Effect of Antimicrobial Compounds on the Survival and Pathogenic Potential of Acid-Adapted Salmonella Enteritidis and Escherichia coli O157:H7 in Orange Juice
Abstract
:1. Introduction
2. Results and Discussion
2.1. Evaluation of Different Antimicrobial Compounds and Doses Against Non-Acid-Adapted S. Enteritidis and Escherichia coli O157:H7 in Orange Juice
2.2. Evaluation of Antimicrobial Activity of the Most Effective Compounds at Different Doses Against Acid-Adapted and Non-Acid-Adapted Bacteria in Orange Juice
2.3. Effect of Antimicrobial Compounds in the Pathogenic Potential of Acid-Adapted and Non-Acid-Adapted S. Enteritidis and E. coli O157:H7
3. Materials and Methods
3.1. Orange Juice with Antimicrobial Compounds
3.2. Bacterial Culture and Media
3.3. Antimicrobial Activity of Organic Compounds Against S. Enteritidis and E. coli O157:H7
3.3.1. Selection of the Most Effective Antimicrobial Compounds and Doses Against Non-Acid-Adapted Bacteria in Refrigerated Orange Juice
3.3.2. Evaluation of Antimicrobial Activity of the Most Effective Compounds at Different Doses Against Acid-Adapted and Non-Acid-Adapted Bacteria in Orange Juice
3.3.3. Effect of Antimicrobial Compounds in the Pathogenic Potential of Acid-Adapted and Non-Acid-Adapted S. Enteritidis and E. coli O157:H7
3.4. Data Treatment
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Neves, M.F.; Trombin, V.G.; Marques, V.N.; Martinez, L.F. Global Orange Juice Market: A 16-Year Summary and Opportunities for Creating Value. Trop. Plant Pathol. 2020, 45, 166–174. [Google Scholar] [CrossRef]
- Priyadarshini, A.; Priyadarshini, A. Market Dimensions of the Fruit Juice Industry. In Fruit Juices: Extraction, Composition, Quality and Analysis; Academic Press: Cambridge, MA, USA, 2018; pp. 15–32. [Google Scholar] [CrossRef]
- Krug, M.; Chapin, T.; Danyluk, M.; Goodrich-Schneider, R.; Schneider, K.; Harris, L.; Worobo, R. Outbreaks of Foodborne Disease Associated with Fruit and Vegetable Juices, 1922–2019. EDIS 2020, 2020. [Google Scholar] [CrossRef]
- Callejón, R.M.; Rodríguez-Naranjo, M.I.; Ubeda, C.; Hornedo-Ortega, R.; Garcia-Parrilla, M.C.; Troncoso, A.M. Reported Foodborne Outbreaks Due to Fresh Produce in the United States and European Union: Trends and Causes. Foodborne Pathog. Dis. 2015, 12, 32–38. [Google Scholar] [CrossRef] [PubMed]
- Álvarez-Ordóñez, A.; Valdés, L.; Bernardo, A.; Prieto, M.; López, M. Survival of Acid Adapted and Non-Acid Adapted Salmonella Typhimurium in Pasteurized Orange Juice and Yogurt under Different Storage Temperatures. Food Sci. Technol. Int. 2013, 19, 407–414. [Google Scholar] [CrossRef] [PubMed]
- Oteiza, J.M.; do Prado-Silva, L.; Caturla, M.Y.R.; Barril, P.A.; Giannuzzi, L.; Sant’Ana, A.S. Variability in the Acid Adaptation of Ten Different O157:H7 and Non-O157 Escherichia coli Strains in Orange Juice and the Impact on UV Radiation Resistance. Food Microbiol. 2024, 124, 104610. [Google Scholar] [CrossRef]
- European Union Regulation (EC). European Union Regulation (EC) No 2073/2005 of 15 November 2005 on Microbiological Criteria for Foodstuffs; European Union Regulation (EC): Brussels, Belgium, 2005; pp. 1–26. Available online: https://eur-lex.europa.eu/eli/reg/2005/2073/oj/eng (accessed on 1 February 2025).
