–2015 and literature review of Chryseobacterium indologenes infections in pediatric patients. Can. J. Microbiol. 2016, 62, 812–819. [Google Scholar] [CrossRef]
- Chika, E.O.; Agbakoba, N.R.; Ushie, S.N.; Akuakolam, I.M.; Elemuo, G.; Ugochukwu, I.; Ejikeugwu, C.P. Detection of ESBL, AmpC, and MBL-Producing Chryseobacterium indologenes Isolates Recovered from Hospital Environment in a Tertiary Health Care Facility. Am. J. Infect. Dis. Microbiol. 2021, 9, 129–135. [Google Scholar]
- Das, P.; Karade, S.; Kaur, K.; Ramamurthy, R.; Ranjan, P. Chryseobacterium indologenes Pneumonitis in an Infant: A Case Report. J. Clin. Diagn. Res. 2017, 11, DD07–DD08. [Google Scholar] [CrossRef]
- Tamai, I.A.; Pakbin, B.; Kafi, Z.Z.; Brück, W.M. Oral Abscess Caused by Chryseobacterium indologenes in Ball Python (Python regius); A Case Report. Antibiotics 2021, 10, 686. [Google Scholar] [CrossRef]
- Marques, I.; Pinto, A.R.; Martins, J.J.; Alvura, N.; Telinhos, P.; Mendes, P.; Correia, M.; Requicha, J.F.; Saavedra, M.J. Assesing potential reservoir of multidrug-resistant bacteria in the oral microbiota of captive Burmese and Royal pythos. Life 2025, 15, 442. [Google Scholar] [CrossRef] [PubMed]
- Ramos, C.P.; Santana, J.A.; Morcatti Coura, F.; Xavier, R.G.C.; Leal, C.A.G.; Oliveira Junior, C.A.; Heinemann, M.B.; Lage, A.P.; Lobato, F.C.F.; Silva, R.O.S. Identification and Characterization of Escherichia coli, Salmonella spp., Clostridium perfringens, and C. difficile Isolates from Reptiles in Brazil. Biomed. Res. Int. 2019, 2019, 9530732. [Google Scholar] [CrossRef] [PubMed]
- Książczyk, M.; Dudek, B.; Kuczkowski, M.; O’Hara, R.; Korzekwa, K.; Wzorek, A.; Korzeniowska-Kowal, A.; Upton, M.; Junka, A.; Wieliczko, A.; et al. The Phylogenetic Structure of Reptile, Avian and Uropathogenic Escherichia coli with Particular Reference to Extraintestinal Pathotypes. Int. J. Mol. Sci. 2021, 22, 1192. [Google Scholar] [CrossRef]
- Dec, M.; Stepien-Pysniak, D.; Szczepaniak, K.; Turchi, B.; Urban-Chmiel, R. Virulence Profiles and Antibiotic Susceptibility of Escherichia coli Strains from Pet Reptiles. Pathogens 2022, 11, 127. [Google Scholar] [CrossRef]
- Performance Standards for Antimicrobial Susceptibility Testing, M100Ed33 33rd Edition. Available online: https://iacld.com/UpFiles/Documents/672a1c7c-d4ad-404e-b10e-97c19e21cdce.pdf (accessed on 14 October 2024).
