Antimicrobial Activity and Characterization of a Validated Copper-Complexed Polymer Tape for Surface Disinfectant Applications
Abstract
1. Introduction
2. Results and Discussion
2.1. Physicochemical Characteristics
2.2. Antimicrobial Performance and Microscopic Characterization of Biological Interactions
2.3. Clinical Assessment in Hospital Environment
3. Materials and Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Murray, C.J.L.; Ikuta, K.S.; Sharara, F.; Swetschinski, L.; Robles Aguilar, G.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E.; et al. Global Burden of Bacterial Antimicrobial Resistance in 2019: A Systematic Analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef]
- WHO. Fungal Priority Pathogens List to Guide Research, Development and Public Health Action, 1st ed.; World Health Organization: Geneva, Switzerland, 2022; ISBN 978-92-4-006024-1.
- Fisher, M.C.; Alastruey-Izquierdo, A.; Berman, J.; Bicanic, T.; Bignell, E.M.; Bowyer, P.; Bromley, M.; Brüggemann, R.; Garber, G.; Cornely, O.A.; et al. Tackling the Emerging Threat of Antifungal Resistance to Human Health. Nat. Rev. Microbiol. 2022, 20, 557–571. [Google Scholar] [CrossRef]
- Wang, C.-G.; Surat’man, N.E.B.; Mah, J.J.Q.; Qu, C.; Li, Z. Surface Antimicrobial Functionalization with Polymers: Fabrication, Mechanisms and Applications. J. Mater. Chem. B 2022, 10, 9349–9368. [Google Scholar] [CrossRef]
- Salah, I.; Parkin, I.P.; Allan, E. Copper as an Antimicrobial Agent: Recent Advances. RSC Adv. 2021, 11, 18179–18186. [Google Scholar] [CrossRef]
- Ngece, K.; Khwaza, V.; Paca, A.M.; Aderibigbe, B.A. The Antimicrobial Efficacy of Copper Complexes: A Review. Antibiotics 2025, 14, 516. [Google Scholar] [CrossRef] [PubMed]
- Mikolay, A.; Huggett, S.; Tikana, L.; Grass, G.; Braun, J.; Nies, D.H. Survival of Bacteria on Metallic Copper Surfaces in a Hospital Trial. Appl. Microbiol. Biotechnol. 2010, 87, 1875–1879. [Google Scholar] [CrossRef] [PubMed]
- Bharadishettar, N.; Bhat K, U.; Bhat Panemangalore, D. Coating Technologies for Copper Based Antimicrobial Active Surfaces: A Perspective Review. Metals 2021, 11, 711. [Google Scholar] [CrossRef]
- Saadi, S.; Allem, R.; Sebaihia, M.; Merouane, A.; Bakkali, M. Bacterial Contamination of Neglected Hospital Surfaces and Equipment in an Algerian Hospital: An Important Source of Potential Infection. Int. J. Environ. Health Res. 2022, 32, 1373–1381. [Google Scholar] [CrossRef] [PubMed]
- Rossi, C.; Chaves-López, C.; Serio, A.; Casaccia, M.; Maggio, F.; Paparella, A. Effectiveness and Mechanisms of Essential Oils for Biofilm Control on Food-Contact Surfaces: An Updated Review. Crit. Rev. Food Sci. Nutr. 2022, 62, 2172–2191. [Google Scholar] [CrossRef] [PubMed]
- Caggiano, G.; Apollonio, F.; Triggiano, F.; Diella, G.; Stefanizzi, P.; Lopuzzo, M.; D’Ambrosio, M.; Bartolomeo, N.; Barbuti, G.; Sorrenti, G.T.; et al. SARS-CoV-2 and Public Transport in Italy. Int. J. Environ. Res. Public Health 2021, 18, 11415. [Google Scholar] [CrossRef] [PubMed]
- Dressler, R.L.; Cruser, B.; Dressler, D.D. Hospital Physicians’ Stethoscopes: Bacterial Contamination After a Simple Cleaning Protocol. Cureus 2023, 15, e37061. [Google Scholar] [CrossRef]
