Antimicrobial Activity of Pediococcus pentosaceus PMY2 Against Multidrug-Resistant Pathogens
Abstract
:1. Introduction
2. Results
2.1. Isolation and Identification of Lactic Acid Bacteria (LAB)
2.2. Comparison of the Antimicrobial Activity of P. pentosaceus PMY2 CFS and Its Fractions with Ampicillin
2.3. MIC and MBC of Pediococcus pentosaceus PMY2 Against Pathogenic Bacteria
2.4. Biofilm Inhibition Activity of Pediococcus pentosaceus PMY2
2.5. Protein Profile and Antimicrobial Activity of the EA Fraction from Pediococcus pentosaceus PMY2
2.6. Antioxidant Activity Assays of Pediococcus pentosaceus PMY2
2.7. Anti-Inflammatory Effects of P. pentosaceus PMY2 CFS in LPS-Stimulated RAW 264.7 Cells
2.8. Inhibitory Effects of PMY2 CFS on LPS-Induced IL-6 and TNF-α Secretion in RAW 264.7 Cells
3. Discussion
4. Materials and Methods
4.1. Bacterial Strain Cultivation
4.2. Isolation and Identification of Lactic Acid Bacteria
4.3. Preparation of Cell-Free Supernatant (CFS) and Its Fractions
4.4. Antimicrobial Activity via Disk Diffusion Assay
4.5. MIC and MBC Determination by Broth Microdilution Assay
4.6. Biofilm Inhibition Assay
4.7. SDS-PAGE and Overlay Agar Assay
4.8. Antioxidant Activity Assays
4.9. Cell Culture
4.10. Anti-Inflammatory Effects via NO Production Assay in RAW 264.7 Cells
4.11. Quantification of IL-6 and TNF-α in RAW 264.7 Cells by ELISA
4.12. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kupper, T.S.; Fuhlbrigge, R.C. Immune Surveillance in the Skin: Mechanisms and Clinical Consequences. Nat. Rev. Immunol. 2004, 4, 211–222. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Khadka, V.D.; Markey, L.; Boucher, M.; Lieberman, T.D. Commensal Skin Bacteria Exacerbate Inflammation and Delay Skin Barrier Repair. J. Investig. Dermatol. 2024, 144, 2541–2552.E10. [Google Scholar] [CrossRef] [PubMed]
- Bouhrour, N.; Nibbering, P.H.; Bendali, F. Medical Device-Associated Biofilm Infections and Multidrug-Resistant Pathogens. Pathogens 2024, 13, 393. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Aswathanarayan, J.B.; Rao, P.; Hm, S.; Gs, S.; Rai, R.V. Biofilm-Associated Infections in Chronic Wounds and Their Management. Adv. Exp. Med. Biol. 2023, 1370, 55–75. [Google Scholar] [CrossRef] [PubMed]
- Ding, X.; Tang, Q.; Xu, Z.; Xu, Y.; Zhang, H.; Zheng, D.; Wang, S.; Tan, Q.; Maitz, J.; Maitz, P.K.; et al. Challenges and Innovations in Treating Chronic and Acute Wound Infections: From Basic Science to Clinical Practice. Burns Trauma 2022, 10, Tkac014. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Liu, M.; Ding, R.; Li, Z.; Xu, N.; Gong, Y.; Huang, Y.; Jia, J.; Du, H.; Yu, Y.; Luo, G. Hyaluronidase-Responsive Bactericidal Cryogel for Promoting Healing of Infected Wounds: Inflammatory Attenuation, ROS Scavenging, and Immune Regulation. Adv. Sci. 2024, 11, E2306602. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pawlak, A.; Michely, L.; Belbekhouche, S. Multilayer Dextran Derivative Based Capsules Fighting Bacteria Resistant to Antibiotic: Case of Kanamycin-Resistant Escherichia coli. Int. J. Biol. Macromol. 2022, 200, 242–246. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Antimicrobial Resistance; World Health Organization: Geneva, Switzerland, 2021; Available online: https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance (accessed on 24 February 2025).
