Real-Life Cefiderocol Use in Bone and Joint Infection: A French National Cohort
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Definitions
4.2. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.J.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [PubMed]
- Kohira, N.; West, J.; Ito, A.; Ito-Horiyama, T.; Nakamura, R.; Sato, T.; Rittenhouse, S.; Tsuji, M.; Yamano, Y. In Vitro Antimicrobial Activity of a Siderophore Cephalosporin, S-649266, against Enterobacteriaceae Clinical Isolates, Including Carbapenem-Resistant Strains. Antimicrob. Agents Chemother. 2016, 60, 729–734. [Google Scholar] [PubMed]
- Ito, A.; Nishikawa, T.; Ota, M.; Ito-Horiyama, T.; Ishibashi, N.; Sato, T.; Tsuji, M.; Yamano, Y. Stability and low induction propensity of cefiderocol against chromosomal AmpC β-lactamases of Pseudomonas aeruginosa and Enterobacter cloacae. J. Antimicrob. Chemother. 2018, 73, 3049–3052. [Google Scholar] [PubMed]
- Hackel, M.A.; Tsuji, M.; Yamano, Y.; Echols, R.; Karlowsky, J.A.; Sahm, D.F. In Vitro Activity of the Siderophore Cephalosporin, Cefiderocol, against a Recent Collection of Clinically Relevant Gram-Negative Bacilli from North America and Europe, Including Carbapenem-Nonsusceptible Isolates (SIDERO-WT-2014 Study). Antimicrob. Agents Chemother. 2017, 61, e00093-17. [Google Scholar]
- Falagas, M.E.; Skalidis, T.; Vardakas, K.Z.; Legakis, N.J.; on behalf of the Hellenic Cefiderocol Study Group. Activity of cefiderocol (S-649266) against carbapenem-resistant Gram-negative bacteria collected from inpatients in Greek hospitals. J. Antimicrob. Chemother. 2017, 72, 1704–1708. [Google Scholar]
- Bassetti, M.; Echols, R.; Matsunaga, Y.; Ariyasu, M.; Doi, Y.; Ferrer, R.; Lodise, T.P.; Naas, T.; Niki, Y.; Paterson, D.L.; et al. Efficacy and safety of cefiderocol or best available therapy for the treatment of serious infections caused by carbapenem-resistant Gram-negative bacteria (CREDIBLE-CR): A randomised, open-label, multicentre, pathogen-focused, descriptive, phase 3 trial. Lancet Infect. Dis. 2021, 21, 226–240. [Google Scholar] [CrossRef]
- Wunderink, R.G.; Matsunaga, Y.; Ariyasu, M.; Clevenbergh, P.; Echols, R.; Kaye, K.S.; Kollef, M.; Menon, A.; Pogue, J.M.; Shorr, A.F.; et al. Cefiderocol versus high-dose, extended-infusion meropenem for the treatment of Gram-negative nosocomial pneumonia (APEKS-NP): A randomised, double-blind, phase 3, non-inferiority trial. Lancet Infect. Dis. 2021, 21, 213–225. [Google Scholar]
- Timsit, J.F.; Paul, M.; Shields, R.K.; Echols, R.; Baba, T.; Yamano, Y.; Portsmouth, S. Cefiderocol for the Treatment of Infections Due to Metallo-B-lactamase–Producing Pathogens in the CREDIBLE-CR and APEKS-NP Phase 3 Randomized Studies. Clin. Infect. Dis. 2022, 75, 1081–1084. [Google Scholar]
- Titécat, M.; Senneville, E.; Wallet, F.; Dezèque, H.; Migaud, H.; Courcol, R.J.; Loïez, C. Bacterial epidemiology of osteoarticular infections in a referent center: 10-year study. Orthop. Traumatol. Surg. Res. 2013, 99, 653–658. [Google Scholar]
- Antimicrobial Resistance in the EU/EEA (EARS-Net)—Annual Epidemiological Report for 2022. 2022. Available online: https://www.ecdc.europa.eu/en/publications-data/surveillance-antimicrobial-resistance-europe-2022 (accessed on 30 November 2024).
