Description of Two Resistance-Nodulation-Cell Division Efflux Systems Involved in Acquired Antibiotic Resistance: AxySUV in Achromobacter xylosoxidans and AinCDJ in Achromobacter insuavis
Abstract
:1. Introduction
2. Results
2.1. Description of AinCDJ in A. insuavis
2.2. Description of AxySUV in A. xylosoxidans
3. Discussion
4. Materials and Methods
4.1. Bacterial Strains and MIC Determination
4.2. WGS
4.3. Relative Gene Expression Measurement of ainD and axyU
4.4. Gene Inactivation
4.5. In Silico Detection of axySUV and ainCDJ in Available Genomes and Phylogenetic Analysis
4.6. Nucleotide Sequence Accession Numbers
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Geremia, N.; Marino, A.; De Vito, A.; Giovagnorio, F.; Stracquadanio, S.; Colpani, A.; Di Bella, S.; Madeddu, G.; Parisi, S.G.; Stefani, S.; et al. Rare or unusual non-fermenting Gram-negative bacteria: Therapeutic approach and antibiotic treatment options. Antibiotics 2025, 14, 306. [Google Scholar] [CrossRef] [PubMed]
- Isler, B.; Kidd, T.J.; Stewart, A.G.; Harris, P.; Paterson, D.L. Achromobacter infections and treatment options. Antimicrob. Agents Chemother. 2020, 64, e01025-20. [Google Scholar] [CrossRef] [PubMed]
- Spilker, T.; Vandamme, P.; Lipuma, J.J. Identification and distribution of Achromobacter species in cystic fibrosis. J. Cyst. Fibros. 2013, 12, 298–301. [Google Scholar] [CrossRef]
- Olbrecht, M.; Echahidi, F.; Piérard, D.; Peeters, C.; Vandamme, P.; Wybo, I.; Demuyser, T. In vitro susceptibility of Achromobacter species isolated from cystic fibrosis patients: A 6-year survey. Antimicrob. Agents Chemother. 2023, 67, e0037923. [Google Scholar] [CrossRef] [PubMed]
- Ray, S.; Flemming, L.K.; Scudder, C.J.; Ly, M.A.; Porterfield, H.S.; Smith, R.D.; Clark, A.E.; Johnson, J.K.; Das, S. Comparative phenotypic and genotypic antimicrobial susceptibility surveillance in Achromobacter Spp. through whole genome sequencing. Microbiol. Spectr. 2025, 13, e0252724. [Google Scholar] [CrossRef]
- Magallon, A.; Roussel, M.; Neuwirth, C.; Tetu, J.; Cheiakh, A.-C.; Boulet, B.; Varin, V.; Urbain, V.; Bador, J.; Amoureux, L. Fluoroquinolone resistance in Achromobacter Spp.: Substitutions in QRDRs of GyrA, GyrB, ParC and ParE and implication of the RND efflux system AxyEF-OprN. J. Antimicrob. Chemother. 2021, 76, 297–304. [Google Scholar] [CrossRef]
- Magallon, A.; Amoureux, L.; Garrigos, T.; Sonois, M.; Varin, V.; Neuwirth, C.; Bador, J. Role of AxyABM overexpression in acquired resistance in Achromobacter xylosoxidans. J. Antimicrob. Chemother. 2022, 77, 926–929. [Google Scholar] [CrossRef]
- Bador, J.; Amoureux, L.; Blanc, E.; Neuwirth, C. Innate aminoglycoside resistance of Achromobacter xylosoxidans is due to AxyXY-OprZ, an RND-type multidrug efflux pump. Antimicrob. Agents Chemother. 2013, 57, 603–605. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, S.M.; Penstoft, L.N.; Nørskov-Lauritsen, N. Motility, biofilm formation and antimicrobial efflux of sessile and planktonic cells of Achromobacter xylosoxidans. Pathogens 2019, 8, 14. [Google Scholar] [CrossRef]
- Bador, J.; Amoureux, L.; Duez, J.-M.; Drabowicz, A.; Siebor, E.; Llanes, C.; Neuwirth, C. First description of an RND-type multidrug efflux pump in Achromobacter xylosoxidans, AxyABM. Antimicrob. Agents Chemother. 2011, 55, 4912–4914. [Google Scholar] [CrossRef]