- Aligiannis, N.; Kalpoutzakis, E.; Mitaku, S.; Chinou, I.B. Composition and antimicrobial activity of the essential oils of two Origanum species. J. Agric. Food Chem. 2001, 49, 4168–4170. [Google Scholar] [CrossRef]
- Ríos, J.L.; Recio, M.C. Medicinal plants and antimicrobial activity. J. Ethnopharmacol. 2005, 100, 80–84. [Google Scholar] [CrossRef]
- Liu, G.Y.; Nizet, V. Color me bad: Microbial pigments as virulence factors. Trends Microbiol. 2009, 17, 406–413. [Google Scholar] [CrossRef]
- Camero, M.; Tempesta, M.; Buonavoglia, D.; Laricchiuta, P.; Catella, C.; Pratelli, A.; Buonavoglia, A.; Corrente, M. Antibacterial and Biofilm Production Inhibition Activity of Thymus vulgaris L. Essential Oil Against Salmonella spp. Isolates from Reptiles. Pathogens 2023, 12, 804. [Google Scholar] [CrossRef] [PubMed]
- Tang, C.; Chen, J.; Zhang, L.; Zhang, R.; Zhang, S.; Ye, S.; Zhao, Z.; Yang, D. Exploring the Antibacterial Mechanism of Essential Oils by Membrane Permeability, Apoptosis and Biofilm Formation Combination with Proteomics Analysis Against Methicillin-Resistant Staphylococcus aureus. Int. J. Med. Microbiol. 2020, 310, 151435. [Google Scholar] [CrossRef] [PubMed]
- Spinu, M.; Olah, D.; Sandru, C.D.; Vasiu, A.; Pall, E.; Duca, G.; Cerbu, C. Taxonomy influences the efficacy of plant extracts against antibiotic resistant bacteriome. In MESMAP-9 Proceedings Book Abstracts & Full Papers; Gazi University: Ankara, Türkiye, 2023; p. 290. [Google Scholar]
- Reagor, L.; Gusman, J.; McCoy, L.; Carino, E.; Heggers, J.P. The effectiveness of processed grapefruit-seed extract as an antibacterial agent: I. An in vitro agar assay. J. Altern. Complement. Med. 2002, 8, 325–332. [Google Scholar] [CrossRef]
- Han, H.W.; Kwak, J.H.; Jang, T.S.; Knowles, J.C.; Kim, H.W.; Lee, H.H.; Lee, J.H. Grapefruit Seed Extract as a Natural Derived Antibacterial Substance against Multidrug-Resistant Bacteria. Antibiotics 2021, 10, 85. [Google Scholar] [CrossRef] [PubMed]
- Heggers, J.P.; Cottingham, J.; Gusman, J.; Reagor, L.; McCoy, L.; Carino, E.; Cox, R.; Zhao, J.G. The effectiveness of processed grapefruit-seed extract as an antibacterial agent: II. Mechanism of action and in vitro toxicity. J. Altern. Complement. Med. 2002, 8, 333–340. [Google Scholar] [CrossRef]
- Mukerji, R.; Kakarala, R.; Smith, S.J.; Kusz, H.G. Chryseobacterium indologenes: An emerging infection in the USA. BMJ Case Rep. 2016, 2016, 214486. [Google Scholar] [CrossRef]
- Irfan, M.; Tariq, M.; Basharat, Z.; Abid Khan, R.M.; Jahanzaeb, M.; Shakeel, M.; Shahzad, M.; Jahanzaib, M.; Moin, S.T.; Syed Shah, H.; et al. Genomic analysis of Chryseobacterium indologenes and conformational dynamics of the selected DD-peptidase. Res. Microbiol. 2023, 174, 103990. [Google Scholar] [CrossRef]
