Monitoring Plasma Concentrations of Intravenously Administered Fosfomycin to Prevent Drug-Related Adverse Events: A Retrospective Observational Study
Abstract
1. Introduction
2. Results
2.1. Demographic and Clinical Characteristics of the Patients
2.2. Fosfomycin Therapy and TDM Measurements
2.3. Effects of Renal Impairment on Fosfomycin Plasma Concentrations
2.4. Adverse Events
3. Discussion
Strengths and Limitations
4. Materials and Methods
4.1. Study Design and Patients
4.2. TDM Analytics
4.3. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AE(s) | Adverse event(s) |
AKI | Acute kidney injury |
AUC | Area under the curve |
BMI | Body mass index |
CCI | Charlson comorbidity index |
CI | Confidence interval |
CKD | Chronic kidney disease |
CKD-EPI | Chronic Kidney Disease Epidemiology Collaboration |
CRP | C-reactive protein |
ECOFF | Epidemiologic cut-off value |
eGFR | Estimated glomerular filtration rate |
EUCAST | European Committee for Antimicrobial Susceptibility Testing |
ICU | Intensive care unit |
ID | Infectious diseases |
IQR | Interquartile range |
KDIGO | Kidney Disease: Improving Global Outcomes |
LC-MS/MS | Liquid chromatography with tandem mass spectrometry |
MIC | Minimum inhibitory concentration |
OR | Odds ratio |
PCT | Procalcitonin |
PK/PD | Pharmacokinetic/pharmacodynamic |
PTA | Probability of target attainment |
RR | Relative risk |
RRT | Renal replacement therapy |
SD | Standard deviation |
SmPC | Summary of Product Characteristics |
TDM | Therapeutic drug monitoring |
Appendix A
Fosfomycin Plasma Concentration | <64 mg/L | 64–128 mg/L | >128 mg/L | p Value a | p Value b | Overall |
---|---|---|---|---|---|---|
Number of patients (n) | 30 (21.0) | 32 (22.4) | 81 (56.6) | 0.7995 | <0.001 | 143 |
Type of infection (n) | ||||||
Bone and joint infection | 11 (36.7) | 16 (51.6) | 37 (45.7) | 0.263 | 0.535 | 64 (45.1) |
Skin and soft tissue infection | 7 (23.3) | 2 (6.5) | 15 (18.5) | 24 (16.9) | ||
Endocarditis | 3 (10) | 5 (16.1) | 7 (8.6) | 15 (10.6) | ||
Sepsis | 2 (6.7) | 4 (12.9) | 10 (12.3) | 16 (11.3) | ||
Pneumonia | 3 (10.0) | 0 (0.0) | 3 (3.7) | 6 (4.2) | ||
Intracranial abscess | 1 (3.3) | 1 (3.2) | 3 (3.7) | 5 (3.5) | ||
Port infection | 1 (3.3) | 2 (6.5) | 1 (1.2) | 4 (2.8) | ||
Dialysis catheter | 0 (0.0) | 1 (3.2) | 1 (1.2) | 2 (1.4) | ||
Intraspinal abscess | 0 (0.0) | 0 (0.0) | 2 (2.5) | 2 (1.4) | ||
Encephalitis | 0 (0.0) | 0 (0.0) | 1 (1.2) | 1 (0.7) | ||
Pacemaker | 0 (0.0) | 0 (0.0) | 1 (1.2) | 1 (0.7) | ||
Heart valve prosthesis | 1 (3.3) | 0 (0.0) | 0 (0.0) | 1 (0.7) | ||
Intraabdominal infection | 1 (3.3) | 0 (0.0) | 0 (0.0) | 1 (0.7) | ||
Comorbidities (n) | ||||||
Renal disease c | 0 (0) | 4 (12.5) | 19 (23.5) | 0.138 | 0.296 | 23 (16.1) |
Liver disease | 2 (6.7) | 2 (6.2) | 13 (16.0) | 1.000 | 0.282 | 17 (11.9) |
Diabetes mellitus | 4 (13.3) | 16 (50.0) | 29 (35.8) | 0.005 | 0.240 | 49 (34.3) |
Obesity | 8 (26.7) | 6 (18.8) | 13 (16.0) | 0.659 | 0.947 | 27 (18.9) |
Cardiovascular disease | 1 (3.3) | 10 (31.2) | 26 (32.1) | 0.011 | 1.000 | 37 (25.9) |
Hypertension | 15 (50.0) | 19 (59.4) | 39 (48.1) | 0.627 | 0.386 | 73 (51.0) |
Laboratory results | ||||||
Creatinin [µmol/L] | 56 (47–74) | 64 (50–77) | 84.5 (63–142) | 0.090 | <0.001 | 69 (52, 90) |
Sodium [mmol/L] | 141 (138–143.2) | 140.5 (138.3–143.3) | 141.2 (138.7–144.6) | 0.686 | 0.053 | 141 (138.6–143.8) |