- McConoughey, S.J.; Howlin, R.; Granger, J.F.; Manring, M.M.; Calhoun, J.H.; Shirtliff, M.; Kathju, S.; Stoodley, P. Biofilms in periprosthetic orthopedic infections. Future Microbiol. 2014, 9, 987–1007. [Google Scholar]
- Pybus, C.A.; Felder-Scott, C.; Obuekwe, V.; Greenberg, D.E. Cefiderocol Retains Antibiofilm Activity in Multidrug-Resistant Gram-Negative Pathogens. Antimicrob. Agents Chemother. 2021, 65, e01194-20. [Google Scholar] [CrossRef] [PubMed]
- Mabayoje, D.A.; NicFhogartaigh, C.; Cherian, B.P.; Tan, M.G.M.; Wareham, D.W. Compassionate use of cefiderocol for carbapenem-resistant Acinetobacter baumannii prosthetic joint infection. JAC Antimicrob. Resist. 2021, 3 (Suppl. 1), i21–i24. [Google Scholar] [CrossRef] [PubMed]
- Siméon, S.; Dortet, L.; Bouchand, F.; Roux, A.L.; Bonnin, R.A.; Duran, C.; Decousser, J.W.; Bessis, S.; Davido, B.; Sorriaux, G.; et al. Compassionate Use of Cefiderocol to Treat a Case of Prosthetic Joint Infection Due to Extensively Drug-Resistant Enterobacter hormaechei. Microorganisms 2020, 8, 1236. [Google Scholar] [CrossRef] [PubMed]
- Dagher, M.; Ruffin, F.; Marshall, S.; Taracila, M.; Bonomo, R.A.; Reilly, R.; Fowler, V.G., Jr.; Thaden, J.T. Case Report: Successful Rescue Therapy of Extensively Drug-Resistant Acinetobacter baumannii Osteomyelitis with Cefiderocol. Open Forum Infect. Dis. 2020, 7, ofaa150. [Google Scholar] [CrossRef]
- Chavda, A.; Gilchrist, M.; Samarasinghe, D. Education: A compassionate use of cefiderocol to treat osteomyelitis caused by an XDR Pseudomonas aeruginosa. JAC-Antimicrob. Resist. 2021, 3 (Suppl. 1), i18–i20. [Google Scholar] [CrossRef]
- Alamarat, Z.I.; Babic, J.; Tran, T.T.; Wootton, S.H.; Dinh, A.Q.; Miller, W.R.; Hanson, B.; Wanger, A.; Gary, J.L.; Arias, C.A.; et al. Long-Term Compassionate Use of Cefiderocol To Treat Chronic Osteomyelitis Caused by Extensively Drug-Resistant Pseudomonas aeruginosa and Extended-Spectrum-β-Lactamase-Producing Klebsiella pneumoniae in a Pediatric Patient. Antimicrob. Agents Chemother. 2020, 64, e01872-19. [Google Scholar] [CrossRef]
- Schellong, P.; Wennek-Klose, J.; Spiegel, C.; Rödel, J.; Hagel, S. Successful outpatient parenteral antibiotic therapy with cefiderocol for osteomyelitis caused by multi-drug resistant Gram-negative bacteria: A case report. JAC-Antimicrob. Resist. 2023, 6, dlae015. [Google Scholar] [CrossRef]
- Chambers, M.M.; Gutowski, C.J.; Doktor, K. Cefiderocol for Stenotrophomonas maltophilia prosthetic joint infection: A case report. Ther. Adv. Infect. 2023, 10, 204993612311742. [Google Scholar] [CrossRef]
- Charlson, M.E.; Pompei, P.; Ales, K.L.; MacKenzie, C.R. A new method of classifying prognostic comorbidity in longitudinal studies: Development and validation. J. Chronic Dis. 1987, 40, 373–383. [Google Scholar] [CrossRef]
- Tamma, P.D.; Aitken, S.L.; Bonomo, R.A.; Mathers, A.J.; Van Duin, D.; Clancy, C.J. Infectious Diseases Society of America Guidance on the Treatment of AmpC β-Lactamase–Producing Enterobacterales, Carbapenem-Resistant Acinetobacter baumannii, and Stenotrophomonas maltophilia Infections. Clin. Infect. Dis. 2022, 74, 2089–2114. [Google Scholar] [CrossRef]
- Piccica, M.; Spinicci, M.; Botta, A.; Bianco, V.; Lagi, F.; Graziani, L.; Faragona, A.; Parrella, R.; Giani, T.; Bartolini, A.; et al. Cefiderocol use for the treatment of infections by carbapenem-resistant Gram-negative bacteria: An Italian multicentre real-life experience. J. Antimicrob. Chemother. 2023, 78, 2752–2761. [Google Scholar] [PubMed]