- Lin, J.N.; Lai, C.H.; Yang, C.H.; Huang, Y.H. Differences in clinical manifestations, antimicrobial susceptibility patterns, and mutations of fluoroquinolone target genes between Chryseobacterium gleum and Chryseobacterium indologenes. Antimicrob. Agents Chemother. 2019, 63, e02256-18. [Google Scholar] [CrossRef]
- Radera, S.; Tripathi, S.; Agarwal, J.; Kumar, M. Chryseobacterium indologenes–Associated Pneumonia in 2 Neonates. Pediatr. Infect. Dis. J. 2017, 36, 337–339. [Google Scholar] [CrossRef]
- Shin, M.C.; Douay, G.; Heng, Y.; Chng, Y.R.; Hong Tay, Y.; Wong, W.K. Fatal Chryseobacterium indologenes infection in a captive red-shanked Douc langur (Pygathrix nemaeus). J. Med. Primatol. 2022, 51, 256–258. [Google Scholar]
- Yeon-Sook, J.; Dae-Hun, P.; Jong-Hwa, L.; Se-Yeoun, C.; Jin, S.H. Identification of bacteria from the oral cavity and cloaca of snakes imported from Vietnam. Lab. Anim. Res. 2011, 27, 213–217. [Google Scholar]
- Foti, M.; Giacopello, C.; Fisichella, V.; Latella, G. Multidrug-Resistant Pseudomonas aeruginosa Isolates From Captive Reptiles. J. Exot. Pet Med. 2013, 22, 270–274. [Google Scholar] [CrossRef]
- Costinar, L.; Badea, C.; Marcu, A.; Pascu, C.; Herman, V. Multiple Drug Resistant Streptococcus Strains-An Actual Problem in Pig Farms in Western Romania. Antibiotics 2024, 13, 277. [Google Scholar] [CrossRef]
- Bardi, E.; Vetere, A.; Aquaro, V.; Lubian, E.; Lauzi, S.; Ravasio, G.; Zani, D.D.; Manfredi, M.; Tecilla, M.; Roccabianca, P.; et al. Use of Thrombocyte–Leukocyte-Rich Plasma in the Treatment of Chronic Oral Cavity Disorders in Reptiles: Two Case Reports. J. Exot. Pet Med. 2019, 29, 32–39. [Google Scholar] [CrossRef]
- Pascu, C.; Herman, V.; Iancu, I.; Costinar, L. Etiology of Mastitis and Antimicrobial Resistance in Dairy Cattle Farms in the Western Part of Romania. Antibiotics 2022, 11, 57. [Google Scholar] [CrossRef] [PubMed]
- Venegas, C.P.; Valenzuela, C.; León, M. Antimicrobial resistance in bacteria isolated from reptiles in Chile. J. Zoo Wildl. Med. 2017, 48, 150–154. [Google Scholar]
- Dazio, V.; Nigg, A.; Käppeli, U.; Endimiani, A. Occurrence of extended-spectrum β-lactamase-producing Enterobacterales in reptiles. Vet. Microbiol. 2000, 247, 108757. [Google Scholar]
- Zhang, Y.; Li, D.; Yang, Y.; Su, J.; Xu, X.; Wang, M.; Chen, Y.; Li, Y. Clinical and molecular characteristics of Chryseobacterium indologenes isolates at a teaching hospital in Shanghai, China. Ann. Transl. Med. 2021, 9, 668. [Google Scholar] [CrossRef] [PubMed]
- Komura, M.; Suzuki, M.; Sangsriratanakul, N.; Ito, M.; Takahashi, S.; Alam, M.S.; Ono, M.; Daio, C.; Shoham, D.; Takehara, K. Inhibitory effect of grapefruit seed extract (GSE) on avian pathogens. J. Vet. Med. Sci. 2019, 81, 466–472. [Google Scholar] [CrossRef] [PubMed]
- Larsen, C.K.; Skals, M.; Wang, T.; Cheema, M.U.; Leipziger, J.; Praetorius, H.A. Python erythrocytes are resistant to α-hemolysin from Escherichia coli. J. Membr. Biol. 2011, 244, 131–140. [Google Scholar] [CrossRef] [PubMed]