- Batchelder, J.I.; Hare, P.J.; Mok, W.W.K. Resistance-Resistant Antibacterial Treatment Strategies. Front. Antibiot. 2023, 2, 1093156. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Soltani, S.; Biron, E.; Ben Said, L.; Subirade, M.; Fliss, I. Bacteriocin-Based Synergetic Consortia: A Promising Strategy to Enhance Antimicrobial Activity and Broaden the Spectrum of Inhibition. Microbiol. Spectr. 2022, 10, E0040621. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Reuben, R.C.; Roy, P.C.; Sarkar, S.L.; Rubayet Ul Alam, A.S.M.; Jahid, I.K. Characterization and Evaluation of Lactic Acid Bacteria from Indigenous Raw Milk for Potential Probiotic Properties. J. Dairy Sci. 2020, 103, 1223–1237. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Yang, Y.; Li, L.; Zheng, H.; Xiong, Z.; Hou, J.; Wang, L. Genome-Based Identification and Characterization of Bacteriocins Selectively Inhibiting Staphylococcus aureus in Fermented Sausages. Probiotics Antimicrob. Proteins 2024, 1–16, ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Pan, L.L.; Sun, J. Novel Probiotic Lactic Acid Bacteria Were Identified from Healthy Infant Feces and Exhibited Anti-Inflammatory Capacities. Antioxidants 2022, 11, 1246. [Google Scholar] [CrossRef] [PubMed]
- Ismael, M.; Qayyum, N.; Gu, Y.; Na, L.; Haoyue, H.; Farooq, M.; Wang, P.; Zhong, Q.; Lü, X. Functional Effects of Probiotic Lactiplantibacillus Plantarum in Alleviation Multidrug-Resistant Escherichia coli-Associated Colitis in BALB/c Mice Model. Probiotics Antimicrob. Proteins 2024, 1–18, ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.; Cai, L.; Lv, L.; Li, L. Pediococcus pentosaceus, a Future Additive or Probiotic Candidate. Microb. Cell Factories 2021, 20, 45. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kompramool, S.; Singkhamanan, K.; Pomwised, R.; Chaichana, N.; Suwannasin, S.; Wonglapsuwan, M.; Jitpakdee, J.; Kantachote, D.; Yaikhan, T.; Surachat, K. Genomic Insights into Pediococcus pentosaceus ENM104: A Probiotic with Potential Antimicrobial and Cholesterol-Reducing Properties. Antibiotics 2024, 13, 813. [Google Scholar] [CrossRef]
- Wang, L.; Liu, Q.; Chen, Y.; Zheng, X.; Wang, C.; Qi, Y.; Dong, Y.; Xiao, Y.; Chen, C.; Chen, T.; et al. Antioxidant Potential of Pediococcus pentosaceus Strains from the Sow Milk Bacterial Collection in Weaned Piglets. Microbiome 2022, 10, 83. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hu, D.; Wu, J.; Jin, L.; Yuan, L.; Li, J.; Chen, X.; Yao, J. Evaluation of Pediococcus pentosaceus Strains as Probiotic Adjunct Cultures for Soybean Milk Post-Fermentation. Food Res. Int. 2021, 148, 110570. [Google Scholar] [CrossRef] [PubMed]
- Kakoullis, L.; Papachristodoulou, E.; Chra, P.; Panos, G. Mechanisms of Antibiotic Resistance in Important Gram-Positive and Gram-Negative Pathogens and Novel Antibiotic Solutions. Antibiotics 2021, 10, 415. [Google Scholar] [CrossRef]