- Chauhan, K.; Rao, A. Clean-Label Alternatives for Food Preservation: An Emerging Trend. Heliyon 2024, 10, e35815. [Google Scholar] [CrossRef]
- Cheng, C.X.; Jia, M.; Gui, Y.; Ma, Y. Comparison of the Effects of Novel Processing Technologies and Conventional Thermal Pasteurisation on the Nutritional Quality and Aroma of Mandarin (Citrus unshiu) Juice. Innov. Food Sci. Emerg. Technol. 2020, 64, 102425. [Google Scholar] [CrossRef]
- Torres, B.; Tiwari, B.K.; Patras, A.; Wijngaard, H.H.; Brunton, N.; Cullen, P.J.; O’Donnell, C.P. Effect of Ozone Processing on the Colour, Rheological Properties and Phenolic Content of Apple Juice. Food Chem. 2011, 124, 721–726. [Google Scholar] [CrossRef]
- Albuquerque, B.R.; Heleno, S.A.; Oliveira, M.B.P.P.; Barros, L.; Ferreira, I.C.F.R. Phenolic Compounds: Current Industrial Applications, Limitations and Future Challenges. Food Funct. 2021, 12, 14–29. [Google Scholar] [CrossRef]
- Lima, M.C.; Paiva de Sousa, C.; Fernandez-Prada, C.; Harel, J.; Dubreuil, J.D.; de Souza, E.L. A Review of the Current Evidence of Fruit Phenolic Compounds as Potential Antimicrobials against Pathogenic Bacteria. Microb. Pathog. 2019, 130, 259–270. [Google Scholar] [CrossRef]
- Bevilacqua, A.; Petruzzi, L.; Perricone, M.; Speranza, B.; Campaniello, D.; Sinigaglia, M.; Corbo, M.R. Nonthermal Technologies for Fruit and Vegetable Juices and Beverages: Overview and Advances. Compr. Rev. Food Sci. Food Saf. 2018, 17, 2–62. [Google Scholar] [CrossRef] [PubMed]
- Nieva, S.G.; Jagus, R.J.; Agüero, M.V.; Fernandez, M.V. Fruit and Vegetable Smoothies Preservation with Natural Antimicrobials for the Assurance of Safety and Quality. LWT 2022, 154, 112663. [Google Scholar] [CrossRef]
- Gutiérrez-Pacheco, M.M.; Torres-Moreno, H.; Flores-Lopez, M.L.; Velázquez Guadarrama, N.; Ayala-Zavala, J.F.; Ortega-Ramírez, L.A.; López-Romero, J.C. Mechanisms and Applications of Citral’s Antimicrobial Properties in Food Preservation and Pharmaceuticals Formulations. Antibiotics 2023, 12, 1608. [Google Scholar] [CrossRef]
- Khan, F.; Singh, P.; Joshi, A.S.; Tabassum, N.; Jeong, G.J.; Bamunuarachchi, N.I.; Mijakovic, I.; Kim, Y.M. Multiple Potential Strategies for the Application of Nisin and Derivatives. Crit. Rev. Microbiol. 2023, 49, 628–657. [Google Scholar] [CrossRef]
- Pernin, A.; Guillier, L.; Dubois-Brissonnet, F. Inhibitory Activity of Phenolic Acids against Listeria monocytogenes: Deciphering the Mechanisms of Action Using Three Different Models. Food Microbiol. 2019, 80, 18–24. [Google Scholar] [CrossRef]
- Nićiforović, N.; Abramovič, H. Sinapic Acid and Its Derivatives: Natural Sources and Bioactivity. Compr. Rev. Food Sci. Food Saf. 2014, 13, 34–51. [Google Scholar] [CrossRef]