Potassium [mmol/L] | 3.9 (3.4–4.2) | 4.0 (3.6–4.3) | 3.9 (3.4–4.4) | 0.462 | 0.927 | 3.9 (3.5–4.4) |
NT-proBNP [ng/L] | 2315 (2112–7471) | 3539 (2648–6418) | 8298 (3466–16,929) | 0.614 | 0.101 | 4547 (2614–11,706) |
Troponin [µg/L] | 33.9 (20.4–34.2) | 48.7 (31.5–51.3) | 51.3 (29.9–59.5) | 0.166 | 0.744 | 48.1 (25.9–56.5) |
Uric acid [µmol/L] | 175 (130–211) | 214 (173–297) | 322 (187–392) | 0.095 | 0.160 | 226 (166–346) |
Albumin [g/L] | 26.6 (23.8–31.8) | 28.0 (23.2–30.2) | 25.5 (21.1–29.8) | 0.947 | 0.054 | 26.8 (22.6–30.2) |
MIC for Fosfomycin | ≤8 µg/mL | ≤16 µg/mL | 32 µg/mL | ≥64 µg/mL | >256 µg/mL | Overall |
---|---|---|---|---|---|---|
N (%) | 89 (51.4) | 73 (42.2) | 6 (3.5) | 4 (2.3) | 1 (0.6) | 173 |
Gram-negative pathogens | ||||||
Enterobacterales | 1 (1.1) | 67 (91.8) | 6 (100.0) | 1 (25.0) | 0 (0.0) | 75 (43.4) |
Escherichia coli | 0 (0.0) | 38 (52.1) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 38 (22.0) |
Enterobacter cloacae complex | 0 (0.0) | 7 (9.6) | 3 (50.0) | 0 (0.0) | 0 (0.0) | 10 (5.8) |
Klebsiella pneumoniae | 1 (1.1) | 8 (11.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 9 (5.2) |
Proteus mirabilis | 0 (0.0) | 5 (6.8) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 5 (2.9) |
Klebsiella aerogenes | 0 (0.0) | 3 (4.1) | 1 (16.7) | 0 (0.0) | 0 (0.0) | 4 (2.3) |
Klebsiella oxytoca | 0 (0.0) | 2 (2.7) | 0 (0.0) | 1 (25.0) | 0 (0.0) | 3 (1.7) |
Salmonella Enteritidis | 0 (0.0) | 2 (2.7) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 2 (1.2) |
Serratia marcescens | 0 (0.0) | 0 (0.0) | 2 (33.3) | 0 (0.0) | 0 (0.0) | 2 (1.2) |
Escherichia hermannii | 0 (0.0) | 1 (1.4) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 1 (0.6) |
Citrobacter koseri | 0 (0.0) | 1 (1.4) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 1 (0.6) |
Other Gram-negative pathogens | 1 (1.1) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 1 (0.6) |
Cardiobacterium hominis (HACEK) | 1 (1.1) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 1 (0.6) |
Gram-positive pathogens | ||||||
Staphylococcus aureus | 61 (68.5) | 6 (8.2) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 67 (38.7) |
Coagulase-negative staphylococci | 23 (25.8) | 0 (0.0) | 0 (0.0) | 2 (50.0) | 0 (0.0) | 25 14.4) |
Staphylococcus epidermidis | 20 (22.5) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 20 (11.6) |
Staphylococcus hominis | 0 (0.0) | 0 (0.0) | 0 (0.0) | 2 (50.0) | 0 (0.0) | 2 (1.2) |
Staphylococcus lugdunensis | 1 (1.1) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 1 (0.6) |
Staphylococcus simulans | 1 (1.1) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 1 (0.6) |
Staphylococcus cohnii spp. urealyticus | 1 (1.1) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 1 (0.6) |
Other Gram-positive pathogens | 3 (3.4) | 0 (0.0) | 0 (0.0) | 1 (25.0) | 1 (100.0) | 5 (2.9) |
Enterococcus faecalis | 1 (1.1) | 0 (0.0) | 0 (0.0) | 1 (25.0) | 0 (0.0) | 2 (1.2) |
Streptococcus intermedius | 1 (1.1) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 1 (0.6) |
Streptococcus pneumoniae | 1 (1.1) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 1 (0.6) |
Listeria monocytogenes | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 1 (100.0) | 1 (0.6) |
Antibiotics | AEs (n = 113) | No-AEs (n = 59) | Overall (n = 172) |
---|---|---|---|
Aminoglycosides | 1 (0.9) | 1 (1.7) | 2 (1.2) |
Gentamicin | 1 (0.9) | 0 (0.0) | 1 (0.6) |
Tobramycin | 0 (0.0) | 1 (1.7) | 1 (0.6) |