- Papadopoulos, A.; Ribera, A.; Mavrogenis, A.F.; Rodriguez-Pardo, D.; Bonnet, E.; Salles, M.J.; Del Toro, M.D.; Nguyen, S.; Blanco-García, A.; Skaliczki, G.; et al. Multidrug-resistant and extensively drug-resistant Gram-negative prosthetic joint infections: Role of surgery and impact of colistin administration. Int. J. Antimicrob. Agents 2019, 53, 294–301. [Google Scholar] [CrossRef] [PubMed]
- Prinz, C.; Streit, F.; Schumann, C.; Dudakova, A.; Lanckohr, C.; Schanz, J.; Bohn, M.; Groß, U.; Meissner, K.; Moerer, O.; et al. Feasibility of Continuous Infusion of Cefiderocol in Conjunction with the Establishment of Therapeutic Drug Monitoring in Patients with Extensively Drug-Resistant Gram-Negative Bacteria. Clin. Drug Investig. 2023, 43, 307–314. [Google Scholar]
- Gatti, M.; Bartoletti, M.; Cojutti, P.G.; Gaibani, P.; Conti, M.; Giannella, M.; Viale, P.; Pea, F. A descriptive case series of pharmacokinetic/pharmacodynamic target attainment and microbiological outcome in critically ill patients with documented severe extensively drug-resistant Acinetobacter baumannii bloodstream infection and/or ventilator-associated pneumonia treated with cefiderocol. J. Glob. Antimicrob. Resist. 2021, 27, 294–298. [Google Scholar]
- Osmon, D.R.; Berbari, E.F.; Berendt, A.R.; Lew, D.; Zimmerli, W.; Steckelberg, J.M.; Rao, N.; Hanssen, A.; Wilson, W.R. Executive Summary: Diagnosis and Management of Prosthetic Joint Infection: Clinical Practice Guidelines by the Infectious Diseases Society of Americaa. Clin. Infect. Dis. 2013, 56, 1–10. [Google Scholar] [CrossRef]
- Dortet, L.; Niccolai, C.; Pfennigwerth, N.; Frisch, S.; Gonzalez, C.; Antonelli, A.; Giani, T.; Hoenings, R.; Gatermann, S.; Rossolini, G.M.; et al. Performance evaluation of the UMIC® Cefiderocol to determine MIC in Gram-negative bacteria. J. Antimicrob. Chemother. 2023, 78, 1672–1676. [Google Scholar] [CrossRef]
- Emeraud, C.; Gonzalez, C.; Dortet, L. Comparison of ComASP® and UMIC® methods with the reference method for cefiderocol susceptibility testing on carbapenem-resistant Enterobacterales. J. Antimicrob. Chemother. 2023, 78, 1800–1801. [Google Scholar] [CrossRef]
- R Statistical Software, v. 4.4.1; R Core Team: Vienna, Austria, 2024.
Demographics, Comorbidities, and Infection Presentation | n = 45 [Number of Unknown Cases] | |
---|---|---|
Patient’s characteristics | Age, years (median ± IQR) | 62 ± 29 [1] |
Sex n (%) | ||
Male | 33 (73%) | |
Female | 12 (27%) | |
BMI, kg/m2 (median ± IQR) | 25 ± 9 [3] | |
Charlson comorbidity index (median ± IQR) | 3 ± 5 [1] | |
ASA score (median ± IQR) | 3 ± 1 [20] | |
Infection | Osteomyelitis n (%) | 25 (56%) |
Vertebral osteomyelitis | 4 (9%) | |
Diabetes-related osteomyelitis of the foot | 5 (11%) | |
Other | 16 (36%) | |
Implant-related infections n (%) | 20 (44%) | |
Prosthetic joint * | 8 (18%) | |
Arthrodesis | 3 (7%) | |
Osteosynthesis | 9 (20%) | |
Number of previous surgical intervention(s) in patients with implant-related infections (median ± IQR) | 0 ± 2 | |
Duration between surgery and implant-related infections out of 20 (days) [median ± IQR] | 71 ± 393 | |
<1 month | 9 (43%) | |
≥1 month | 12 (57%) | |