- Bäumler, W.; Eckl, D.; Holzmann, T.; Schneider-Brachert, W. Antimicrobial Coatings for Environmental Surfaces in Hospitals: A Potential New Pillar for Prevention Strategies in Hygiene. Crit. Rev. Microbiol. 2022, 48, 531–564. [Google Scholar] [CrossRef]
- Ekonomou, S.Ι.; Soe, S.; Stratakos, A.C. An Explorative Study on the Antimicrobial Effects and Mechanical Properties of 3D Printed PLA and TPU Surfaces Loaded with Ag and Cu against Nosocomial and Foodborne Pathogens. J. Mech. Behav. Biomed. Mater. 2023, 137, 105536. [Google Scholar] [CrossRef]
- Wang, Y.; Wen, T.; Mao, F.; Yang, S.; Zhang, Q.; Fu, X.; Zhai, C.; Zhang, H. Engineering Copper and Copper-Based Materials for a Post-Antibiotic Era. Front. Bioeng. Biotechnol. 2025, 13, 1644362. [Google Scholar] [CrossRef]
- Chen, S.; Brown, L.; Levendorf, M.; Cai, W.; Ju, S.-Y.; Edgeworth, J.; Li, X.; Magnuson, C.W.; Velamakanni, A.; Piner, R.D.; et al. Oxidation Resistance of Graphene-Coated Cu and Cu/Ni Alloy. ACS Nano 2011, 5, 1321–1327. [Google Scholar] [CrossRef]
- Lu, C.; Li, Z.; Ren, L.; Su, N.; Lu, D.; Liu, Z. In Situ Oxidation of Cu2O Crystal for Electrochemical Detection of Glucose. Sensors 2019, 19, 2926. [Google Scholar] [CrossRef] [PubMed]
- Bisht, N.; Dwivedi, N.; Kumar, P.; Venkatesh, M.; Yadav, A.K.; Mishra, D.; Solanki, P.; Verma, N.K.; Lakshminarayanan, R.; Ramakrishna, S.; et al. Recent Advances in Copper and Copper-Derived Materials for Antimicrobial Resistance and Infection Control. Curr. Opin. Biomed. Eng. 2022, 24, 100408. [Google Scholar] [CrossRef] [PubMed]
- ISO 22196:2011; Measurement of Antibacterial Activity on Plastics and Other Non-porous Surfaces. International Organization for Standardization: Geneva, Switzerland, 2011.
- Mitra, D.; Kang, E.-T.; Neoh, K.G. Antimicrobial Copper-Based Materials and Coatings: Potential Multifaceted Biomedical Applications. ACS Appl. Mater. Interfaces 2020, 12, 21159–21182. [Google Scholar] [CrossRef] [PubMed]
- Chai, H.; Guo, L.; Wang, X.; Fu, Y.; Guan, J.; Tan, L.; Ren, L.; Yang, K. Antibacterial Effect of 317L Stainless Steel Contained Copper in Prevention of Implant-Related Infection in Vitro and in Vivo. J. Mater. Sci. Mater. Med. 2011, 22, 2525–2535. [Google Scholar] [CrossRef] [PubMed]
- O’Gorman, J.; Humphreys, H. Application of Copper to Prevent and Control Infection. Where Are We Now? J. Hosp. Infect. 2012, 81, 217–223. [Google Scholar] [CrossRef]
- Govrins, M.; Lass-Flörl, C. Candida Parapsilosis Complex in the Clinical Setting. Nat. Rev. Microbiol. 2024, 22, 46–59. [Google Scholar] [CrossRef] [PubMed]
- Ayala-Peña, V.B.; Martin, M.J.; Otarola, J.; Favatela, F.; Gonzalez, J.S.; Conesa, A.L.; García, C.C.; Sepúlveda, C.S.; Alvarez, V.A.; Lassalle, V.L. Virucidal and Antibacterial Chitosan–NanoCu Film-Coating-Based Technology: Complete Analysis of Its Performance on Various Surfaces. Viruses 2025, 17, 1347. [Google Scholar] [CrossRef] [PubMed]
- NF S90-700; Surfaces with Biocidal Properties—Method for the Evaluation of Basic Bactericidal Activity of a Non-Porous Surface. Association Francaise de Normalisation: La Plaine Saint-Denis, France, 2017.