Beta-lactams | 70 (61.9) | 37 (62.7) | 107 (62.2) |
Cefazolin | 16 (14.2) | 11 (18.6) | 27 (15.7) |
Cefotaxim | 10 (8.8) | 3 (5.1) | 13 (7.6) |
Ampicillin | 10 (8.8) | 1 (1.7) | 11 (6.4) |
Ampicillin/Sulbactam | 5 (4.4) | 5 (8.5) | 10 (5.8) |
Benzylpenicillin | 7 (6.2) | 3 (5.1) | 10 (5.8) |
Flucloxacillin | 8 (7.1) | 2 (3.4) | 10 (5.8) |
Meropenem | 6 (5.3) | 4 (6.8) | 10 (5.8) |
Piperacillin/Tazobactam | 1 (0.9) | 5 (8.5) | 6 (3.5) |
Ceftriaxon | 1 (0.9) | 0 (0.0) | 3 (1.7) |
Cefuroxim | 1 (0.9) | 0 (0.0) | 2 (1.2) |
Imipenem | 2 (1.8) | 0 (0.0) | 2 (1.2) |
Amoxicillin | 1 (0.9) | 0 (0.0) | 1 (0.6) |
Ceftazidim | 1 (0.9) | 0 (0.0) | 1 (0.6) |
Ceftazidim/Avibactam | 1 (0.9) | 0 (0.0) | 1 (0.6) |
Clindamycin | 2 (1.8) | 1 (1.7) | 3 (1.7) |
Cotrimoxazole | 8 (7.1) | 6 (10.2) | 14 (8.1) |
Daptomycin | 4 (3.5) | 0 (0.0) | 4 (2.3) |
Fluoroquinolones | 5 (4.4) | 3 (5.1) | 8 (4.7) |
Ciprofloxacin | 2 (1.8) | 2 (3.4) | 4 (2.3) |
Levofloxacin | 3 (2.7) | 1 (1.7) | 4 (2.3) |
Rifampicin | 6 (5.3) | 1 (1.7) | 7 (4.1) |
Tetracyclines | 12 (10.6) | 9 (15.3) | 21 (12.2) |
Doxycyclin | 8 (7.1) | 7 (11.9) | 15 (8.7) |
Tigecyclin | 3 (2.7) | 1 (1.7) | 4 (2.3) |
Minocyclin | 1 (0.9) | 1 (1.7) | 2 (1.2) |
Vancomycin | 5 (4.4) | 1 (1.7) | 6 (3.5) |
References
- Falagas, M.E.; Athanasaki, F.; Voulgaris, G.L.; Triarides, N.A.; Vardakas, K.Z. Resistance to fosfomycin: Mechanisms, Frequency and Clinical Consequences. Int. J. Antimicrob. Agents 2019, 53, 22–28. [Google Scholar] [CrossRef] [PubMed]
- Hashemian, S.M.R.; Farhadi, Z.; Farhadi, T. Fosfomycin: The characteristics, activity, and use in critical care. Ther. Clin. Risk Manag. 2019, 15, 525–530. [Google Scholar] [CrossRef] [PubMed]
- Roussos, N.; Karageorgopoulos, D.E.; Samonis, G.; Falagas, M.E. Clinical significance of the pharmacokinetic and pharmacodynamic characteristics of fosfomycin for the treatment of patients with systemic infections. Int. J. Antimicrob. Agents 2009, 34, 506–515. [Google Scholar] [CrossRef] [PubMed]
- Dijkmans, A.C.; Zacarías, N.V.O.; Burggraaf, J.; Mouton, J.W.; Wilms, E.B.; van Nieuwkoop, C.; Touw, D.J.; Stevens, J.; Kamerling, I.M.C. Fosfomycin: Pharmacological, Clinical and Future Perspectives. Antibiotics 2017, 6, 24. [Google Scholar] [CrossRef]
- Falagas, M.E.; Vouloumanou, E.K.; Samonis, G.; Vardakas, K.Z. Fosfomycin. Clin. Microbiol. Rev. 2016, 29, 321–347. [Google Scholar] [CrossRef]
- Stock, I. Stellenwert von Fosfomycin für die Therapie von Erkrankungen durch multiresistente gramnegative Bakterien. Arzneimitteltherapie 2012, 30, 296–304. [Google Scholar]
- Zhanel, G.G.; Walkty, A.J.; Karlowsky, J.A. Fosfomycin: A First-Line Oral Therapy for Acute Uncomplicated Cystitis. Can. J. Infect. Dis. Med. Microbiol. 2016, 2016, 2082693. [Google Scholar] [CrossRef]
- Nilsson, A.I.; Berg, O.G.; Aspevall, O.; Kahlmeter, G.; Andersson, D.I. Biological costs and mechanisms of fosfomycin resistance in Escherichia coli. Antimicrob. Agents Chemother. 2003, 47, 2850–2858. [Google Scholar] [CrossRef]
- Koch-Institut, R. ARS—Antibiotika-Resistenz-Surveillance, Resistenzstatistik 2008–2022. Available online: https://ars.rki.de/Content/Database/ResistanceOverview.aspx (accessed on 11 April 2025).
- Fachinformation INFECTOFOS 2g/3g/5g/8g. Firma Infectopharm Arzneimittel und Consilium GmbH. Informationsstand: 07/2021. Available online: https://www.fachinfo.de/pdf/009537 (accessed on 11 April 2025).