- Venkataraman, S.; Athilakshmi, J.K.; Rajendran, D.S.; Bharathi, P.; Kumar, V.V. A Comprehensive Review of Eclectic Approaches to the Biological Synthesis of Vanillin and Their Application towards the Food Sector. Food Sci. Biotechnol. 2024, 33, 1019–1036. [Google Scholar] [CrossRef]
- Moon, K.-D.; Delaquis, P.; Toivonen, P.; Stanich, K. Effect of vanillin on the fate of Listeria monocytogenes and Escherichia coli O157:H7 in a model apple juice medium and in apple juice. Food Microbiol. 2006, 23, 169–174. [Google Scholar] [CrossRef]
- Tomadoni, B.; Viacava, G.; Cassani, L.; Moreira, M.R.; Ponce, A. Novel biopreservatives to enhance the safety and quality of strawberry juice. J. Food Sci. Technol. 2015, 53, 281–292. [Google Scholar] [CrossRef]
- Engels, C.; Schieber, A.; Gänzle, M.G. Sinapic acid derivatives in defatted Oriental mustard (Brassica juncea L.) seed meal extracts using UHPLC-DAD-ESI-MS n and identification of compounds with antibacterial activity. Eur. Food Res. Technol. 2012, 234, 535–542. [Google Scholar] [CrossRef]
- Liu, J.; Du, C.; Beaman, H.T.; Monroe, M.B.B. Characterization of Phenolic Acid Antimicrobial and Antioxidant Structure–Property Relationships. Pharmaceutics 2020, 12, 419. [Google Scholar] [CrossRef] [PubMed]
- Donsì, F.; Annunziata, M.; Sessa, M.; Ferrari, G. Nanoencapsulation of essential oils to enhance their antimicrobial activity in foods. LWT-Food Sci. Technol. 2011, 44, 1908–1914. [Google Scholar] [CrossRef]
- Ferrario, M.; Fenoglio, D.; Chantada, A.; Guerrero, S. Hurdle processing of turbid fruit juices involving encapsulated citral and vanillin addition and UV-C treatment. Int. J. Food Microbiol. 2020, 332, 108811. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, M.V.; Bengardino, M.; Jagus, R.J.; Agüero, M.V. Enrichment and Preservation of a Vegetable Smoothie with an Antioxidant and Antimicrobial Extract Obtained from Beet By-Products. LWT 2020, 117, 108622. [Google Scholar] [CrossRef]
- de Oliveira, A.A.; Silva de Araújo Couto, H.G.; Barbosa, A.A.T.; Carnelossi, M.A.G.; de Moura, T.R. Stability, Antimicrobial Activity, and Effect of Nisin on the Physico-Chemical Properties of Fruit Juices. Int. J. Food Microbiol. 2015, 211, 38–43. [Google Scholar] [CrossRef]
- Cassani, L.; Tomadoni, B.; Viacava, G.; Ponce, A.; Moreira, M.R. Enhancing Quality Attributes of Fiber-Enriched Strawberry Juice by Application of Vanillin or Geraniol. LWT Food Sci. Technol. 2016, 72, 90–98. [Google Scholar] [CrossRef]
- Kowalska, H.; Czajkowska, K.; Cichowska, J.; Lenart, A. What’s New in Biopotential of Fruit and Vegetable by-Products Applied in the Food Processing Industry. Trends Food Sci. Technol. 2017, 67, 150–159. [Google Scholar] [CrossRef]