- Heckman, T.I.; Yazdi, Z.; Pomaranski, E.K.; Sebastião, F.D.; Mukkatira, K.; Vuglar, B.M.; Cain, K.D.; Loch, T.P.; Soto, E. Atypical flavobacteria recovered from diseased fish in the Western United States. Front. Cell. Infect. Microbiol. 2023, 13, 1149032. [Google Scholar] [CrossRef]
- Murgia, M.; Pani, S.M.; Sanna, A.; Marras, L.; Manis, C.; Banchero, A.; Coroneo, V. Antimicrobial activity of grapefruit seed extract on edible mushrooms contamination: Efficacy in preventing Pseudomonas spp. in Pleurotus eryngii. Foods 2024, 13, 1161. [Google Scholar] [CrossRef]
- Eloff, J. A Sensitive and Quick Microplate Method to Determine the Minimal Inhibitory Concentration of Plant Extracts for Bacteria. Planta Med. 1998, 64, 711–713. [Google Scholar] [CrossRef]
Identification | No of Isolates (n = 8) | Method of Identification | |
---|---|---|---|
Initial | Confirmation | ||
Cryseobacterium idologenes | 3 | API 20 NE | MALDI TOF-Ms |
Escherichia coli | 2 | API 20E; Brilliance ESBL agar | MALDI TOF-Ms |
Staphylococcus epidermidis | 2 | API Spaph | MALDI TOF-Ms |
Pseudomonas aeruginosa | 1 | API 20 NE | MALDI TOF-Ms |
Antimicrobials | Criteria for Categorization [23] S/I/R | Bacteria | |||||||
---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | ||
Diameter, mm (Categorization) | |||||||||
Ampicillin | ≥17/14–16/≤13 | 10 (R) | 8 (R) | 5 (R) | 9 (R) | 9 (R) | 4 (R) | 7 (R) | 2 (R) |
Cefaclor | ≥20/–/≤16 | 5 (R) | 0 (R) | 7 (R) | 11 (R) | 9 (R) | 13 (R) | 14 (R) | 8 (R) |
Ceftiofur | ≥21/18–20/≤17 | 12 (R) | 10 (R) | 6 (R) | 14 (R) | 11 (R) | 14 (R) | 15 (R) | 11 (R) |
Ciprofloxacin | ≥25/19–14/≤18 | 15 (R) | 13 (R) | 9 (R) | 17 (I) | 18 (R) | 13 (R) | 8 (R) | 8 (R) |
Enrofloxacin | ≥21/17–20/≤16 | 14 (R) | 12 (R) | 15 (R) | 19 (I) | 9 (R) | 14 (R) | 14 (R) | 7 (R) |
Penicillin | ≥28/20–27/≤19 | 11 (R) | 14 (R) | 9 (R) | 26 (I) | 17 (R) | 31 (S) | 28 (S) | 12 (R) |
Amikacin | ≥17/15–16/≤14 | 15 (I) | 15 (I) | 18 (S) | 22 (S) | 21 (S) | 24 (S) | 19 (S) | 10 (R) |
Doxycycline | ≥14/11–13/≤10 | 18 (S) | 15 (S) | 20 (S) | 22 (S) | 13 (I) | 25 (S) | 22 (S) | 7 (R) |
Florfenicol | ≥17/14–16/≤13 | 23 (S) | 22 (S) | 22 (S) | 14 (I) | 26 (S) | 20 (S) | 21 (S) | 23 (S) |
Sulfamethoxazole | ≥16/11–15/≤10 | 11 (I) | 18 (S) | 23 (S) | 19 (S) | 26 (S) | 22 (S) | 18 (S) | 19 (S) |
Bacteria | Antibiotic Phenotype Patterns | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
C. indologenes | AMP | CCL | EFT | CIP | ENR | P | AMK | DO | FFC | SXT |
C. indologenes | AMP | CCL | EFT | CIP | ENR | P | AMK | DO | FFC | SXT |
C. indologenes | AMP | CCL | EFT | CIP | ENR | P | AMK | DO | FFC | SXT |
E. coli | AMP | CCL | EFT | CIP | ENR | P | AMK | DO | FFC | SXT |
E. coli | AMP | CCL | EFT | CIP | ENR | P | AMK | DO | FFC | SXT |
S. epidermidis | AMP | CCL | EFT | CIP | ENR | P | AMK | DO | FFC | SXT |
S. epidermidis | AMP | CCL | EFT | CIP | ENR | P | AMK | DO | FFC | SXT |
P. aeruginosa | AMP | CCL | EFT | CIP | ENR | P | AMK | DO | FFC | SXT |