- Papalia, M.; Traglia, G.; Ruggiero, M.; Almuzara, M.; Vay, C.; Gutkind, G.; Ramírez, M.S.; Radice, M. Characterisation of OXA-258 enzymes and AxyABM efflux pump in Achromobacter ruhlandii. J. Glob. Antimicrob. Resist. 2018, 14, 233–237. [Google Scholar] [CrossRef] [PubMed]
- Bador, J.; Neuwirth, C.; Grangier, N.; Muniz, M.; Germé, L.; Bonnet, J.; Pillay, V.-G.; Llanes, C.; de Curraize, C.; Amoureux, L. Role of AxyZ transcriptional regulator in overproduction of AxyXY-OprZ multidrug efflux system in Achromobacter species mutants selected by tobramycin. Antimicrob. Agents Chemother. 2017, 61, e00290-17. [Google Scholar] [CrossRef] [PubMed]
- Scoffone, V.C.; Trespidi, G.; Barbieri, G.; Irudal, S.; Perrin, E.; Buroni, S. Role of RND efflux pumps in drug resistance of cystic fibrosis pathogens. Antibiotics 2021, 10, 863. [Google Scholar] [CrossRef]
- Gabrielaite, M.; Nielsen, F.C.; Johansen, H.K.; Marvig, R.L. Achromobacter Spp. genetic adaptation in cystic fibrosis. Microb. Genom. 2021, 7, 000582. [Google Scholar] [CrossRef]
- Chalhoub, H.; Kampmeier, S.; Kahl, B.C.; Van Bambeke, F. Role of efflux in antibiotic resistance of Achromobacter xylosoxidans and Achromobacter insuavis isolates from patients with cystic fibrosis. Front. Microbiol. 2022, 13, 762307. [Google Scholar] [CrossRef] [PubMed]
- Masuda, N.; Sakagawa, E.; Ohya, S.; Gotoh, N.; Tsujimoto, H.; Nishino, T. Substrate specificities of MexAB-OprM, MexCD-OprJ, and MexXY-oprM efflux pumps in Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2000, 44, 3322–3327. [Google Scholar] [CrossRef]
- Dean, C.R.; Visalli, M.A.; Projan, S.J.; Sum, P.-E.; Bradford, P.A. Efflux-mediated resistance to tigecycline (GAR-936) in Pseudomonas aeruginosa PAO1. Antimicrob. Agents Chemother. 2003, 47, 972–978. [Google Scholar] [CrossRef]
- Poole, K.; Gotoh, N.; Tsujimoto, H.; Zhao, Q.; Wada, A.; Yamasaki, T.; Neshat, S.; Yamagishi, J.; Li, X.Z.; Nishino, T. Overexpression of the mexC-mexD-oprJ efflux operon in nfxB-type multidrug-resistant strains of Pseudomonas aeruginosa. Mol. Microbiol. 1996, 21, 713–724. [Google Scholar] [CrossRef]
- Morita, Y.; Komori, Y.; Mima, T.; Kuroda, T.; Mizushima, T.; Tsuchiya, T. Construction of a series of mutants lacking all of the four major Mex operons for multidrug efflux pumps or possessing each one of the operons from Pseudomonas aeruginosa PAO1: MexCD-OprJ Is an Inducible Pump. FEMS Microbiol. Lett. 2001, 202, 139–143. [Google Scholar] [CrossRef]
- Zając, O.M.; Tyski, S.; Laudy, A.E. The contribution of efflux systems to levofloxacin resistance in Stenotrophomonas maltophilia clinical strains isolated in Warsaw, Poland. Biology 2022, 11, 1044. [Google Scholar] [CrossRef]
- Shiba, T.; Ishiguro, K.; Takemoto, N.; Koibuchi, H.; Sugimoto, K. Purification and characterization of the Pseudomonas aeruginosa NfxB Protein, the negative regulator of the nfxB gene. J. Bacteriol. 1995, 177, 5872–5877. [Google Scholar] [CrossRef] [PubMed]
- Colclough, A.L.; Scadden, J.; Blair, J.M.A. TetR-family transcription factors in Gram-negative bacteria: Conservation, variation and implications for efflux-mediated antimicrobial resistance. BMC Genom. 2019, 20, 731. [Google Scholar] [CrossRef] [PubMed]
- Cuthbertson, L.; Nodwell, J.R. The TetR family of regulators. Microbiol. Mol. Biol. Rev. 2013, 77, 440–475. [Google Scholar] [CrossRef]