- Zhou, J.; Velliou, E.; Hong, S.H. Investigating the Effects of Nisin and Free Fatty Acid Combined Treatment on Listeria Monocytogenes Inactivation. LWT 2020, 133, 110115. [Google Scholar] [CrossRef]
- Wu, M.; Ma, Y.; Dou, X.; Zohaib Aslam, M.; Liu, Y.; Xia, X.; Yang, S.; Wang, X.; Qin, X.; Hirata, T.; et al. A Review of Potential Antibacterial Activities of Nisin against Listeria monocytogenes: The Combined Use of Nisin Shows More Advantages than Single Use. Food Res. Int. 2023, 164, 112363. [Google Scholar] [CrossRef]
- Fernandes Da Silva, C.G.; Santos Lopes, F.; Cardoso Vieira Valois, Á.F.; Vieira Prudêncio, C. Sensitivity of Salmonella Typhimurium to Nisin in Vitro and in Orange Juice under Refrigeration. FEMS Microbiol. Lett. 2024, 371, fnae031. [Google Scholar] [CrossRef]
- Guo, H.; Yang, W.; Lei, B.; Zhao, F.; Guo, L.; Qian, J. Synergistic Antimicrobial Effect of Nisin-octanoic Acid Nanoemulsions against E. coli and S. aureus. Arch. Microbiol. 2023, 205, 203. [Google Scholar] [CrossRef] [PubMed]
- Üstündağ, A.Ö. Effects of Nisin and Organic Acid on Salmonella Enteritidis Colonization in Poultry Feeds at Different Storage Time. J. Anim. Prod. 2021, 62, 1–6. [Google Scholar] [CrossRef]
- Bermudez-Aguirre, D.; Niemira, B.A. Effect of Nisin, EDTA, and Abuse Temperature on the Growth of Salmonella Typhimurium in Liquid Whole Egg during Refrigerated Storage. Food Res. Int. 2023, 174, 113568. [Google Scholar] [CrossRef] [PubMed]
- Raybaudi-Massilia, R.M.; Mosqueda-Melgar, J.; Soliva-Fortuny, R.; Martín-Belloso, O. Control of Pathogenic and Spoilage Microorganisms in Fresh-Cut Fruits and Fruit Juices by Traditional and Alternative Natural Antimicrobials. Compr. Rev. Food Sci. Food Saf. 2009, 8, 157–180. [Google Scholar] [CrossRef]
- Burt, S. Essential Oils: Their Antibacterial Properties and Potential Applications in Foods—A Review. Int. J. Food Microbiol. 2004, 94, 223–253. [Google Scholar] [CrossRef]
- Friedman, M.; Henika, P.R.; Levin, C.E.; Mandrell, R.E. Antibacterial Activities of Plant Essential Oils and Their Components against Escherichia coli O157:H7 and Salmonella enterica in Apple Juice. J. Agric. Food Chem. 2004, 52, 6042–6048. [Google Scholar] [CrossRef]
- Orizano-Ponce, E.; Char, C.; Sepúlveda, F.; Ortiz-Viedma, J. Heat Sensitization of Escherichia coli by the Natural Antimicrobials Vanillin and Emulsified Citral in Blended Carrot-Orange Juice. Food Microbiol. 2022, 107, 104058. [Google Scholar] [CrossRef]
