Comprehensive Study of Antibiotics and Antibiotic Resistance Genes in Wastewater and Impacted Mediterranean Water Environments
Abstract
:1. Introduction
2. Results and Discussion
2.1. Levels of ARGs
2.2. Quantification of E. coli and Extended Spectrum Beta-Lactamase-Producing E. coli (ESBL-E. coli)
2.3. Broad Assessment and Confirmation of Antibiotic Residues in Wastewater and Surface Water
2.4. Prioritisation of Antimicrobial Residues
2.5. Confirmation and Quantification of Antimicrobial Residues
2.6. Correlations Between Antibiotics and ARGs
3. Materials and Methods
3.1. Sampling Strategy
3.2. Water Sample Concentration for ARG Analysis and DNA Extraction
3.3. High-Throughput qPCR Analysis
3.4. Quantification of E. coli and Extended Spectrum Beta-Lactamase-Producing E. coli
3.5. Sample Pre-Treatment and Extraction for the Analysis of Antibiotics
3.6. Analysis of Antibiotics and Data Processing
3.7. Statistical Analysis and Visualisation
3.8. Quality Assurance and Quality Control
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hutchings, M.I.; Truman, A.W.; Wilkinson, B. Antibiotics: Past, present and future. Curr. Opin. Microbiol. 2019, 51, 72–80. [Google Scholar] [PubMed]
- Prescott, J.F. The resistance tsunami, antimicrobial stewardship, and the golden age of microbiology. Vet. Microbiol. 2014, 171, 273–278. [Google Scholar] [PubMed]
- Larsson, D.G.J.; Flach, C.-F. Antibiotic resistance in the environment. Nat. Rev. Microbiol. 2022, 20, 257–269. [Google Scholar] [PubMed]
- Manaia, C.M.; Rocha, J.; Scaccia, N.; Marano, R.; Radu, E.; Biancullo, F.; Cerqueira, F.; Fortunato, G.; Iakovides, I.C.; Zammit, I.; et al. Antibiotic resistance in wastewater treatment plants: Tackling the black box. Environ. Int. 2018, 115, 312–324. [Google Scholar]
- Novo, A.; André, S.; Viana, P.; Nunes, O.C.; Manaia, C.M. Antibiotic resistance, antimicrobial residues and bacterial community composition in urban wastewater. Water Res. 2013, 47, 1875–1887. [Google Scholar]
- Berglund, F.; Ebmeyer, S.; Kristiansson, E.; Larsson, D.G.J. Evidence for wastewaters as environments where mobile antibiotic resistance genes emerge. Commun. Biol. 2023, 6, 321. [Google Scholar]
- Jutkina, J.; Rutgersson, C.; Flach, C.-F.; Larsson, D.G.J. An assay for determining minimal concentrations of antibiotics that drive horizontal transfer of resistance. Sci. Total Environ. 2016, 548–549, 131–138. [Google Scholar]
- Bilal, M.; Mehmood, S.; Rasheed, T.; Iqbal, H.M.N. Antibiotics traces in the aquatic environment: Persistence and adverse environmental impact. Curr. Opin. Environ. Sci. Health 2020, 13, 68–74. [Google Scholar] [CrossRef]
- Sanchez-Cid, C.; Guironnet, A.; Keuschnig, C.; Wiest, L.; Vulliet, E.; Vogel, T.M. Gentamicin at sub-inhibitory concentrations selects for antibiotic resistance in the environment. ISME Commun. 2022, 2, 29. [Google Scholar] [CrossRef]
- Wellington, E.M.; Boxall, A.B.; Cross, P.; Feil, E.J.; Gaze, W.H.; Hawkey, P.M.; Johnson-Rollings, A.S.; Jones, D.L.; Lee, N.M.; Otten, W.; et al. The role of the natural environment in the emergence of antibiotic resistance in Gram-negative bacteria. Lancet Infect. Dis. 2013, 13, 155–165. [Google Scholar]
