Next Article in Journal
mecA and mecC Positive Strains of Staphylococcus aureus Detected and Isolated from Raw Milk of Ecuador
Previous Article in Journal
Plasma and Muscle Pharmacokinetics of Ceftriaxone in Nile Tilapia (Oreochromis niloticus) After Different Administration Routes
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

Advances in Kaempferol: Extraction, Biosynthesis, and Application with Antibacterial Agents

1
Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
2
Key Laboratory of Animal Drug Production in Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
3
Key Laboratory of New Veterinary Medicine Engineering in Gansu Province, Lanzhou 730050, China
*
Authors to whom correspondence should be addressed.
Antibiotics 2025, 14(12), 1254; https://doi.org/10.3390/antibiotics14121254
Submission received: 23 October 2025 / Revised: 2 December 2025 / Accepted: 4 December 2025 / Published: 11 December 2025

Abstract

The spread of multidrug-resistant bacteria around the world is rising, and new antibiotics are urgently needed to address the drug resistance crisis. Natural products have become a focal point in the research and development of antibacterial drugs, owing to their structural diversity and biological activity. Kaempferol, in particular, exhibits a range of biological properties, including antioxidant, antibacterial, and antitumor activities, and holds potential for application across various domains. This review aims to provide a comprehensive overview of the extraction, biosynthesis, and antibacterial activity of kaempferol, as well as to elucidate its antibacterial mechanisms. In addition, we also reviewed the synergistic combination of kaempferol with antibiotics, such as the combination of kaempferol with colistin or penicillin, which significantly improved their therapeutic effect. Finally, the preparation of kaempferol nanoparticles and their applications in antibacterial treatments were discussed.

1. Introduction

The proliferation of superbugs and multidrug-resistant pathogens has become a significant challenge to global public health [1]. Reports indicate that by 2050, antimicrobial resistance in bacteria could lead to about 10 million deaths each year [2]. There has been a notable reduction in the development and approval of new antimicrobial agents over the past few decades. To address the antibiotic resistance crisis, there is a pressing demand for innovative antibiotics. Most pharmaceuticals on the market are derived from natural products, which are celebrated for their structural diversity and complexity [3,4,5]. Natural products and their derivatives are estimated to constitute 38% of the drugs approved by the FDA [6].
Kaempferol is extensively found in numerous fruits, vegetables, tea, and herbs [7]. This compound is chemically identified as 3,5,7-trihydroxy-2-(4-hydroxyphenyl)-4H-1-benzopyran-4-one [8]. The core structure of kaempferol is 2-phenylchromone (C6-C3-C6) [9], its molecular formula is C15H10O6, and its chemical structure is shown in Figure 1. This compound has attracted interest from pharmacologists, medicinal chemists, and dieticians due to its diverse biological activities, including antioxidant, antiaging, anti-inflammatory, antidiabetic, anticancer, anti-obesity, anti-asthmatic, antiplatelet, antiallergic, cardioprotective, and bone-health-promoting properties [10,11]. Kaempferol represents a market value exceeding 5.7 billion $ in the international pharmaceutical and food sectors [12]. With the deepening of research, more and more pharmacological activities and underlying mechanisms are anticipated to be elucidated. This article reviews the application of kaempferol in terms of its antibacterial effects.

2. Sources of Kaempferol

2.1. Extraction from Plants, Fruits, and Other Species

2.1.1. Conventional Organic Solvent Extraction

Kaempferol is ubiquitously distributed across a variety of plant species, herbs, fruits, sweets, wine, etc. (Table 1). It is isolated and identified using organic solvent, such as methanol, ethanol, petrol, and methanol–dichloromethane. The yield of kaempferol ranges from 0.1 μg/g to 2591.9 μg/g. Pure kaempferol can be isolated from the following species (Table 1).

2.1.2. Supercritical Fluid Extraction (SFE)

SFE uses supercritical fluids as extraction solvents. In this method, CO2 is a typical supercritical solvent with no toxicity or adverse effects. Using SFE, kaempferol was isolated from P. lactiflora seed oils, with concentrations up to 98.95 ± 4.18 μg/g (dry basis) in samples [188]. Liza et al. isolated kaempferol from Strobilanthes crispus leaves by using SFE. Under the optimal conditions, the concentration of kaempferol was 19,450 μg/g in Strobilanthes crispus leaves, 98.95 μg/g in Paeonia lactiflora Pall seed oils, 110 μg/g in propolis, and 1.96 μg/g in Ribes nigrum L. seeds, respectively [189,190,191,192]. Wang et al. isolated kaempferol from Ampelopsis grossedentata stems using SFE. With extraction at 25 MPa and 40 °C for 50 min, the yield was highest [193]. A new method using snailase-assisted SFE was devised to extract flavonoids from apple pomace. Under optimal conditions (0.25% snail enzyme, 2 h of enzymolysis, 20% methanol), the concentration of kaempferol reached 0.68 μmol/g [194].