- Chung, D.; Cho, T.J.; Rhee, M.S. Citrus Fruit Extracts with Carvacrol and Thymol Eliminated 7-Log Acid-Adapted Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes: A Potential of Effective Natural Antibacterial Agents. Food Res. Int. 2018, 107, 578–588. [Google Scholar] [CrossRef]
- Li, J.; Zhao, N.; Xu, R.; Li, G.; Dong, H.; Wang, B.; Li, Z.; Fan, M.; Wei, X. Deciphering the Antibacterial Activity and Mechanism of P-Coumaric Acid against Alicyclobacillus acidoterrestris and Its Application in Apple Juice. Int. J. Food Microbiol. 2022, 378, 109822. [Google Scholar] [CrossRef]
- Lou, Z.; Wang, H.; Rao, S.; Sun, J.; Ma, C.; Li, J. p-Coumaric Acid Kills Bacteria through Dual Damage Mechanisms. Food Control 2012, 25, 550–554. [Google Scholar] [CrossRef]
- Wesche, A.M.; Gurtler, J.B.; Marks, B.P.; Ryser, E.T. Stress, Sublethal Injury, Resuscitation, and Virulence of Bacterial Foodborne Pathogens. J. Food Prot. 2009, 72, 1121–1138. [Google Scholar] [CrossRef] [PubMed]
- Aiyedun, S.O.; Onarinde, B.A.; Swainson, M.; Dixon, R.A. Foodborne Outbreaks of Microbial Infection from Fresh Produce in Europe and North America: A Systematic Review of Data from This Millennium. Int. J. Food Sci. Technol. 2021, 56, 2215–2223. [Google Scholar] [CrossRef]
- Pamplona Pagnossa, J.; Rocchetti, G.; Bezerra, J.D.P.; Batiha, G.E.S.; El-Masry, E.A.; Mahmoud, M.H.; Alsayegh, A.A.; Mashraqi, A.; Cocconcelli, P.S.; Santos, C.; et al. Untargeted Metabolomics Approach of Cross-Adaptation in Salmonella enterica Induced by Major Compounds of Essential Oils. Front. Microbiol. 2022, 13, 769110. [Google Scholar] [CrossRef]
- Defoirdt, T. Quorum-Sensing Systems as Targets for Antivirulence Therapy. Trends Microbiol. 2018, 26, 313–328. [Google Scholar] [CrossRef] [PubMed]
- Abdelhamid, A.G.; El-Dougdoug, N.K. Controlling Foodborne Pathogens with Natural Antimicrobials by Biological Control and Antivirulence Strategies. Heliyon 2020, 6, e05020. [Google Scholar] [CrossRef]
- Raetz, C.R.H.; Whitfield, C. Lipopolysaccharide Endotoxins. Annu. Rev. Biochem. 2002, 71, 635–700. [Google Scholar] [CrossRef]
- Vaara, M. Agents That Increase the Permeability of the Outer Membrane. Microbiol. Rev. 1992, 56, 395–411. [Google Scholar] [CrossRef]
- Özdemir, F.N.; Buzrul, S.; Özdemir, C.; Akçelik, N.; Akçelik, M. Determination of an Effective Agent Combination Using Nisin against Salmonella Biofilm. Arch. Microbiol. 2022, 204, 167. [Google Scholar] [CrossRef]
- Álvarez-Ordóñez, A.; Prieto, M.; Bernardo, A.; Hill, C.; López, M. The Acid Tolerance Response of Salmonella Spp.: An Adaptive Strategy to Survive in Stressful Environments Prevailing in Foods and the Host. Food Res. Int. 2012, 45, 482–492. [Google Scholar] [CrossRef]