- Kastoris, A.C.; Rafailidis, P.I.; Vouloumanou, E.K.; Gkegkes, I.D.; Falagas, M.E. Synergy of fosfomycin with other antibiotics for Gram-positive and Gram-negative bacteria. Eur. J. Clin. Pharmacol. 2010, 66, 359–368. [Google Scholar] [CrossRef]
- Florent, A.; Chichmanian, R.M.; Cua, E.; Pulcini, C. Adverse events associated with intravenous fosfomycin. Int. J. Antimicrob. Agents 2011, 37, 82–83. [Google Scholar] [CrossRef]
- Iarikov, D.; Wassel, R.; Farley, J.; Nambiar, S. Adverse Events Associated with Fosfomycin Use: Review of the Literature and Analyses of the FDA Adverse Event Reporting System Database. Infect. Dis. Ther. 2015, 4, 433–458. [Google Scholar] [CrossRef]
- Parker, S.; Lipman, J.; Koulenti, D.; Dimopoulos, G.; Roberts, J.A. What is the relevance of fosfomycin pharmacokinetics in the treatment of serious infections in critically ill patients? A systematic review. Int. J. Antimicrob. Agents 2013, 42, 289–293. [Google Scholar] [CrossRef] [PubMed]
- Antonello, R.M.; Di Bella, S.; Maraolo, A.E.; Luzzati, R. Fosfomycin in continuous or prolonged infusion for systemic bacterial infections: A systematic review of its dosing regimen proposal from in vitro, in vivo and clinical studies. Eur. J. Clin. Microbiol. Infect. Dis. 2021, 40, 1117–1126. [Google Scholar] [CrossRef] [PubMed]
- Baldelli, S.; Cerea, M.; Mangioni, D.; Alagna, L.; Muscatello, A.; Bandera, A.; Cattaneo, D. Fosfomycin therapeutic drug monitoring in real-life: Development and validation of a LC-MS/MS method on plasma samples. J. Chemother. 2022, 34, 25–34. [Google Scholar] [CrossRef] [PubMed]
- Rinaldi, M.; Cojutti, P.G.; Zamparini, E.; Tedeschi, S.; Rossi, N.; Conti, M.; Giannella, M.; Pea, F.; Viale, P. Population pharmacokinetics and Monte Carlo simulation for dosage optimization of fosfomycin in the treatment of osteoarticular infections in patients without renal dysfunction. Antimicrob. Agents Chemother. 2023, 65, e02038-20. [Google Scholar] [CrossRef]
- Díez-Aguilar, M.; Cantón, R. New microbiological aspects of fosfomycin. Rev. Esp. Quimioter. 2019, 32, 8–18. [Google Scholar]
- Lepak, A.J.; Zhao, M.; VanScoy, B.; Taylor, D.S.; Ellis-Grosse, E.; Ambrose, P.G.; Andes, D.R. In Vivo Pharmacokinetics and Pharmacodynamics of ZTI-01 (Fosfomycin for Injection) in the Neutropenic Murine Thigh Infection Model against Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2017, 61, e00476-17. [Google Scholar] [CrossRef]
- Mazzei, T.; Cassetta, M.I.; Fallani, S.; Arrigucci, S.; Novelli, A. Pharmacokinetic and pharmacodynamic aspects of antimicrobial agents for the treatment of uncomplicated urinary tract infections. Int. J. Antimicrob. Agents 2006, 28, 35–41. [Google Scholar] [CrossRef]
- VanScoy, B.; McCauley, J.; Bhavnani, S.M.; Ellis-Grosseb, E.J.; Ambrosea, P.G. Relationship between Fosfomycin Exposure and Amplification of Escherichia coli Subpopulations with Reduced Susceptibility in a Hollow-Fiber Infection Model. Antimicrob. Agents Chemother. 2016, 60, 5141–5145. [Google Scholar] [CrossRef]
- Gatti, M.; Giannella, M.; Rinaldi, M.; Gaibani, P.; Viale, P.; Pea, F. Pharmacokinetic/Pharmacodynamic Analysis of Continuous-Infusion Fosfomycin in Combination with Extended-Infusion Cefiderocol or Continuous-Infusion Ceftazidime-Avibactam in a Case Series of Difficult-to-Treat Resistant Pseudomonas aeruginosa Bloodstream I. Antibiotics 2022, 11, 1739. [Google Scholar] [CrossRef]
- European Committee for Antimicrobial Susceptibility Testing. Fosfomycin Intravenous. Rationale for EUCAST Clinical Breakpoints. Version 1.0; November 2023. Available online: https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Rationale_documents/Fosfomycin_iv_Rationale_Document_v1.0_20231123.pdf (accessed on 11 April 2025).
- European Committee for Antimicrobial Susceptibility Testing. EUCAST Guidance on Use of Fosfomycin i.v. Breakpoints. Available online: https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Guidance_documents/Use_of_fosfomycin_iv_breakpoints_General_advice_20231127.pdf (accessed on 11 April 2025).