- Allen, H.K.; Donato, J.; Wang, H.H.; Cloud-Hansen, K.A.; Davies, J.; Handelsman, J. Call of the wild: Antibiotic resistance genes in natural environments. Nat. Rev. Microbiol. 2010, 8, 251–259. [Google Scholar] [CrossRef] [PubMed]
- Davies, J.E. Origins, Acquisition and Dissemination of Antibiotic Resistance Determinants. In Ciba Foundation Symposium 207—Antibiotic Resistance: Origins, Evolution, Selection and Spread; John Wiley & Sons, Ltd.: Chichester, UK, 2007; pp. 15–35. [Google Scholar]
- Huijbers, P.M.C.; Flach, C.-F.; Larsson, D.G.J. A conceptual framework for the environmental surveillance of antibiotics and antibiotic resistance. Environ. Int. 2019, 130, 104880. [Google Scholar] [CrossRef]
- Flach, C.-F.; Hutinel, M.; Razavi, M.; Åhrén, C.; Larsson, D.G.J. Monitoring of hospital sewage shows both promise and limitations as an early-warning system for carbapenemase-producing Enterobacterales in a low-prevalence setting. Water Res. 2021, 200, 117261. [Google Scholar] [PubMed]
- Bengtsson-Palme, J.; Kristiansson, E.; Larsson, D.G.J. Environmental factors influencing the development and spread of antibiotic resistance. FEMS Microbiol. Rev. 2017, 42, fux053. [Google Scholar]
- Rodriguez-Mozaz, S.; Vaz-Moreira, I.; Giustina, S.V.D.; Llorca, M.; Barceló, D.; Schubert, S.; Berendonk, T.U.; Michael-Kordatou, I.; Fatta-Kassinos, D.; Martinez, J.L.; et al. Antibiotic residues in final effluents of European wastewater treatment plants and their impact on the aquatic environment. Environ. Int. 2020, 140, 105733. [Google Scholar]
- Felis, E.; Kalka, J.; Sochacki, A.; Kowalska, k.; Bajkacz, S.; Harnisz, M.; Korzeniewska, E. Antimicrobial pharmaceuticals in the aquatic environment—Occurrence and environmental implications. Eur. J. Pharmacol. 2020, 866, 172813. [Google Scholar] [PubMed]
- Jelic, A.; Rodriguez-Mozaz, S.; Barceló, D.; Gutierrez, O. Impact of in-sewer transformation on 43 pharmaceuticals in a pressurized sewer under anaerobic conditions. Water Res. 2015, 68, 98–108. [Google Scholar]
- Ben, W.; Wang, J.; Cao, R.; Yang, M.; Zhang, Y.; Qiang, Z. Distribution of antibiotic resistance in the effluents of ten municipal wastewater treatment plants in China and the effect of treatment processes. Chemosphere 2017, 172, 392–398. [Google Scholar]
- Cacace, D.; Fatta-Kassinos, D.; Manaia, C.M.; Cytryn, E.; Kreuzinger, N.; Rizzo, L.; Karaolia, P.; Schwartz, T.; Alexander, J.; Merlin, C.; et al. Antibiotic resistance genes in treated wastewater and in the receiving water bodies: A pan-European survey of urban settings. Water Res. 2019, 162, 320–330. [Google Scholar]
- Liu, X.; Zhang, G.; Liu, Y.; Lu, S.; Qin, P.; Guo, X.; Bi, B.; Wang, L.; Xi, B.; Wu, F.; et al. Occurrence and fate of antibiotics and antibiotic resistance genes in typical urban water of Beijing, China. Environ. Pollut. 2019, 246, 163–173. [Google Scholar] [CrossRef]
- Proia, L.; Anzil, A.; Subirats, J.; Borrego, C.; Farré, M.; Llorca, M.; Balcázar, J.L.; Servais, P. Antibiotic resistance along an urban river impacted by treated wastewaters. Sci. Total Env. 2018, 628–629, 453–466. [Google Scholar] [CrossRef] [PubMed]