- Yan, W.; Banerjee, P.; Liu, Y.; Mi, Z.; Bai, C.; Hu, H.; To, K.K.W.; Duong, H.T.T.; Leung, S.S.Y. Development of Thermosensitive Hydrogel Wound Dressing Containing Acinetobacter baumannii Phage Against Wound Infections. Int. J. Pharm. 2021, 602, 120508. [Google Scholar] [CrossRef] [PubMed]
- Di Domenico, E.G.; Farulla, I.; Prignano, G.; Gallo, M.T.; Vespaziani, M.; Cavallo, I.; Sperduti, I.; Pontone, M.; Bordignon, V.; Cilli, L.; et al. Biofilm Is a Major Virulence Determinant in Bacterial Colonization of Chronic Skin Ulcers Independently from the Multidrug Resistant Phenotype. Int. J. Mol. Sci. 2017, 18, 1077. [Google Scholar] [CrossRef]
- John, J., Jr. The Treatment of Resistant Staphylococcal Infections. F1000Research 2020, 9, 150. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pang, Z.; Raudonis, R.; Glick, B.R.; Lin, T.J.; Cheng, Z. Antibiotic Resistance in Pseudomonas aeruginosa: Mechanisms and Alternative Therapeutic Strategies. Biotechnol. Adv. 2019, 37, 177–192. [Google Scholar] [CrossRef] [PubMed]
- Medugu, N.; Aworh, M.K.; Iregbu, K.; Nwajiobi-Princewill, P.; Abdulraheem, K.; Hull, D.M.; Harden, L.; Singh, P.; Obaro, S.; Egwuenu, A.; et al. Molecular Characterization of Multi Drug Resistant Escherichia coli Isolates at a Tertiary Hospital in Abuja, Nigeria. Sci. Rep. 2022, 12, 14822. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hastings, C.J.; Himmler, G.E.; Patel, A.; Marques, C.N.H. Immune Response Modulation by Pseudomonas aeruginosa Persister Cells. mBio 2023, 14, E0005623. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Foster, T.J. Antibiotic Resistance in Staphylococcus aureus. Current Status and Future Prospects. FEMS Microbiol. Rev. 2017, 41, 430–449. [Google Scholar] [CrossRef] [PubMed]
- Moser, C.; Jensen, P.Ø.; Thomsen, K.; Kolpen, M.; Rybtke, M.; Lauland, A.S.; Trøstrup, H.; Tolker-Nielsen, T. Immune Responses to Pseudomonas aeruginosa Biofilm Infections. Front. Immunol. 2021, 12, 625597. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cazanga, V.; Palma, C.; Casanova, T.; Rojas, D.; Barrera, K.; Valenzuela, C.; Acevedo, A.; Ascui-Gac, G.; Pérez-Jeldres, T.; Pérez-Fernández, R. Modulation of the Acute Inflammatory Response Induced by the Escherichia coli Lipopolysaccharide Through the Interaction of Pentoxifylline and Florfenicol in a Rabbit Model. Antibiotics 2023, 12, 639. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Vitale, S.; Colanero, S.; Placidi, M.; Di Emidio, G.; Tatone, C.; Amicarelli, F.; D’Alessandro, A.M. Phytochemistry and Biological Activity of Medicinal Plants in Wound Healing: An Overview of Current Research. Molecules 2022, 27, 3566. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jacoby, G.A. AmpC Beta-Lactamases. Clin. Microbiol. Rev. 2009, 22, 161–182. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, G.; Zeng, H. Antibacterial Effect of Cell-Free Supernatant from Lactobacillus pentosus L-36 against Staphylococcus aureus from Bovine Mastitis. Molecules 2022, 27, 7627. [Google Scholar] [CrossRef]