- Jeannot, K.; Elsen, S.; Köhler, T.; Attree, I.; van Delden, C.; Plésiat, P. Resistance and virulence of Pseudomonas aeruginosa clinical strains overproducing the MexCD-OprJ efflux pump. Antimicrob. Agents Chemother. 2008, 52, 2455–2462. [Google Scholar] [CrossRef] [PubMed]
- Pfaffl, M.W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001, 29, e45. [Google Scholar] [CrossRef]
- Davis, J.J.; Gerdes, S.; Olsen, G.J.; Olson, R.; Pusch, G.D.; Shukla, M.; Vonstein, V.; Wattam, A.R.; Yoo, H. PATtyFams: Protein families for the microbial genomes in the PATRIC database. Front. Microbiol. 2016, 7, 118. [Google Scholar] [CrossRef]
- Waterhouse, A.; Bertoni, M.; Bienert, S.; Studer, G.; Tauriello, G.; Gumienny, R.; Heer, F.T.; de Beer, T.A.P.; Rempfer, C.; Bordoli, L.; et al. SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Res. 2018, 46, W296–W303. [Google Scholar] [CrossRef]
Antibiotic | MIC (mg/L) | |||||
---|---|---|---|---|---|---|
AXX-A | AXX-A-ΔD | AXX-A-ΔK | AXX-A-Do1 | AXX-A-Do1-ΔD | AXX-A-Do1-ΔK | |
Ofloxacin | 4 | 2 | ≥32 (↑≥8) | ≥32 (↑≥8) | 2 (↓≥16) | ≥32 |
Levofloxacin | 1 | 1 | 16 (↑16) | 8 (↑8) | 1 (↓8) | 16 |
Ciprofloxacin | 0.5 | 1 | 16 (↑32) | 8 (↑16) | 1 (↓8) | 16 |
Ceftazidime | 4 | 4 | 4 | 4 | 4 | 4 |
Cefotaxime | ≥32 | ≥32 | ≥32 | ≥32 | ≥32 | ≥32 |
Cefepime | 32 | 32 | 128 (↑4) | ≥256 (↑≥8) | 32 (↓≥8) | ≥256 |
Ertapenem | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 |
Imipenem | 2 | 2 | 2 | 2 | 2 | 2 |
Meropenem | 0.25 | 0.25 | 0.5 | 0.5 | 0.125 (↓4) | 0.5 |
Doripenem | 0.5 | 0.5 | 2 (↑4) | 2 (↑4) | 0.5 (↓4) | 2 |
Aztreonam | ≥256 | ≥256 | ≥256 | ≥256 | ≥256 | ≥256 |
Doxycycline | 4 | 4 | 16 (↑4) | 16 (↑4) | 4 (↓4) | 16 (↑4) |
Minocycline | 4 | 4 | 16 (↑4) | 16 (↑4) | 4 (↓4) | 16 (↑4) |
Tigecycline | 2 | 2 | 8 (↑4) | 8 (↑4) | 2 (↓4) | 8 (↑4) |
Cotrimoxazole | 0.03 | 0.03 | 0.03 | 0.03 | 0.06 | 0.03 |
Trimethoprim | ≥32 | ≥32 | ≥32 | ≥32 | ≥32 | ≥32 |
Sulfamethoxazole | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 |
Chloramphenicol | 32 | 32 | ≥256 (↑≥8) | ≥256 (↑≥8) | 32 (↓≥8) | ≥256 |
Antibiotic | MIC (mg/L) | ||||||||
---|---|---|---|---|---|---|---|---|---|
CIP102236 | CIP102236-ΔU | CIP102236-ΔW | CIP102236-Eo4 | CIP102236-Eo4-ΔU | CIP102236-Eo4-ΔW | CIP102236-El9 | CIP102236-El9-ΔU | CIP102236-El9-ΔW | |
Ofloxacin | 4 | 8 | ≥32 (↑≥8) | ≥32 (↑≥8) | 8 (↓≥4) | ≥32 | ≥32 (↑≥8) | 4 (↓≥8) | ≥32 |
Levofloxacin | 2 | 2 | 8 (↑4) | 16 (↑8) | 4 (↓4) | 16 | 16 (↑8) | 2 (↓8) | 16 |
Ciprofloxacin | 2 | 4 | ≥32 (↑≥16) | 32 (↑16) | 4 (↓8) | 16 | 32 (↑16) | 2 (↓16) | ≥32 |
Ceftazidime | 2 | 2 | 1 | 1 | 2 | 1 | 2 | 2 | 1 |
Cefotaxime | ≥32 | ≥32 | ≥32 | ≥32 | ≥32 | ≥32 | ≥32 | ≥32 | ≥32 |
Cefepime | 64 | 64 | 16 (↓4) | 16 (↓4) | 64 (↑4) | 16 | 64 | 64 | 16 (↓4) |
Ertapenem | 0.06 | 0.03 | 0.03 | 0.03 | 0.06 | 0.03 | 0.03 | 0.06 | 0.03 |
Imipenem | 4 | 2 | 2 | 2 | 4 | 2 | 2 | 2 | 2 |
Meropenem | 0.25 | 0.125 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.125 | 0.25 |
Doripenem | 0.5 | 0.5 | 2 (↑4) | 2 (↑4) | 0.5 (↓4) | 2 | 2 (↑4) | 0.5 (↓4) | 2 |
Aztreonam | ≥256 | ≥256 | 128 (↓≥2) | 128 (↓≥2) | ≥256 (↑≥2) | 128 | ≥256 | ≥256 | 128 (↓≥2) |
Doxycycline | 8 | 8 | 32 (↑4) | 32 (↑4) | 8 (↓4) | 32 (↑4) | 32 (↑4) | 8 (↓4) | 32 (↑4) |