- Proia, L.; Anzil, A.; Borrego, C.; Farré, M.; Llorca, M.; Sanchis, J.; Bogaerts, P.; Balcázar, J.L.; Servais, P. Occurrence and persistence of carbapenemases genes in hospital and wastewater treatment plants and propagation in the receiving river. J. Hazard Mater. 2018, 358, 33–43. [Google Scholar] [CrossRef]
- Serra-Compte, A.; Pikkemaat, M.G.; Elferink, A.; Almeida, D.; Diogène, J.; Campillo, J.A.; Llorca, M.; Álvarez-Muñoz, D.; Barceló, D.; Rodríguez-Mozaz, S. Combining an effect-based methodology with chemical analysis for antibiotics determination in wastewater and receiving freshwater and marine environment. Environ. Pollut. 2021, 271, 116313. [Google Scholar] [CrossRef] [PubMed]
- Angeles, L.F.; Islam, S.; Aldstadt, J.; Saqeeb, K.N.; Alam, M.; Khan, M.A.; Johura, F.T.; Ahmed, S.I.; Afa, D.S. Retrospective suspect screening reveals previously ignored antibiotics, antifungal compounds, and metabolites in Bangladesh surface waters. Sci. Total Environ. 2020, 712, 136285. [Google Scholar] [CrossRef]
- Asghar, M.A.; Zhu, Q.; Sun, S.; Peng, Y.; Shuai, Q. Suspect screening and target quantification of human pharmaceutical residues in the surface water of Wuhan, China, using UHPLC-Q-Orbitrap HRMS. Sci. Total Environ. 2018, 635, 828–837. [Google Scholar] [CrossRef]
- Ng, K.; Alygizakis, N.A.; Thomaidis, N.S.; Slobodnik, J. Wide-Scope Target and Suspect Screening of Antibiotics in Effluent Wastewater from Wastewater Treatment Plants in Europe. Antibiotics 2023, 12, 100. [Google Scholar] [CrossRef]
- Magnano San Lio, R.; Favara, G.; Maugeri, A.; Barchitta, M.; Agodi, A. How Antimicrobial Resistance Is Linked to Climate Change: An Overview of Two Intertwined Global Challenges. Int. J. Env. Res. Public Health 2023, 20, 1681. [Google Scholar] [CrossRef] [PubMed]
- Pietikäinen, J.; Pettersson, M.; Bååth, E. Comparison of temperature effects on soil respiration and bacterial and fungal growth rates. FEMS Microbiol. Ecol. 2005, 52, 49–58. [Google Scholar] [CrossRef]
- Philipsborn, R.; Ahmed, S.M.; Brosi, B.J.; Levy, K. Climatic Drivers of Diarrheagenic Escherichia coli Incidence: A Systematic Review and Meta-analysis. J. Infect. Dis. 2016, 214, 6–15. [Google Scholar] [CrossRef]
- Aik, J.; Heywood, A.E.; Newall, A.T.; Ng, L.C.; Kirk, M.D.; Turner, R. Climate variability and salmonellosis in Singapore—A time series analysis. Sci. Total Environ. 2018, 639, 1261–1267. [Google Scholar] [CrossRef]
- Perencevich, E.N.; McGregor, J.C.; Shardell, M.; Furuno, J.P.; Harris, A.D.; Norris Jr, J.G.; Fisman, D.N.; Johnson, J.A. Summer Peaks in the Incidences of Gram-Negative Bacterial Infection Among Hospitalized Patients. Infect. Control. Hosp. Epidemiol. 2008, 29, 1124–1131. [Google Scholar] [PubMed]
- Aguilera, E.; Díaz-Gaona, C.; Garcia-Laureano, R.; Reyes-Palomo, C.; Guzmán, G.I.; Ortolani, L.; Sánchez-Rodríguez, M.; Rodríguez-Estévez, V. Agroecology for adaptation to climate change and resource depletion in the Mediterranean region. A review. Agric. Syst. 2020, 181, 102809. [Google Scholar]