- European Committee for Antimicrobial Susceptibility Testing. MIC EUCAST: Antimicrobial Wild Type Distributions of Microorganisms. Available online: https://mic.eucast.org/search/ (accessed on 11 April 2025).
- Al Jalali, V.; Matzneller, P.; Wulkersdorfer, B.; Chou, S.; Bahmany, S.; Koch, B.C.P.; Zeitlinger, M. Clinical Pharmacokinetics of Fosfomycin after Continuous Infusion Compared with Intermittent Infusion: A Randomized Crossover Study in Healthy Volunteers. Antimicrob. Agents Chemother. 2020, 65, e01375-20. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Gascón, A.; Canut-Blasco, A. Deciphering pharmacokinetics and pharmacodynamics of fosfomycin. Rev. Esp. Quimioter. 2019, 32 (Suppl. S1), 19–24. [Google Scholar] [PubMed]
- Edwina, A.E.; Koch, B.C.P.; Muller, A.E.; Al Jalali, V.; Matzneller, P.; Zeitlinger, M.; Sassen, S.D.T. Population plasma and urine pharmacokinetics and the probability of target attainment of fosfomycin in healthy male volunteers. Eur. J. Clin. Pharmacol. 2023, 79, 775–787. [Google Scholar] [CrossRef] [PubMed]
- Cojutti, P.G.; Tedeschi, S.; Zamparini, E.; Fornaro, G.; Zagarrigo, M.; De Paolis, M.; Viale, P.; Pea, F. Could a Reduced Dose of 8 g of Continuous Infusion Fosfomycin Be Considered as Effective as and Safer than a Standard 16 g Dose When Combined with High-Dose Daptomycin in the Treatment of Staphylococcal osteoarticular Infections? Antibiotics 2025, 14, 139. [Google Scholar] [CrossRef]
- König, C.; Martens-Lobenhoffer, J.; Czorlich, P.; Westphal, M.; Bode-Böger, S.M.; Kluge, S.; Grensemann, J. Cerebrospinal fluid penetration of fosfomycin in patients with ventriculitis: An observational study. Ann. Clin. Microbiol. Antimicrob. 2023, 22, 29. [Google Scholar] [CrossRef]
- Parker, S.L.; Frantzeskaki, F.; Wallis, S.C.; Diakaki, C.; Giamarellou, H.; Koulenti, D.; Karaiskos, I.; Lipman, J.; Dimopoulos, G.; Roberts, J.A. Population Pharmacokinetics of Fosfomycin in Critically Ill Patients. Antimicrob. Agents Chemother. 2015, 59, 6471–6476. [Google Scholar] [CrossRef]
- De Corte, T.; Verhaeghe, J.; Dhaese, S.; Van Vooren, S.; Boelens, J.G.; Verstraete, A.; Stove, V.; Ongenae, F.; De Bus, L.; Depuydt, P.; et al. Pathogen-based target attainment of optimized continuous infusion dosing regimens of piperacillin-tazobactam and meropenem in surgical ICU patients: A prospective single center observational study. Ann. Intensive Care. 2023, 13, 35. [Google Scholar] [CrossRef]
- Richter, D.C.; Frey, O.; Röhr, A.; Roberts, J.A.; Köberer, A.; Fuchs, T.; Papadimas, N.; Heinzel-Gutenbrunner, M.; Brenner, T.; Lichtenstern, C.; et al. Therapeutic drug monitoring-guided continuous infusion of piperacillin/tazobactam significantly improves pharmacokinetic target attainment in critically ill patients: A retrospective analysis of four years of clinical experience. Infection 2019, 47, 1001–1011. [Google Scholar] [CrossRef]
- Weinelt, F.A.; Stegemann, M.S.; Theloe, A.; Pfäfflin, F.; Achterberg, S.; Weber, F.; Dübel, L.; Mikolajewska, A.; Uhrig, A.; Kiessling, P.; et al. Evaluation of a meropenem and piperacillin monitoring program in intensive care unit patients calls for the regular assessment of empirical targets and easy-to-use dosing decision tools. Antibiotics 2022, 11, 758. [Google Scholar] [CrossRef]
- Udy, A.A.; Varghese, J.M.; Altukroni, M.; Briscoe, S.; McWhinney, B.C.; Ungerer, J.P.; Lipman, J.; Roberts, J.A. Subtherapeutic initial beta-lactam concentrations in select critically ill patients: Association between augmented renal clearance and low trough drug concentrations. Chest 2012, 142, 30–39. [Google Scholar] [CrossRef]