Minocycline | 4 | 4 | 16 (↑4) | 16 (↑4) | 4 (↓4) | 16 (↑4) | 16 (↑4) | 4 (↓4) | 16 (↑4) |
Tigecycline | 2 | 2 | 4 (↑2) | 4 (↑2) | 4 | 4 | 4 (↑2) | 2 (↓2) | 4 |
Cotrimoxazole | 0.03 | 0.03 | 0.03 | 0.03 | 0.06 | 0.03 | 0.03 | 0.06 | 0.03 |
Trimethoprim | ≥32 | ≥32 | ≥32 | ≥32 | ≥32 | ≥32 | ≥32 | ≥32 | ≥32 |
Sulfamethoxazole | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 |
Chloramphenicol | 64 | 32 | 64 | 128 | 32 (↓4) | 64 | ≥256 (↑≥4) | 64 (↓≥4) | 64 (↓≥4) |
Strain Name | Description | Source or Reference |
---|---|---|
Achromobacter insuavis | ||
AXX-A (CIP110540) | Parental strain, wild type | Our collection |
AXX-A-ΔD | AXX-A with ainD inactivated | This study |
AXX-A-ΔK | AXX-A with ainK inactivated | This study |
AXX-A-Do1 | in vitro one-step mutant of AXX-A previously selected on ofloxacin (8 mg/L), ainU overexpressed (79-fold) | This study |
AXX-A-Do1-ΔD | AXX-A-Do1 with ainD inactivated | This study |
AXX-A-Do1-ΔK | AXX-A-Do1 with ainK inactivated | This study |
Achromobacter xylosoxidans | ||
CIP102236 | Parental strain, wild type | Institut Pasteur collection |
CIP102236-ΔU | CIP102236 with axyU inactivated | This study |
CIP102236-ΔW | CIP102236 with axyW inactivated | This study |
CIP102236-Eo4 | in vitro one-step mutant of CIP102236 previously selected on ofloxacin (8 mg/L), axyU overexpressed (138-fold) | This study |
CIP102236-Eo4-ΔU | CIP102236-Eo4 with axyU inactivated | This study |
CIP102236-Eo4-ΔW | CIP102236-Eo4 with axyW inactivated | This study |
CIP102236-El9 | in vitro one-step mutant of CIP102236 previously selected on levofloxacin (4 mg/L), axyU overexpressed (37-fold) | This study |
CIP102236-El9-ΔU | CIP102236-El9 with axyU inactivated | This study |
CIP102236-El9-ΔW | CIP102236-El9 with axyW inactivated | This study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Magallon, A.; Bador, J.; Garrigos, T.; Demeule, C.; Chapelle, A.; Varin, V.; Neuwirth, C.; Amoureux, L. Description of Two Resistance-Nodulation-Cell Division Efflux Systems Involved in Acquired Antibiotic Resistance: AxySUV in Achromobacter xylosoxidans and AinCDJ in Achromobacter insuavis. Antibiotics 2025, 14, 536. https://doi.org/10.3390/antibiotics14060536
Magallon A, Bador J, Garrigos T, Demeule C, Chapelle A, Varin V, Neuwirth C, Amoureux L. Description of Two Resistance-Nodulation-Cell Division Efflux Systems Involved in Acquired Antibiotic Resistance: AxySUV in Achromobacter xylosoxidans and AinCDJ in Achromobacter insuavis. Antibiotics. 2025; 14(6):536. https://doi.org/10.3390/antibiotics14060536
Chicago/Turabian StyleMagallon, Arnaud, Julien Bador, Thomas Garrigos, Caroline Demeule, Anaïs Chapelle, Véronique Varin, Catherine Neuwirth, and Lucie Amoureux. 2025. "Description of Two Resistance-Nodulation-Cell Division Efflux Systems Involved in Acquired Antibiotic Resistance: AxySUV in Achromobacter xylosoxidans and AinCDJ in Achromobacter insuavis" Antibiotics 14, no. 6: 536. https://doi.org/10.3390/antibiotics14060536
APA StyleMagallon, A., Bador, J., Garrigos, T., Demeule, C., Chapelle, A., Varin, V., Neuwirth, C., & Amoureux, L. (2025). Description of Two Resistance-Nodulation-Cell Division Efflux Systems Involved in Acquired Antibiotic Resistance: AxySUV in Achromobacter xylosoxidans and AinCDJ in Achromobacter insuavis. Antibiotics, 14(6), 536. https://doi.org/10.3390/antibiotics14060536