- Drumond, M.M.; Tapia-Costa, A.P.; Neumann, E.; Nunes, Á.C.; Barbosa, J.W.; Kassuha, D.E.; Mancha-Agresti, P. Cell-Free Supernatant of Probiotic Bacteria Exerted Antibiofilm and Antibacterial Activities Against Pseudomonas aeruginosa: A Novel Biotic Therapy. Front. Pharmacol. 2023, 14, 1152588. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tariq, A.; Salman, M.; Mustafa, G.; Tawab, A.; Naheed, S.; Naz, H.; Shahid, M.; Ali, H. Agonistic Antibacterial Potential of Loigolactobacillus coryniformis BCH-4 Metabolites against Selected Human Pathogenic Bacteria: An In Vitro and In Silico Approach. PLoS ONE 2023, 18, E0289723. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Johnson, J.B.; Broszczak, D.A.; Mani, J.S.; Anesi, J.; Naiker, M. A Cut Above the Rest: Oxidative Stress in Chronic Wounds and the Potential Role of Polyphenols as Therapeutics. J. Pharm. Pharmacol. 2022, 74, 485–502. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Q.Y.; Lin, B.; Chen, Y.T.; Huang, Y.P.; Feng, W.P.; Wu, Y.; Long, G.H.; Zou, Y.N.; Liu, Y.; Lin, B.Q.; et al. Gender Differences in UV-Induced Skin Inflammation, Skin Carcinogenesis and Systemic Damage. Environ. Toxicol. Pharmacol. 2021, 81, 103512. [Google Scholar] [CrossRef] [PubMed]
Indicators | Zone of Inhibition (mm) | |||
---|---|---|---|---|
Ampicillin 10 μg/disk | Distilled Water Fraction 2.5 mg/disk | Cell-Free Supernatant 2.5 mg/disk | Ethyl Acetate Fraction 2.5 mg/disk | |
S. aureus KCTC 3881 | 36 | nd | 17 | 15 |
P. aeruginosa KACC 10187 | nd | nd | 16 | 15 |
E. coli KCTC 2571 | 16 | nd | 15 | 14 |
S. aureus CCARM 3089 | nd | nd | 15 | 14 |
P. aeruginosa CCARM 0224 | nd | nd | 17 | 16 |
E. coli CCARM 0237 | 14 | nd | 15 | 14 |
Indicators | MIC (mg/mL) | MBC (mg/mL) |
---|---|---|
S. aureus KCTC 3881 | 0.31 | 0.63 |
P. aeruginosa KACC 10187 | 0.16 | 0.31 |
E. coli KCTC 2571 | 0.16 | 0.63 |
S. aureus CCARM 3089 | 0.31 | 2.5 |
P. aeruginosa CCARM 0224 | 0.16 | 0.31 |
E. coli CCARM 0237 | 0.16 | 0.63 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yi, G.-S.; Jin, X.; Zheng, Q.; Nguyen, T.T.M.; Yang, S.-J.; Yi, T.-H. Antimicrobial Activity of Pediococcus pentosaceus PMY2 Against Multidrug-Resistant Pathogens. Antibiotics 2025, 14, 389. https://doi.org/10.3390/antibiotics14040389
Yi G-S, Jin X, Zheng Q, Nguyen TTM, Yang S-J, Yi T-H. Antimicrobial Activity of Pediococcus pentosaceus PMY2 Against Multidrug-Resistant Pathogens. Antibiotics. 2025; 14(4):389. https://doi.org/10.3390/antibiotics14040389
Chicago/Turabian StyleYi, Gyeong-Seon, Xiangji Jin, Qiwen Zheng, Trang Thi Minh Nguyen, Su-Jin Yang, and Tae-Hoo Yi. 2025. "Antimicrobial Activity of Pediococcus pentosaceus PMY2 Against Multidrug-Resistant Pathogens" Antibiotics 14, no. 4: 389. https://doi.org/10.3390/antibiotics14040389
APA StyleYi, G.-S., Jin, X., Zheng, Q., Nguyen, T. T. M., Yang, S.-J., & Yi, T.-H. (2025). Antimicrobial Activity of Pediococcus pentosaceus PMY2 Against Multidrug-Resistant Pathogens. Antibiotics, 14(4), 389. https://doi.org/10.3390/antibiotics14040389