- Sime, F.B.; Udy, A.A.; Roberts, J.A. Augmented renal clearance in critically ill patients: Etiology, definition and implications for beta-lactam dose optimization. Curr. Opin. Pharmacol. 2015, 24, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Silva, C.M.; Baptista, J.P.; Santos, I.; Martins, P. Recommended antibiotic dosage regimens in critically ill patients with augmented renal clearance: A systematic review. Int. J. Antimicrob. Agents 2022, 59, 106569. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.T.; Chang, Y.F.; Wu, Y.C. Clinical Use of Intravenous Fosfomycin in Critical Care Patients in Taiwan. Pathogens 2023, 12, 841. [Google Scholar] [CrossRef]
- Biscarini, S.; Mangioni, D.; Bobbio, C.; Mela, L.; Alagna, L.; Baldelli, S.; Blasi, F.; Canetta, C.; Ceriotti, F.; Gori, A.; et al. Adverse events during intravenous fosfomycin therapy in a real-life scenario. Risk factors and the potential role of therapeutic drug monitoring. BMC Infect. Dis. 2024, 24, 650. [Google Scholar] [CrossRef]
- Önal, U.; Tüzemen, N.Ü.; Kaya, P.K.; İşçimen, R.; Girgin, N.K.; Özakin, C.; Kahveci, F.Ş.; Akalın, H. Evaluation of the combination treatments with intravenous fosfomycin for carbapenem-resistant Klebsiella pneumoniae. Rev. Assoc. Med. Bras. 2023, 69, e20230727. [Google Scholar] [CrossRef]
- Kaye, K.S.; Rice, L.B.; Dane, A.L.; Stus, V.; Sagan, O.; Fedosiuk, E.; Das, A.F.; Skarinsky, D.; Eckburg, P.B.; Ellis-Grosse, E.J. Fosfomycin for Injection (ZTI-01) Versus Piperacillin-tazobactam for the Treatment of Complicated Urinary Tract Infection Including Acute Pyelonephritis: ZEUS, A Phase 2/3 Randomized Trial. Clin. Infect. Dis. 2019, 69, 2045–2056. [Google Scholar] [CrossRef]
- Aysert-Yildiz, P.; Özgen-Top, Ö.; Habibi, H.; Dizbay, M. Efficacy and safety of intravenous fosfomycin for the treatment of carbapenem-resistant Klebsiella pneumoniae. J. Chemother. 2023, 35, 471–476. [Google Scholar] [CrossRef]
- Zirpe, K.G.; Mehta, Y.; Pandit, R.; Pande, R.; Deshmukh, A.M.; Patil, S.; Bhagat, S.; Barkate, H. A Real-world Study on Prescription Pattern of Fosfomycin in Critical Care Patients. Indian J. Crit. Care Med. 2021, 25, 1055–1058. [Google Scholar] [PubMed]
- Xie, Q.H.; Hao, C.M. Regulation of kidney on potassium balance and its clinical significance. Sheng Li Xue Bao 2023, 75, 216–230. [Google Scholar]
- Levey, A.S.; Stevens, L.A.; Schmid, C.H.; Zhang, Y.L.; Castro, A.F., 3rd; Feldman, H.I.; Kusek, J.W.; Eggers, P.; Van Lente, F.; Greene, T.; et al. CKD-EPI (Chronic Kidney Disease Epidemiology Collaboration). A new equation to estimate glomerular filtration rate. Ann. Intern. Med. 2009, 150, 604–612. [Google Scholar] [CrossRef]
- Kellum, J.A.; Lameire, N.; KDIGO AKI Guideline Work Group. Diagnosis, evaluation, and management of acute kidney injury: A KDIGO summary (Part 1). Crit. Care 2013, 17, 204. [Google Scholar] [CrossRef] [PubMed]
- Huttner, A.; Albrich, W.C.; Bochud, P.-Y.; Gayet-Ageron, A.; Rossel, A.; von Dach, E.; Harbarth, S.; Kaiser, L. PIRATE project: Point-of-care, informatics-based randomised controlled trial for decreasing overuse of antibiotic therapy in Gram-negative bacteraemia. BMJ Open 2017, 7, e017996. [Google Scholar] [CrossRef] [PubMed]
- de Jong, E.; van Oers, J.A.; Beishuizen, A.; Vos, P.; Vermeijden, W.J.; Haas, L.E.; Loef, B.G.; Dormans, T.; van Melsen, G.C.; Kluiters, Y.C.; et al. Efficacy and safety of procalcitonin guidance in reducing the duration of antibiotic treatment in critically ill patients: A randomised, controlled, open-label trial. Lancet Infect. Dis. 2016, 16, 819–827. [Google Scholar] [CrossRef] [PubMed]