- Yuan, W.; Seng, Z.J.; Kohli, G.S.; Yang, L.; Yuk, H.G. Stress Resistance Development and Genome-Wide Transcriptional Response of Escherichia coli O157:H7 Adapted to Sublethal Thymol, Carvacrol, and Trans-Cinnamaldehyde. Appl. Environ. Microbiol. 2018, 84, e01616-18. [Google Scholar] [CrossRef]
- Yin, X.; Gyles, C.L.; Gong, J. Grapefruit Juice and Its Constituents Augment the Effect of Low PH on Inhibition of Survival and Adherence to Intestinal Epithelial Cells of Salmonella enterica Serovar Typhimurium PT193. Int. J. Food Microbiol. 2012, 158, 232–238. [Google Scholar] [CrossRef] [PubMed]
- Nicolau-Lapeña, I.; Abadias, M.; Bobo, G.; Aguiló-Aguayo, I.; Lafarga, T.; Viñas, I. Strawberry sanitization by peracetic acid washing and its effect on fruit quality. Food Microbiol. 2019, 83, 159–166. [Google Scholar] [CrossRef] [PubMed]
- Minekus, M.; Alminger, M.; Alvito, P.; Ballance, S.; Bohn, T.; Bourlieu, C.; Carrière, F.; Boutrou, R.; Corredig, M.; Dupont, D.; et al. A Standardised Static in Vitro Digestion Method Suitable for Food—An International Consensus. Food Funct. 2014, 5, 1113–1124. [Google Scholar] [CrossRef] [PubMed]
- Ortiz-Solà, J.; Colás-Medà, P.; Nicolau-Lapeña, I.; Alegre, I.; Abadias, M.; Viñas, I. Pathogenic potential of the surviving Salmonella Enteritidis on strawberries after disinfection treatments based on ultraviolet-C light and peracetic acid. Int. J. Food Microbiol. 2022, 364, 109536. [Google Scholar] [CrossRef]
- Geeraerd, A.H.; Valdramidis, V.P.; Van Impe, J.F. GInaFiT, a Freeware Tool to Assess Non-Log-Linear Microbial Survivor Curves. Int. J. Food Microbiol. 2005, 102, 95–105. [Google Scholar] [CrossRef]
Bacterial Population Reduction (Log10 CFU/mL) | ||
---|---|---|
S. Enteritidis | E. coli O157:H7 | |
OJ | 0.5 ± 0.1 | 0.1 ± 0.1 |
OJ-0.25 mL/L citral | 3.4 ± 0.2 b | 0.3 ± 0.1 b |
OJ-0.5 mL/L citral | 4.8 ± 0.1 a | 3.9 ± 0.6 a |
OJ-0.05 g/L coumaric acid | 1.0 ± 0.0 d | 0.2 ± 0.1 c |
OJ-0.1 g/L coumaric acid | 1.3 ± 0.2 c | 0.3 ± 0.1 b |
OJ-0.25 g/L coumaric acid | 2.1 ± 0.1 b | 0.5 ± 0.1 b |
OJ-0.5 g/L coumaric acid | 4.2 ± 0.2 a | 1.6 ± 0.0 a |
OJ-0.5 mL nisin | 1.3 ± 0.3 c | 0.1 ± 0.1 b |
OJ-1 mL/L nisin | 2.2 ± 0.4 b | 0.3 ± 0.2 ab |
OJ-2 mL/L nisin | 3.9 ± 0.5 a | 0.4 ± 0.1 a |
OJ-4 mL/L nisin | 4.3 ± 0.1 a | 0.4 ± 0.2 a |
pH | TSS (°Brix) | TTA (g Citric Acid/L) | aw | TPC (mg Gallic Acid/mL) | Antioxidant Capacity (mg Ascorbic Acid/L) | ||
---|---|---|---|---|---|---|---|
DPPH | FRAP | ||||||
OJ | 3.51 ± 0.02 a | 11.6 ± 0.1 a | 7.04 ± 0.26 a | 1.000 ± 0.002 a | 528.39 ± 25.22 a | 1200.17 ± 3.85 a | 977.98 ± 27.55 a |
OJ-1 mL/L nisin | 3.44 ± 0.01 a | 11.7 ± 0.1 a | 8.18 ± 0.12 a | 0.993 ± 0.001 a | 478.83 ± 10.13 a | 1180.77 ± 5.52 a | 986.88 ± 22.42 a |