Essential Oils/ Vegetal Extract | C. indologenes | E. coli | S. epidermidis | Ps. aeruginosa | |
---|---|---|---|---|---|
Dilution | Inhibition Zone Diameter (mm) | ||||
GSE | 1/2 | 24 | 22 | 19 | 15 |
1/4 | 23 | 21 | 17 | 13 | |
1/8 | 22 | 20 | 16 | 11 | |
1/16 | 21 | 19 | 15 | 10 | |
1/32 | 18 | 16 | 14 | 7 | |
1/64 | 15 | 14 | 13 | NI | |
1/128 | 8 | 7 | 12 | NI | |
1/256 | 7 | 5 | 9 | NI | |
OEO | 1/2 | 12 | 10 | NI | NI |
1/4 | 8 | NI | NI | NI | |
1/8 | NI | NI | NI | NI | |
1/16 | NI | NI | NI | NI | |
1/32 | NI | NI | NI | NI | |
1/64 | NI | NI | NI | NI | |
1/128 | NI | NI | NI | NI | |
1/256 | NI | NI | NI | NI | |
LGEO | 1/2 | NI | NI | NI | NI |
1/4 | NI | NI | NI | NI | |
1/8 | NI | NI | NI | NI | |
1/16 | NI | NI | NI | NI | |
1/32 | NI | NI | NI | NI | |
1/64 | NI | NI | NI | NI | |
1/128 | NI | NI | NI | NI | |
1/256 | NI | NI | NI | NI | |
REO | 1/2 | NI | NI | NI | NI |
1/4 | NI | NI | NI | NI | |
1/8 | NI | NI | NI | NI | |
1/16 | NI | NI | NI | NI | |
1/32 | NI | NI | NI | NI | |
1/64 | NI | NI | NI | NI | |
1/128 | NI | NI | NI | NI | |
1/256 | NI | NI | NI | NI | |
SEO | 1/2 | NI | NI | NI | NI |
1/4 | NI | NI | NI | NI | |
1/8 | NI | NI | NI | NI | |
1/16 | NI | NI | NI | NI | |
1/32 | NI | NI | NI | NI | |
1/64 | NI | NI | NI | NI | |
1/128 | NI | NI | NI | NI | |
1/256 | NI | NI | NI | NI |
Compound | Ric | RIr | Lemongrass % | Rosemary % | Sage % | Oregano % |
---|---|---|---|---|---|---|
Tricyclene | 925 | 923 | 0.18 | 0.13 | ||
alpha-Thujene | 929 | 928 | 0.18 | 0.72 | ||
alpha-Pinene | 934 | 936 | 0.26 | 11.95 | 0.28 | 2.06 |
Camphene | 945 | 950 | 1.58 | 3.75 | 0.05 | 0.51 |
beta-Pinene | 978 | 977 | 4.90 | 0.25 | 0.48 | |
1-Octen-3-ol | 979 | 980 | 0.07 | 0.13 | ||
5-Hepten-2-one, 6-methyl- | 981 | 982 | 3.18 | |||
beta-Myrcene | 991 | 989 | 1.02 | 0.19 | 1.37 | |
alpha-Phellandrene | 1002 | 1004 | 0.15 | |||
4-Carene | 1010 | 1011 | 0.44 | 0.76 | ||
p-Cimene | 1024 | 1025 | 1.10 | 0.04 | 14.94 | |
Limonene | 1030 | 1029 | 0.36 | 49.31 | 0.18 | 0.09 |
Eucalyptol | 1031 | 1032 | 0.09 | |||
gamma-Terpinen | 1058 | 1060 | 0.56 | |||
4-Nonanone | 1090 | 1093 | 1.72 | 5.85 | ||
Linalool | 1098 | 1099 | 1.68 | 0.95 | 17.06 | 2.71 |
Camphor | 1140 | 1143 | 14.61 | |||
Carvomenthenal | 1145 | 1148 | 0.25 | |||
Citronellal | 1152 | 1154 | 0.16 | |||
Isoborneol | 1157 | 1158 | 0.22 | |||
Borneol | 1165 | 1166 | 2.32 | |||
p-Menth-2-ene | 1168 | 1168 | 0.38 | |||
p-Mentha-6,8-dien-2-ol,cis | 1169 | 1170 | 0.19 | 0.58 | ||
3-Cyclohexene-1-carboxaldehyde, 1,3,4-trimethyl- | 1170 | 1171 | 0.46 | |||
alpha-Terpineol | 1188 | 1190 | 0.28 | 2.12 | 0.42 | |
Isopulegol acetate | 1223 | 1225 | 0.12 | |||
beta-Citral | 1230 | 1232 | 28.26 | |||
Thymol methyl ether | 1233 | 1234 | 0.26 | |||
Linalyl anthranilate | 1253 | 1255 | 77.34 | |||
Geraniol | 1255 | 1256 | 3.27 | |||
alpha-Citral | 1269 | 1270 | 43.43 | |||
1,4-Hexadiene, 3-ethyl-4,5-dimethyl- | 1273 | 1274 | 0.48 | |||