| Bacterial Strain | Control (log10 CFU/mL) | Test (log10 CFU/mL) |
|---|---|---|
| Escherichia coli ATCC 8739 | 5.33 ± 0.61 | <1.00 |
| Pseudomonas aeruginosa ATCC 15442 | 5.22 ± 0.54 | <1.00 |
| Salmonella enterica subsp. enterica serovar Choleraesuis ATCC 10708 | 3.59 ± 0.53 | <1.00 |
| Staphylococcus aureus ATCC 6538 | 1.66 ± 0.72 | <1.00 |
| Variable | Group | Positive Samples | Yeast Species |
|---|---|---|---|
| Patient unit divider curtains | Control | 2/75 | Candida parapsilosis (2/2). |
| Test | 6/75 | Candida parapsilosis (3/6), Trichosporon ovoides (1/6), Trichosporon asahii (1/6), Rhodotorula mucilaginosa (1/6). | |
| Chair armrests | Control | 6/75 | Candida parapsilosis (5/6), not identified (1/6). |
| Test | 4/75 | Candida parapsilosis (2/4), Candida orthopsilosis (1/4), Trichosporon asahii (1/4). | |
| Drawer handles of medication carts | Control | 3/90 | Candida parapsilosis (3/3). |
| Test | 5/90 | Candida parapsilosis (5/5). | |
| Sink faucets in the EUU | Control | 2/15 | Candida parapsilosis (1/2), Candida guilliermondii (1/2). |
| Test | 0/15 | - | |
| Sink faucets in the bathrooms | Control | 4/15 | Candida parapsilosis (2/4), Candida glabrata (1/4), Candida parapsilosis + Candida albicans (1/4). |
| Test | 1/15 | Candida parapsilosis (1/4). | |
| Grab bars in the bathrooms (shower and toilet bowl) | Control | 1/30 | Candida parapsilosis (1/1). |
| Test | 4/30 | Candida parapsilosis (2/4), Candida parapsilosis + Candida albicans (1/4), Candida albicans (1/4). |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vasconcelos, A.G.; Amorim, W.D.; Sá, B.S.; Costa, L.B.V.; Araujo, G.S.d.; Gomes, H.A.R.; Júnior, J.A.C.; Correia, A.F.; Cabral, Í.; Machado, T.R.; et al. Antimicrobial Activity and Characterization of a Validated Copper-Complexed Polymer Tape for Surface Disinfectant Applications. Antibiotics 2025, 14, 1262. https://doi.org/10.3390/antibiotics14121262
Vasconcelos AG, Amorim WD, Sá BS, Costa LBV, Araujo GSd, Gomes HAR, Júnior JAC, Correia AF, Cabral Í, Machado TR, et al. Antimicrobial Activity and Characterization of a Validated Copper-Complexed Polymer Tape for Surface Disinfectant Applications. Antibiotics. 2025; 14(12):1262. https://doi.org/10.3390/antibiotics14121262
Chicago/Turabian StyleVasconcelos, Andreanne G., William D. Amorim, Bruno S. Sá, Luan B. V. Costa, Gustavo S. de Araujo, Helder Andrey R. Gomes, Jorge Antônio Chamon Júnior, Amabel F. Correia, Íris Cabral, Thales R. Machado, and et al. 2025. "Antimicrobial Activity and Characterization of a Validated Copper-Complexed Polymer Tape for Surface Disinfectant Applications" Antibiotics 14, no. 12: 1262. https://doi.org/10.3390/antibiotics14121262
APA StyleVasconcelos, A. G., Amorim, W. D., Sá, B. S., Costa, L. B. V., Araujo, G. S. d., Gomes, H. A. R., Júnior, J. A. C., Correia, A. F., Cabral, Í., Machado, T. R., Mendonça, D. M. C. d., Silva, I. G. M. d., Júnior, J. L., Santana, E. R. d., Mascarenhas, Y., Báo, S. N., Zucolotto, V., Eaton, P., Gomes, C. M., & Leite, J. R. d. S. A. (2025). Antimicrobial Activity and Characterization of a Validated Copper-Complexed Polymer Tape for Surface Disinfectant Applications. Antibiotics, 14(12), 1262. https://doi.org/10.3390/antibiotics14121262