OJ-2 mL/L nisin | 3.37 ± 0.02 a | 11.7 ± 0.0 a | 8.44 ± 0.09 a | 0.994 ± 0.001 a | 555.26 ± 22.73 a | 1223.65 ± 42.11 a | 981.54 ± 9.33 a |
OJ-0.25 mL/L citral | 3.66 ± 0.10 a | 11.8 ± 0.2 a | 7.02 ± 0.28 a | 0.994 ± 0.001 a | 655.56 ± 37.88 a | 1304.31 ± 31.47 a | 942.76 ± 16.34 a |
OJ-0.50 mL/L citral | 3.76 ± 0.03 a | 11.8 ± 0.1 a | 6.98 ± 0.22 a | 0.988 ± 0.006 a | 582.13 ± 27.57 a | 1365.06 ± 4.92 a | 950.94 ± 38.84 a |
OJ-0.25 mL/L coumaric acid | 3.70 ± 0.14 a | 11.8 ± 0.0 a | 7.32 ± 0.13 a | 0.996 ± 0.001 a | 782.03 ± 98.76 a | 1300.74 ± 19.39 a | 995.77 ± 15.13 a |
OJ-0.50 mL/L coumaric acid | 3.66 ± 0.02 a | 11.6 ± 0.1 a | 7.28 ± 0.47 a | 0.997 ± 0.003 a | 997.28 ± 65.74 a | 1377.31 ± 1.77 a | 985.1 ± 20.36 a |
Acid-Adapted S. Enteritidis | Non-Acid-Adapted S. Enteritidis | Acid-Adapted E. coli O157:H7 | Non-Acid-Adapted E. coli O157:H7 | ||
---|---|---|---|---|---|
Linear model | |||||
OJ-1 mL/L nisin | RMSE | 0.464 | 0.190 | * | * |
R2-adj | 0.760 | 0.988 | * | * | |
OJ-2 mL/L nisin | RMSE | 0.277 | 0.807 | * | * |
R2-adj | 0.963 | 0.859 | * | * | |
OJ-0.25 mL/L citral | RMSE | 0.357 | 0.593 | 0.072 | 0.318 |
R2-adj | 0.955 | 0.916 | 0.672 | 0.891 | |
OJ-0.5 mL/L citral | RMSE | 0.318 | 0.824 | 0.309 | 0.337 |
R2-adj | 0.970 | 0.836 | 0.957 | 0.965 | |
OJ-0.25 g/L coumaric acid | RMSE | 0.319 | 0.592 | * | 0.181 |
R2-adj | 0.947 | 0.883 | * | 0.958 | |
OJ-0.5 g/L coumaric acid | RMSE | 0.169 | 0.411 | 0.137 | 0.202 |
R2-adj | 0.992 | 0.954 | 0.929 | 0.987 | |
Weibull model | |||||
OJ-1 mL/L nisin | RMSE | 0.470 | 0.511 | * | * |
R2-adj | 0.753 | 0.912 | * | * | |
OJ-2 mL/L nisin | RMSE | * | 0.931 | * | 0.094 |
R2-adj | * | 0.812 | * | 0.624 | |
OJ-0.25 mL/L citral | RMSE | 0.195 | * | 0.069 | 0.206 |
R2-adj | 0.986 | * | 0.693 | 0.954 | |
OJ-0.5 mL/L citral | RMSE | 0.345 | * | 0.280 | 0.306 |
R2-adj | 0.965 | * | 0.965 | 0.971 | |
OJ-0.25 g/L coumaric acid | RMSE | 0.300 | 0.516 | * | 0.172 |
R2-adj | 0.953 | 0.911 | * | 0.962 | |
OJ-0.5 g/L coumaric acid | RMSE | 0.137 | * | 0.119 | 0.204 |
R2-adj | 0.995 | * | 0.946 | 0.987 |
Acid-Adapted S. Enteritidis | Non-Acid-Adapted S. Enteritidis | Acid-Adapted E. coli O157:H7 | Non-Acid-Adapted E. coli O157:H7 | |
---|---|---|---|---|
OJ-1 mL/L nisin | 0.11 ± 0.01 | 0.22 ± 0.00 | * | * |
OJ-2 mL/L nisin | 0.18 ± 0.01 | 0.26 ± 0.02 | * | * |
OJ-0.25 mL/L citral | 0.21 ± 0.01 | 0.25 ± 0.01 | 0.01 ± 0.00 | 0.12 ± 0.01 |
OJ-0.5 mL/L citral | 0.33 ± 0.01 | 0.43 ± 0.04 | 0.21 ± 0.01 | 0.22 ± 0.01 |
OJ-0.25 g/L coumaric acid | 0.17 ± 0.01 | 0.29 ± 0.02 | 0.02 ± 0.00 | 0.11 ± 0.00 |
OJ-0.5 g/L coumaric acid | 0.34 ± 0.01 | 0.43 ± 0.02 | 0.06 ± 0.00 | 0.22 ± 0.00 |