- Martens-Lobenhoffer, J.; Bode-Böger, S.M. A validated method for the quantification of fosfomycin in human plasma by liquid chromatography-tandem mass spectrometry. J. Chromatogr. B. Analyt. Technol. Biomed. Life Sci. 2015, 990, 164–168. [Google Scholar] [CrossRef]
Fosfomycin Plasma Concentration | <64 mg/L | 64–128 mg/L | >128 mg/L | p Value a | p Value b | Overall |
---|---|---|---|---|---|---|
Number of patients (n) | 30 (21.0) | 32 (22.4) | 81 (56.6) | 0.7995 | <0.001 | 143 |
Age (years) | 54 (42–78) | 74 (63–81) | 74 (64–82) | 0.004 | 0808 | 73 (60–81) |
Male sex (n) | 26 (86.7) | 22 (68.8) | 47 (58.0) | 0.167 | 0.401 | 95 (66.4) |
BMI | 26 (23–32) | 27 (24–33) | 27 (24–31) | 0.284 | 0.528 | 27 (24–32) |
CCI | 2 (1–5) | 5 (4–7) | 6 (4–7) | 0.001 | 0.529 | 5 (3–7) |
eGFR | 107 (95–122) | 94 (86–108) | 74 (42–96) | <0.001 | <0.001 | 93 (67–108) |
Length of hospital stay (days) | 26.5 (18–44) | 39.5 (29–50) | 39.5 (25–61) | 0.038 | 0.935 | 36 (24–56) |
In-hospital death (n) | 1 (3.3) | 1 (3.1) | 20 (24.7) | 1.000 | 0.017 | 22 (15.4) |
Community-acquired infection (n) | 24 (80.0) | 22 (68.8) | 52 (64.2) | 0.471 | 0.811 | 98 (68.5) |
Fosfomycin therapy and TDM measurements | ||||||
Start dosage (gram) | 15 (15–15) | 15 (15–16) | 15 (15–16) | 0.947 | 0.830 | 15 (15–16) |
Duration of therapy (days) | 13 (8–23.5) | 17.5 (11–23) | 15 (8.7–25) | 0.378 | 0.898 | 15 (9–25) |
Patients with control measurements | 15 (50.0) | 20 (62.5) | 57 (70.4) | 0.398 | <0.001 | 92 (64.3) |
Count of control measurements | 45 (17.2) | 125 (47.9) | 91 (34.9) | 0.003 | <0.001 | 261 |
Patients after TDM-guided dose adjustment | 21 (14.7) | 74 (51.7) | 48 (33.6) | <0.001 | 0.0186 | 143 |
Assessment of clinical success | ||||||
Significant reduction of CRP c | 27 (90.0) | 30 (93.8) | 69 (85.2) | 0.940 | 0.353 | 126 (88.1) |
Significant reduction of PCT d | 20 (100.0) | 19 (100.0) | 50 (98.0) | 1.000 | 89 (98.9) | |
Absence of recurrent infection e | 28 (96.6) | 28 (90.3) | 52 (85.2) | 0.654 | 0.722 | 108 (89.3) |
Microbiological pathogen eradication f | 35 (94.6) | 33 (71.7) | 86 (86.0) | 0.022 | 0.100 | 154 (82.3) |
Influence of renal function and renal replacement therapy | ||||||
Normal renal function (no AKI) | 22 (73.3) | 22 (68.8) | 36 (44.4) | 0.317 | 0.023 | 80 (55.9) |
AKI stage I | 5 (16.7) | 3 (9.4) | 27 (33.3) | 35 (24.5) | ||
AKI stage II | 2 (6.7) | 5 (15.6) | 6 (7.4) | 13 (9.1) | ||
AKI stage III | 1 (3.3) | 0 (0.0) | 5 (6.2) | 6 (4.2) | ||
RRT | 0 (0.0) | 2 (6.2) | 7 (8.6) | 9 (6.3) | ||
Adverse events (AEs) | ||||||
Gastrointestinal | 1 (3.3) | 7 (21.9) | 20 (24.7) | 0.072 | 0.943 | 28 (19.6) |
Hypernatremia | 10 (33.3) | 18 (56.2) | 33 (40.7) | 0.683 | 0.139 | 61 (42.6) |
Hypokalemia | 11 (36.7) | 13 (40.6) | 33 (40.7) | 0.683 | 0.988 | 57 (39.9) |
Total | 11 (36.7) | 18 (56.2) | 48 (59.3) | 0.197 | 0.936 | 77 (53.8) |
AEs n = 77 | No AEs n = 66 | p Value | Overall | |
---|---|---|---|---|
Fosfomycin dosages and duration of therapy | ||||
Start dosage (gram) | 15.0 (15.0, 16.0) | 15.0 (15.0, 15.0) | 0.032 | 15.0 (15.0, 16.0) |
Duration of therapy (days) | 16.0 (10.0, 22.0) | 14.0 (9.00, 26.00) | 0.832 | 15.0 (9.0, 25.0) |
TDM determinations | ||||
Fosfomycin plasma concentration [mg/L] | 158.0 (99.7, 270.8) | 131.0 (42.2, 209.0) | 0.010 | 150.8 (77.2, 232.9) |
Number of TDM determinations | 2.0 (1.0, 3.0) | 3.0 (1.0, 4.0) | 0.035 | 2.0 (1.0, 4.0) |