<3 months | 17 (57%) | |
[3–24 months] | 9 (30%) | |
≥24 months | 4 (13%) | |
Clinical manifestations | Temperature > 38.5° | 17 (40%) [2] |
Fistula | 19 (44%) [2] | |
Pain | 30 (70%) [2] | |
Local signs of inflammation | 34 (76%) | |
Duration between symptoms of infection and diagnosis of infection (days) (median ± IQR) | 20 ± 37 | |
Biological markers (median ± IQR) | Leucocytes (G/L) | 8.08 ± 6.62 [1] |
Polymorph neutrophils (G/L) | 3.34 ± 5.46 [3] | |
CRP (mg/L) | 22 ± 128 [4] | |
Blood Creatinine (µmol/L) | 78 ± 59 [2] | |
GFR (mL/min) | 83 ± 41 [1] |
Achromobacter xylosoxidans | 3 (2.6%) |
Acinetobacter baumanii | 10 (8.7%) |
Bacteroides ovatus/xylanisolvens | 1 (0.9%) |
Candida albicans | 1 (0.9%) |
Candida orthopsilosis | 1 (0.9%) |
Citrobacter freundii | 4 (3.5%) |
Clostridium sporgenes | 1 (0.9%) |
Corynebacterium striatum | 1 (0.9%) |
Cutibacterium acnes | 5 (4.3%) |
Enterobacter spp. | 6 (5.2%) |
Enterococcus spp. | 12 (10%) |
Escherichia coli | 6 (5.2%) |
Escherichia hermannii | 1 (0.9%) |
Globicatella sanguinis | 1 (0.9%) |
Klebsiella pneumoniae | 10 (8.7%) |
Lactobacillus spp. | 1 (0.9%) |
Morganella morganii | 2 (1.7%) |
Myroides odoratimimus | 1 (0.9%) |
Proteus mirabilis | 4 (3.5%) |
Pseudomonas aeruginosa | 18 (24%) |
Pseudomonas putida | 1 (0.9%) |
Staphylococcus aureus | 2 (1.7%) |
Staphylococcus epidermidis | 5 (4.3%) |
staphylococcus haemolyticus | 2 (1.7%) |
Staphylococcus warneri | 1 (0.9%) |
Stenotrophomonas maltophilia | 4 (3.5%) |
Terrisporobacter glycolius | 1 (0.9%) |
Cefiderocol Monitoring and Use | n = 45 | |
---|---|---|
Cefiderocol dosage, n (%) | 0.75 g bid * | 1 (2%) |
1 g tid * | 1 (2%) | |
1.5 g tid | 2 (4%) | |
2 g tid | 40 (89%) | |
2 g qid * | 1 (2%) | |
Cefiderocol monitoring | Cefiderocol blood monitoring, n (%) | 6 (14%) |
Cefiderocol plasma trough concentration, mg/L (median ± IQR) | 17.4 ± 10 | |
Duration of treatment | Duration of cefiderocol treatment, days (median ± IQR) [unknown] | 34 ± 47 [6] |
Range | 4–122 |
Management and Surgery | n = 45 |
---|---|
Surgery [n (%)] | 37 (82%) |
Orthopedic device (% out of infection devices linked) | 19 (95%) |
On infection without an orthopedic device (% out of infection without a device) | 18 (72%) |
Surgery on infection involving orthopedic device [n (%)] | n = 19 |
Device’s withdrawal | 12 (63%) |
One-stage exchange | 6 (32%) |
Two-stage exchange | 2 (11%) |
Arthrodesis | 1 (5%) |
Removal without replacement | 1 (5%) |
Other | 2 (11%) |
Device’s retention/DAIR | 7 (37%) |
Other | 1 (5%) |
Surgery on infection without orthopedic device [n (%)] | n = 18 |
Irrigation lavage | 9 (50%) |
Bone resection | 4 (22%) |
Amputation | 3 (17%) |
Other | 2 (11%) |
Comparison Between Success and Failure | Remission (n = 23, 51%) | Failure (n = 22, 49%) | p-Value | |
---|---|---|---|---|
Comorbidities | Age, years (median, Q1, Q3) | 62 (49–68) | 62 (36–74) | 0.8 |
Gender male/female, n (%) | 18 (78%)/5 (22%) | 15 (68%)/7 (32%) | 0.4 | |
BMI, kg/m2 (median, Q1, Q3) | 26 (24–32) | 24 (20–11) | 0.2 | |
Charlson comorbidity index (median, Q1, Q3) | 3 (1–7) | 4 (2–6) | 0.7 | |
Type of infection | Infection involving orthopedic device n (%) | 9 (39%) | 11 (50%) | 0.6 |
Clinical presentation | Local signs of inflammation, n (%) | 15 (65%) | 19 (86%) | 0.1 |