- Ricciardi, W.; Giubbini, G.; Laurenti, P. Surveillance and Control of Antibiotic Resistance in the Mediterranean Region. Mediterr. J. Hematol. Infect. Dis. 2016, 8, e2016036. [Google Scholar] [CrossRef]
- Pepi, M.; Focardi, S. Antibiotic-Resistant Bacteria in Aquaculture and Climate Change: A Challenge for Health in the Mediterranean Area. Int. J. Environ. Res. Public Health 2021, 18, 5723. [Google Scholar] [CrossRef] [PubMed]
- Proia, L.; Von Schiller, D.; Sànchez-Melsió, A.; Sabater, S.; Borrego, C.M.; Rodríguez-Mozaz, S.; Blacázar, J.L. Occurrence and persistence of antibiotic resistance genes in river biofilms after wastewater inputs in small rivers. Environ. Pollut. 2016, 210, 121–128. [Google Scholar]
- Rodriguez-Mozaz, S.; Chamorro, S.; Marti, E.; Huerta, B.; Gros, M.; Sànchez-Melsió, A.; Borrego, C.M.; Barceló, D.; Balcázar, J.L. Occurrence of antibiotics and antibiotic resistance genes in hospital and urban wastewaters and their impact on the receiving river. Water Res. 2015, 69, 234–242. [Google Scholar]
- Marti, E.; Jofre, J.; Balcazar, J.L. Prevalence of antibiotic resistance genes and bacterial community composition in a river influenced by a wastewater treatment plant. PLoS ONE 2013, 8, e78906. [Google Scholar] [CrossRef]
- Perez-Cataluna, A.; Cuevas-Ferrando, E.; Randazzo, W.; Falcó, I.; Allende, A.; Sánchez, G. Comparing analytical methods to detect SARS-CoV-2 in wastewater. Sci. Total Environ. 2021, 758, 143870. [Google Scholar]
- Cuevas-Ferrando, E.; Randazzo, W.; Pérez-Cataluña, A.; Sánchez, G. HEV Occurrence in Waste and Drinking Water Treatment Plants. Front. Microbiol. 2019, 10, 2937. [Google Scholar] [CrossRef]
- Oliveira, M.; Truchado, P.; Cordero-García, R.; Gil, M.I.; Soler, M.A.; Rancaño, A.; García, F.; Álvarez-Ordoñez, A.; Allende, A. Surveillance on ESBL-Escherichia coli and Indicator ARG in Wastewater and Reclaimed Water of Four Regions of Spain: Impact of Different Disinfection Treatments. Antibiotics 2023, 12, 400. [Google Scholar] [CrossRef]
- Wang, J.; Chu, L.; Wojnárovits, L.; Takács, E. Occurrence and fate of antibiotics, antibiotic resistant genes (ARGs) and antibiotic resistant bacteria (ARB) in municipal wastewater treatment plant: An overview. Sci. Total Environ. 2020, 744, 140997. [Google Scholar] [CrossRef]
- Reichert, G.; Hilgert, S.; Alexander, J.; Rodrigues de Azevedo, J.C.; Mork, T.; Fuchs, S.; Schwartz, T. Determination of antibiotic resistance genes in a WWTP-impacted river in surface water, sediment, and biofilm: Influence of seasonality and water quality. Sci. Total Environ. 2021, 768, 144526. [Google Scholar] [CrossRef] [PubMed]
- Haberecht, H.B.; Nealon, N.J.; Gilliland, J.R.; Holder, A.V.; Runyan, C.; Oppel, R.C.; Ibrahim, H.M.; Mueller, L.; Schrupp, F.; Vilchez, S.; et al. Antimicrobial-Resistant Escherichia coli from Environmental Waters in Northern Colorado. J. Environ. Public Health 2019, 2019, 3862949. [Google Scholar] [CrossRef] [PubMed]
- Regulation (EU) 2020/741 of the European Parliament and of the Council on Minimum Requirements for Water Reuse. Official Journal of the European Union. 2020. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32020R0741 (accessed on 7 May 2020).