Patients with TDM-guided dose adjustment | 46 (75.4) | 38 (80.9) | 0.659 | 84 (77.8) |
Patients with NI-guided dose adjustment | 69 (89.6) | 58 (87.9) | 0.951 | 127 (88.8) |
Fosfomycin concentration < 64 mg/mL | 11 (14.3) | 19 (28.8) | 0.101 | 30 (21.0) |
Fosfomycin concentration 64–128 mg/mL | 18 (23.4) | 14 (21.2) | 32 (22.4) | |
Fosfomycin concentration > 128 mg/mL | 48 (62.3) | 33 (50.0) | 81 (56.6) | |
Influence of renal function and renal replacement therapy | ||||
Normal renal function (no AKI) | 43 (55.8) | 37 (56.1) | 0.003 | 80 (55.9) |
AKI stage I | 25 (32.5) | 10 (15.2) | 35 (24.5) | |
AKI stage II | 7 (9.1) | 6 (9.1) | 13 (9.1) | |
AKI stage III | 2 (2.6) | 4 (6.1) | 6 (4.2) | |
RRT | 0 (0.0) | 9 (13.6) | 9 (6.3) | |
Laboratory results | ||||
Sodium [mmol/L] | 141.4 (139.0, 144.7) | 140.2 (137.4, 143.1) | <0.001 | 140.9 (138.2, 143.8) |
Potassium [mmol/L] | 3.5 (3.2, 4.1) | 4.2 (3.9, 4.5) | <0.001 | 3.9 (3.5, 4.4) |
NT-proBNP [ng/L] | 4283 (2433, 10560) | 32,530 (2691, 3715) | 0.355 | 3851 (2442, 9210) |
Troponin [µg/L] | 50.3 (33.7, 54.6) | 39.0 (23.5, 59.0) | 0.712 | 48.7 (27.7, 59.0) |
Uric acid [µmol/L] | 267 (175, 359) | 249 (171, 337) | 0.568 | 267 (174, 357) |
Albumin [g/L] | 25.1 (21.5, 29.3) | 28.5 (24.4, 31.7) | <0.001 | 26.8 (22.6, 30.2) |
Univariate Logistic Regression | Multivariate Logistic Regression | |||||
---|---|---|---|---|---|---|
Characteristic | OR | 95% CI | p-Value | OR | 95% CI | p-Value |
Age group ≥ 70 years | 3.62 | 1.82, 7.40 | <0.001 | 3.70 | 1.24, 11.5 | 0.020 |
Female sex | 1.46 | 0.65, 3.38 | 0.4 | |||
AKI stage I | 1.42 | 0.61, 3.50 | 0.4 | |||
Fosfomycin concentration | ||||||
64–128 mg/L | 2.59 | 0.93, 7.55 | 0.073 | 1.43 | 0.43, 4.68 | 0.6 |
>128 mg/L | 4.13 | 1.67, 10.7 | 0.003 | 3.30 | 1.09, 10.4 | 0.036 |
CCI ≥ 4 | 4.74 | 2.10, 11.1 | <0.001 | 2.07 | 0.69, 6.20 | 0.2 |
Diabetes mellitus | 2.22 | 1.02, 4.98 | 0.047 | 1.76 | 0.61, 5.26 | 0.3 |
Chronic kidney disease CKD 3–5 | 1.75 | 0.83, 3.77 | 0.15 | |||
ICU | 0.5 | 0.19, 1.26 | 0.14 | |||
Adipositas | 1.14 | 0.45, 2.88 | 0.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marx, K.; Malmström, N.; Quast, M.; Glas, A.; Wendt, R.; Kinzig, M.; Sörgel, F.; Fedders, M.; Bertsche, T.; Lübbert, C. Monitoring Plasma Concentrations of Intravenously Administered Fosfomycin to Prevent Drug-Related Adverse Events: A Retrospective Observational Study. Antibiotics 2025, 14, 548. https://doi.org/10.3390/antibiotics14060548
Marx K, Malmström N, Quast M, Glas A, Wendt R, Kinzig M, Sörgel F, Fedders M, Bertsche T, Lübbert C. Monitoring Plasma Concentrations of Intravenously Administered Fosfomycin to Prevent Drug-Related Adverse Events: A Retrospective Observational Study. Antibiotics. 2025; 14(6):548. https://doi.org/10.3390/antibiotics14060548
Chicago/Turabian StyleMarx, Kathrin, Nina Malmström, Marie Quast, Annette Glas, Ralph Wendt, Martina Kinzig, Fritz Sörgel, Maike Fedders, Thilo Bertsche, and Christoph Lübbert. 2025. "Monitoring Plasma Concentrations of Intravenously Administered Fosfomycin to Prevent Drug-Related Adverse Events: A Retrospective Observational Study" Antibiotics 14, no. 6: 548. https://doi.org/10.3390/antibiotics14060548
APA StyleMarx, K., Malmström, N., Quast, M., Glas, A., Wendt, R., Kinzig, M., Sörgel, F., Fedders, M., Bertsche, T., & Lübbert, C. (2025). Monitoring Plasma Concentrations of Intravenously Administered Fosfomycin to Prevent Drug-Related Adverse Events: A Retrospective Observational Study. Antibiotics, 14(6), 548. https://doi.org/10.3390/antibiotics14060548