Duration between symptoms and diagnosis, days (median, Q1, Q3) | 26 (6–61) | 12 (3–27) | 0.2 | |
Microbiology | Enterobacterales n (%) | 12 (18%) | 5 (10%) | 0.7 |
Non-fermenters n (%) | 25 (38%) | 22 (44%) | 0.7 | |
Fungi n (%) | 2 (3%) | 0 | 0.7 | |
Carbapenemase-producing GNB n/23 (%) | 10/13 (77%) | 7/10 (70%) | 0.7 | |
Polymicrobial infection n (%) | 17 (74%) | 15 (68%) | 0.7 | |
Antibiotic regimens | Combined anti-GNB therapy n (%) | 15 (22%) | 11 (19%) | 0.8 |
Duration of cefiderocol treatment, days (median, Q1, Q3) | 22 (9–49) | 42 (14–65) | 0.2 | |
Surgery | Removal of the implant device (n/19, %) | 5 (56%) | 7 (70%) | 0.6 |
Bone resection (n/18, %) | 3 (38%) | 1 (10%) | 0.3 | |
Delay between infection onset and surgery days (median, Q1, Q3) | 78 (21–411) | 29 (9–631) | 0.5 |
Reference | Isolate | Type of Infection | Associated Antibiotic | Removal of the Infected Implants | Duration (Days) | Outcome (Adverse Effect) |
---|---|---|---|---|---|---|
Mabayoje et al., 2021 [13] | Acinetobacter baumanii NDM | Osteosynthesis | Tigecycline | Yes | 25 | Remission |
Siméon et al., 2020 [14] | Enterobacter hormaechei Derepressed cephalosporinase and β-lactamases (CTX-M-15, TEM-1B and OXA-1) | Total knee prosthesis | ___ | No | 84 | Remission |
Dagher et al., 2021 [15] | Acinetobacter baumannii | Osteomyelitis | ___ | No | 109 | Remission |
Alamarat et al., 2020 [17] | Pseudomonas aeruginosa blaNDM-1 and ESBL-producing Klebsiella pneumoniae | Osteomyelitis | ___ | Yes | 98 | Remission |
Schellong et al., 2023 [18] | Pseudomonas aeruginosa, CFD MIC = 0.38 mg/L trough CFD [ ] = 6.84 mg/L | Osteomyelitis | ___ | Yes | 169 (including 63 as OPAT) | Remission (iron deficiency anemia) |
Chambers et al., 2023 [19] | Stenotrophomonas maltophilia | Total knee prosthesis | TMP-SMX | Yes | 56 | Remission (20 months) |
Chavda et al., 2021 [16] | Pseudomonas aeruginosa | Osteosynthesis | Ciprofloxacin (for Morganella morganii) | Yes | 24 | Remission |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Diarra, A.; Degrendel, M.; Eberl, I.; Ferry, T.; Jaffal, K.; Escaut, L.; Asquier-Khati, A.; Taar, N.; Courjon, J.; Deconinck, L.; et al. Real-Life Cefiderocol Use in Bone and Joint Infection: A French National Cohort. Antibiotics 2025, 14, 388. https://doi.org/10.3390/antibiotics14040388
Diarra A, Degrendel M, Eberl I, Ferry T, Jaffal K, Escaut L, Asquier-Khati A, Taar N, Courjon J, Deconinck L, et al. Real-Life Cefiderocol Use in Bone and Joint Infection: A French National Cohort. Antibiotics. 2025; 14(4):388. https://doi.org/10.3390/antibiotics14040388
Chicago/Turabian StyleDiarra, Ava, Maxime Degrendel, Isabelle Eberl, Tristan Ferry, Karim Jaffal, Lelia Escaut, Antoine Asquier-Khati, Nicolas Taar, Johan Courjon, Laurène Deconinck, and et al. 2025. "Real-Life Cefiderocol Use in Bone and Joint Infection: A French National Cohort" Antibiotics 14, no. 4: 388. https://doi.org/10.3390/antibiotics14040388
APA StyleDiarra, A., Degrendel, M., Eberl, I., Ferry, T., Jaffal, K., Escaut, L., Asquier-Khati, A., Taar, N., Courjon, J., Deconinck, L., Lefevre, B., Baldolli, A., Bermejo, M., Bleibtreu, A., Dacquet, V., de Lastours, V., Gazeau, P., Larcher, R., Patoz, P., ... Senneville, E. (2025). Real-Life Cefiderocol Use in Bone and Joint Infection: A French National Cohort. Antibiotics, 14(4), 388. https://doi.org/10.3390/antibiotics14040388