- Martinez, E.P.; Van Rosmalen, J.; Jacobs, J.; Sanders, P.; Van Geijlswijk, I.M.; Heederik, D.J.J.; Verbon, A. Seasonality of antimicrobial use in Dutch food-producing animals. Prev. Vet. Med. 2023, 219, 106006. [Google Scholar] [CrossRef]
- Suda, K.J.; Hicks, L.A.; Roberts, R.M.; Junkler, R.J.; Taylor, T.H. Trends and seasonal variation in outpatient antibiotic prescription rates in the United States, 2006 to 2010. Antimicrob Agents Chemother. 2014, 58, 2763–2766. [Google Scholar] [CrossRef] [PubMed]
- Batchu, S.R.; Panditi, V.R.; O’Shea, K.E.; Gardinali, P.R. Photodegradation of antibiotics under simulated solar radiation: Implications for their environmental fate. Sci. Total Environ. 2014, 470–471, 299–310. [Google Scholar] [CrossRef]
- Pirsaheb, M.; Hossini, H.; Makhdoumi, P. Review of microplastic occurrence and toxicological effects in marine environment: Experimental evidence of inflammation. Process Saf. Environ. Prot. 2020, 142, 1–14. [Google Scholar] [CrossRef]
- Rams, T.E.; Feik, D.; Mortensen, J.E.; Degener, J.E.; Van Winkelhoff, A.J. Antibiotic susceptibility of periodontal Enterococcus faecalis. J. Periodontol. 2013, 84, 1026–1033. [Google Scholar] [CrossRef]
- Barbosa-Ribeiro, M.; Gomes, B.P.F.A.; Arruda-Vasconcelos, R.; Monteiro, I.A.; Costa, M.J.F.; Sette-de-Souza, P.H. Antibiotic Resistance Profile of Clinical Strains of Enterococci from Secondary/Persistent Endodontic Infections: What do We Know? A Systematic Review of Clinical Studies. J. Endod. 2024, 50, 299–309. [Google Scholar] [CrossRef]
- WHO. Access, Watch, Reserve (AWaRe) Classification of Antibiotics for Evaluation and Monitoring of Use; WHO: Geneva, Switzerland, 2021. [Google Scholar]
- Xu, R.; Yang, Z.H.; Zheng, Y.; Wang, Q.P.; Bai, Y.; Liu, J.B.; Zhang, Y.R.; Xiong, W.P.; Lu, Y.; Fan, C.Z. Metagenomic analysis reveals the effects of long-term antibiotic pressure on sludge anaerobic digestion and antimicrobial resistance risk. Bioresour. Technol. 2019, 282, 179–188. [Google Scholar] [CrossRef]
- Wu, N.; Qiao, M.; Zhang, B.; Cheng, W.D.; Zhu, Y.G. Abundance and diversity of tetracycline resistance genes in soils adjacent to representative swine feedlots in China. Environ. Sci. Technol. 2010, 44, 6933–6939. [Google Scholar] [CrossRef]
- Li, J.; Wang, T.; Shao, B.; Shen, J.; Wang, S.; Wu, Y. Plasmid-mediated quinolone resistance genes and antibiotic residues in wastewater and soil adjacent to swine feedlots: Potential transfer to agricultural lands. Environ. Health Perspect. 2012, 120, 1144–1149. [Google Scholar] [CrossRef] [PubMed]
- Burnham, J.P. Climate change and antibiotic resistance: A deadly combination. Ther. Adv. Infect. Dis. 2021, 8, 2049936121991374. [Google Scholar]
- Clima. Available online: https://terresdelebre.travel/es/clima (accessed on 21 March 2023).
- El Clima y el Tiempo Promedio en Todo el año en Silla. Available online: https://es.weatherspark.com/y/42630/Clima-promedio-en-Silla-Espa%C3%B1a-durante-todo-el-a%C3%B1o#google_vignette (accessed on 21 March 2023).