Epoxy-linalooloxide | 1275 | 1276 | 0.22 | |||
Geranyl acetate, 2,3-epoxy- | 1280 | 1281 | 0.29 | |||
Bornyl acetate | 1283 | 1283 | 0.58 | |||
Thymol | 1288 | 1290 | 3.60 | |||
Menthylacetate | 1295 | 1297 | 1.05 | |||
Carvacrol | 1298 | 1300.4 | 64.70 | |||
Linalyl propanoate | 1335 | 1336 | 0.27 | |||
6-Hepten-3-ol | 1360 | 1362 | 0.53 | |||
Copaene | 1368 | 1370 | 0.11 | |||
Nerol acetate | 1375 | 1376 | 6.91 | 0.82 | ||
beta-Elemene | 1389 | 1390.4 | 0.21 | |||
Caryophyllene | 1403 | 1406 | 0.77 | 4.60 | 1.02 | 0.95 |
alpha-Caryophyllene | 1418 | 1420 | 0.44 | |||
gamma-Cadinene | 1512 | 1513 | 1.62 | |||
delta-Cadinene | 1515 | 1514 | 0.53 | |||
Caryophyllene oxide | 1578 | 1580 | 1.50 | 0.10 | 0.40 | 0.61 |
HM | 2.75 | 73.78 | 1.49 | 20.93 | ||
OH | 90.13 | 21.15 | 94.82 | 71.35 | ||
HS | 3.13 | 4.60 | 0.93 | 0.95 | ||
OS | 1.50 | 0.10 | 0.40 | 0.61 | ||
O | 2.25 | 0.07 | 5.97 |
Compound | RIc | RIr | % |
---|---|---|---|
Nonane | 902 | 900 | 8.94243 |
Limonene | 1030 | 1029 | 6.82735 |
Benzenemethanamine, N,N-dimethyl- | 1352 | 1350 | 10.05916 |
3-Tetradecene, (Z)- | 1384 | 1385 | 4.11613 |
1-Hexadecene | 1492 | 1490 | 12.24403 |
1-Dodecanamine, N,N-dimethyl- | 1529 | 1530 | 15.6739 |
1-Octadecene | 1786 | 1790 | 5.06621 |
3(N,N-Dimethylmyristylammonio)propanesulfonate | 1810 | - | 27.98891 |
1-Tridecanamine, N,N-dimethyl- | 1865 | 1861 | 9.0819 |
Name | Ret. Time | Concentration (μg/mL) |
---|---|---|
Caffeic acid | 6.75 | 0.61 |
Ferrulic acid | 7.18 | 0.50 |
Quercitin | 16.15 | 1.15 |
Ascorbic acid | 3.54 | 2.31 |
Cumaric acid | 12.66 | 6.87 |
Naringin | 12.5 | 3.82 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pascu, C.; Herman, V.; Costinar, L.; Badea, C.; Gros, V.; Stefan, G. Antibacterial Activity of Some Essential Oils/Herbal Extracts Against Bacteria Isolated from Ball Pythons (Python regius) with Respiratory Infections. Antibiotics 2025, 14, 549. https://doi.org/10.3390/antibiotics14060549
Pascu C, Herman V, Costinar L, Badea C, Gros V, Stefan G. Antibacterial Activity of Some Essential Oils/Herbal Extracts Against Bacteria Isolated from Ball Pythons (Python regius) with Respiratory Infections. Antibiotics. 2025; 14(6):549. https://doi.org/10.3390/antibiotics14060549
Chicago/Turabian StylePascu, Corina, Viorel Herman, Luminita Costinar, Corina Badea, Valentin Gros, and Georgeta Stefan. 2025. "Antibacterial Activity of Some Essential Oils/Herbal Extracts Against Bacteria Isolated from Ball Pythons (Python regius) with Respiratory Infections" Antibiotics 14, no. 6: 549. https://doi.org/10.3390/antibiotics14060549
APA StylePascu, C., Herman, V., Costinar, L., Badea, C., Gros, V., & Stefan, G. (2025). Antibacterial Activity of Some Essential Oils/Herbal Extracts Against Bacteria Isolated from Ball Pythons (Python regius) with Respiratory Infections. Antibiotics, 14(6), 549. https://doi.org/10.3390/antibiotics14060549