Acid-Adapted S. Enteritidis | Non-Acid-Adapted S. Enteritidis | Acid-Adapted E. coli O157:H7 | Non-Acid-Adapted E. coli O157:H7 | ||
---|---|---|---|---|---|
OJ-1 mL/L nisin | δ | 22.69 ± 4.16 | 3.48 ± 1.11 | * | * |
p | 1.07 ± 0.25 | 0.60 ± 0.07 | * | * | |
OJ-2 mL/L nisin | δ | - | 7.80 ± 3.50 | * | 78.83 ± 12.18 |
p | - | 0.79 ± 0.20 | * | 2.16 ± 0.61 | |
OJ-0.25 mL/L citral | δ | 17.85 ± 0.80 | * | 119.67 ± 29.29 | 26.07 ± 1.33 |
p | 1.53 ± 0.07 | * | 1.29 ± 0.31 | 1.63 ± 0.13 | |
OJ-0.5 mL/L citral | δ | 7.87 ± 1.29 | * | 14.14 ± 1.28 | 8.25 ± 1.22 |
p | 1.05 ± 0.13 | * | 1.23 ± 0.10 | 0.84 ± 0.07 | |
OJ-0.25 g/L coumaric acid | δ | 16.69 ± 1.57 | 2.33 ± 1.07 | * | 23.46 ± 1.41 |
p | 1.23 ± 0.11 | 0.53 ± 0.09 | * | 1.19 ± 0.09 | |
OJ-0.5 g/L coumaric acid | δ | 5.18 ± 0.38 | * | 38.37 ± 1.28 | 10.85 ± 0.82 |
p | 0.86 ± 0.04 | * | 1.41 ± 0.13 | 1.03 ± 0.05 |
Adhesion Index | |||
---|---|---|---|
S. Enteritidis | Acid-adapted | Orange juice | 10.6 ± 13.5 a |
Non-acid-adapted | Orange juice | 6.5 ± 1.3 a | |
Acid-adapted | Orange juice with 1 mL/L nisin | 2.4 ± 1.8 b | |
Non-acid-adapted | Orange juice with 1 mL/L nisin | 0.0 ± 0.0 b | |
E. coli O157:H7 | Acid-adapted | Orange juice | 40 ± 50.6 a |
Non-acid-adapted | Orange juice | 0.0 ± 0.0 a | |
Acid-adapted | Orange juice with 0.5 g/L cumaric acid | 14.1 ± 2.5 a | |
Non-acid-adapted | Orange juice with 0.5 g/L cumaric acid | 12.1 ± 1.3 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bainotti, M.B.; Colás-Medà, P.; Viñas, I.; Alegre, I. Effect of Antimicrobial Compounds on the Survival and Pathogenic Potential of Acid-Adapted Salmonella Enteritidis and Escherichia coli O157:H7 in Orange Juice. Antibiotics 2025, 14, 335. https://doi.org/10.3390/antibiotics14040335
Bainotti MB, Colás-Medà P, Viñas I, Alegre I. Effect of Antimicrobial Compounds on the Survival and Pathogenic Potential of Acid-Adapted Salmonella Enteritidis and Escherichia coli O157:H7 in Orange Juice. Antibiotics. 2025; 14(4):335. https://doi.org/10.3390/antibiotics14040335
Chicago/Turabian StyleBainotti, Maria Belén, Pilar Colás-Medà, Inmaculada Viñas, and Isabel Alegre. 2025. "Effect of Antimicrobial Compounds on the Survival and Pathogenic Potential of Acid-Adapted Salmonella Enteritidis and Escherichia coli O157:H7 in Orange Juice" Antibiotics 14, no. 4: 335. https://doi.org/10.3390/antibiotics14040335
APA StyleBainotti, M. B., Colás-Medà, P., Viñas, I., & Alegre, I. (2025). Effect of Antimicrobial Compounds on the Survival and Pathogenic Potential of Acid-Adapted Salmonella Enteritidis and Escherichia coli O157:H7 in Orange Juice. Antibiotics, 14(4), 335. https://doi.org/10.3390/antibiotics14040335