- El Clima y Tiempo Promedio en Todo el año en Zaragoza. Available online: https://es.weatherspark.com/y/43119/Clima-promedio-en-Zaragoza-Espa%C3%B1a-durante-todo-el-a%C3%B1o (accessed on 21 March 2023).
- El Municipi en Xifres. Available online: https://www.idescat.cat/emex/?id=439060 (accessed on 21 March 2023).
- Población Residente. Available online: https://www.ine.es/jaxiT3/Tabla.htm?t=31304 (accessed on 21 March 2023).
- Shearer, L.; Pap, S.; Gibb, S.W. Removal of pharmaceuticals from wastewater: A review of adsorptive approaches, modelling and mechanisms for metformin and macrolides. J. Environ. Chem. Eng. 2022, 10, 108106. [Google Scholar]
- Muziasari, W.I.; Pärnänen, K.; Johnson, T.A.; Lyra, C.; Karkman, A.; Stedtfeld, R.D.; Tamminen, M.; Tiedje, J.M.; Virta, M. Aquaculture changes the profile of antibiotic resistance and mobile genetic element associated genes in Baltic Sea sediments. FEMS Microbiol. Ecol. 2016, 92, fiw052. [Google Scholar]
- Muurinen, J.; Stedtfeld, R.; Karkman, A.; Pärnänen, K.; Tiedje, J.M.; Virta, M. Influence of Manure Application on the Environmental Resistome under Finnish Agricultural Practice with Restricted Antibiotic Use. Environ. Sci. Technol. 2017, 51, 5989–5999. [Google Scholar] [CrossRef] [PubMed]
- Muziasari, W.I.; Pitkänen, L.K.; Sørum, H.; Stedtfeld, R.D.; Tiedje, J.M.; Virta, M. The Resistome of Farmed Fish Feces Contributes to the Enrichment of Antibiotic Resistance Genes in Sediments below Baltic Sea Fish Farms. Front. Microbiol. 2016, 7, 2137. [Google Scholar]
- Wang, F.H.; Qiao, M.; Su, J.Q.; Chen, Z.; Zhou, X.; Zhu, Y.G. High throughput profiling of antibiotic resistance genes in urban park soils with reclaimed water irrigation. Environ. Sci. Technol. 2014, 48, 9079–9085. [Google Scholar] [CrossRef]
- Lai, F.Y.; Muziasari, W.; Virta, M.; Wiberg, K.; Ahrens, L. Profiles of environmental antibiotic resistomes in the urban aquatic recipients of Sweden using high-throughput quantitative PCR analysis. Environ. Pollut. 2021, 287, 117651. [Google Scholar]
- Gros, M.; Rodriguez-Mozaz, S.; Barcelo, D. Fast and comprehensive multi-residue analysis of a broad range of human and veterinary pharmaceuticals and some of their metabolites in surface and treated waters by ultra-high-performance liquid chromatography coupled to quadrupole-linear ion trap tandem mass spectrometry. J. Chromatogr. A 2012, 1248, 104–121. [Google Scholar]
CRITERIA | 0 | 1 | 2 | 3 | 4 | |
---|---|---|---|---|---|---|
FREQUENCY (f) Of DETECTION | <25 | 25–50 | 50–75 | >75 | ||
1/PNEC * | <1 | 1 ≥ x < 10 | 10 ≥ x < 100 | ≥100 | ||
∑(I)/8 | Individual pathogen contribution (I) ** | <25% | 25–50% | 50–75% | >75% | |
ANIMAL USE | Antibiotics for animals in accordance with EMA categorisation | A (avoid) | B (restrict) | C (caution) | D (prudence) | - |
Antimicrobials | WWTP Influent | WWTP Effluent | Surface Water | Seawater | ||||
---|---|---|---|---|---|---|---|---|
Range (ng/L) | f (%) | Range (ng/L) | f (%) | Range (ng/L) | f (%) | Range (ng/L) | f (%) | |
Sulfamethazine | 150–2041 | 55 | 184–1628 | 44 | 101–370 | 34 | - | - |
Sulfamethoxazole | 20–10,622 | 76 | 26–17,906 | 60 | 26–407 | 22 | 333 | 14 |
Sulfapyridine | 16–3935 | 61 | 9–1406 | 81 | 6–408 | 34 | - | - |
Trimethoprim | 21–21,168 | 57 | 19–13,558 | 53 | 62–7949 | 34 | - | - |
Ciprofloxacin | 682–22,071 | 97 | 160–7162 | 72 | 201–2057 | 34 | - | - |
Norfloxacin | 489–18,944 | 76 | 2729–12,564 | 34 | 1207–15,692 | 34 | - | - |
Ofloxacin | 278–10,992 | 97 | 132–7688 | 97 | 27–1055 | 41 | - | - |
Ampicillin | 9–103 | 24 | 10–22 | 9 | 4–7 | 6 | - | - |
Amoxicillin | 40–225 | 12 | - | - | - | - | - | - |
Clindamycin | 18–671 | 24 | 11–622 | 50 | 12–157 | 31 | - | - |
Lincomycin | 154–3679 | 36 | 13–733 | 31 | 33–639 | 34 | - | - |
Azithromycin | 56–5597 | 55 | 43–6190 | 62 | 7–209 | 22 | - | - |
Clarithromycin | 6–944 | 58 | 8–1120 | 66 | 0.3–57 | 12 | - | - |
Erythromycin | 70–7070 | 42 | 35–2672 | 44 | 16–1534 | 28 | - | - |
Roxithromycin | 25–32 | 9 | 10–18 | 6 | - | - | - | - |
Tilmicosin | 302–78,998 | 33 | 46–1961 | 19 | 25–1058 | 22 | - | - |
Dimetridazole | 44–1142 | 33 | 85–524 | 34 | 35–429 | 34 | - | - |
Metronidazole | 200–9062 | 33 | 258–1237 | 34 | 16–230 | 31 | - | - |
Metronidazole OH | 1289–104,945 | 36 | 338–4108 | 34 | 331–2538 | 34 | - | - |
Doxycycline | 1641–92,223 | 12 | 28,948 | 3 | 12,344 | 3 | - | - |
Tetracycline | 82–19,239 | 82 | 240–6828 | 69 | 23–2754 | 81 | 621–641 | 28 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garcia-Torné, M.; Falcó, I.; Borrell, X.; Bautista, A.; Mazigh, R.; Aznar, R.; Sánchez, G.; Farré, M.; Llorca, M. Comprehensive Study of Antibiotics and Antibiotic Resistance Genes in Wastewater and Impacted Mediterranean Water Environments. Antibiotics 2025, 14, 341. https://doi.org/10.3390/antibiotics14040341
Garcia-Torné M, Falcó I, Borrell X, Bautista A, Mazigh R, Aznar R, Sánchez G, Farré M, Llorca M. Comprehensive Study of Antibiotics and Antibiotic Resistance Genes in Wastewater and Impacted Mediterranean Water Environments. Antibiotics. 2025; 14(4):341. https://doi.org/10.3390/antibiotics14040341
Chicago/Turabian StyleGarcia-Torné, Maria, Irene Falcó, Xavier Borrell, Arianna Bautista, Rachida Mazigh, Rosa Aznar, Gloria Sánchez, Marinella Farré, and Marta Llorca. 2025. "Comprehensive Study of Antibiotics and Antibiotic Resistance Genes in Wastewater and Impacted Mediterranean Water Environments" Antibiotics 14, no. 4: 341. https://doi.org/10.3390/antibiotics14040341
APA StyleGarcia-Torné, M., Falcó, I., Borrell, X., Bautista, A., Mazigh, R., Aznar, R., Sánchez, G., Farré, M., & Llorca, M. (2025). Comprehensive Study of Antibiotics and Antibiotic Resistance Genes in Wastewater and Impacted Mediterranean Water Environments. Antibiotics, 14(4), 341. https://doi.org/10.3390/antibiotics14040341