2.1.3. Molecular Imprinting Technique (MIT)

The MIT is a versatile approach designed to target specific molecules by using tailored molecularly imprinted polymers (MIPs) [195].
An active sensing material for the quick detection of kaempferol was developed using a one-pot surface-imprinting synthesis technique. This sensor includes molecularly imprinted polymers (MIPs) that are embedded with carbon dots (CDs) and incorporated into mesoporous molecular sieves (SBA-15). MIPs were successful in detecting kaempferol in vegetables and fruits, with recovery rates of 80% to 112% and a detection limit of 14 μg/L [196]. Cheng et al. used magnetic molecularly imprinted polymers (Fe3O4 @ SiO2-MIPs) to extract and detect kaempferol in apple samples, achieving a recovery rate of 90.5%–95.4% [197].
Novel photo-responsive hollow SnO2 molecularly imprinted polymers (PHSMIPs) were developed to extract kaempferol from sea buckthorn leaves [198]. PHSMIPs were created using free radical polymerization, employing kaempferol as the template, 2-(N-3-Sulfopropyl-N, N-dimethyl ammonium) ethyl methacrylate as the photo-responsive monomer, and hollow SnO2 as the support, achieving a recovery rate over 90%.
Nanoparticles made from a molecularly imprinted polymer, utilizing a deep eutectic solvent and hexagonal boron nitride (H-BN-MIP), were created for extracting flavonoids from Ginkgo biloba leaves through solid-phase extraction, achieving a 94.3% recovery rate [199].

2.1.4. Ultrasound-Assisted Extraction (UE)

UE is a novel technique used to obtain bioactive compounds from plant materials. Using UE, kaempferol was obtained from propolis and bee bread; the yields of kaempferol were 3590 μg/g and 197.60 μg/g, respectively [191,200]. Wójciak, M. et al. reported that the content of kaempferol reached 584 µg/g in Hamamelis virginiana bark extract using UE. [201]

2.1.5. Microwave-Assisted Extraction (MAE)

MAE is a technology used to extract soluble compounds by microwave radiation. At optimal conditions (90.5% ethanol, 18.6 W/mL microwave power), the yield of kaempferol from Senna alata (L.) Roxb was 8540 µg/g [202]. To evaluate the biological activities of Melaleuca quinquenervia leaf, the MAE technique was applied with a 20 mL/g liquid–solid ratio and a microwave exposure time of 180 s, obtaining 16,300 µg/g kaempferol [203].

2.2. Biosynthesis

Combinatorial metabolic engineering has been explored as an alternative approach for producing flavonoids in vivo [204].

2.2.1. Biosynthesis of Kaempferol in Plants

In plants, biosynthesis of kaempferol occurs via the phenylpropanoid pathway. Kaempferol, characterized by a diphenyl propane conformation (C6-C3-C6), is synthesized through the enzymatic condensation of diphenylpropane [10,205]. Phenylalanine serves as a precursor and is oxidatively deaminated by phenylalanine ammonia lyase (PAL) to produce trans-cinnamic acid. Cinnamic acid 4-hydroxylase (C4H) catalyzes the hydroxylation of cinnamic acid to form 4-coumaric acid [206]. 4-Coumaroyl-CoA is formed through activation by 4-coumaroyl-CoA ligase (4CL). Chalcone synthase (CHS) then catalyzes the condensation of this compound with three malonyl-CoA units to synthesize naringenin chalcone. Chalcone isomerase (CHI) converts the intermediate into naringenin through cyclization. Flavanone 3-hydroxylase (F3H) hydroxylates naringenin at C3 to form dihydrokaempferol. Flavanol synthase (FLS) subsequently introduces a C2-C3 double bond to yield kaempferol [206,207].
Producing flavonoids from plants at a large scale is challenging due to extended growth periods, particular cultivation requirements, and their low natural presence. Furthermore, the extraction and purification processes raise expenses [208,209].

2.2.2. Microbial Synthesis

Microbial cell factories that are genetically modified, such as Saccharomyces cerevisiae (S. cerevisiae) and Escherichia coli (E. coli), present a promising approach for synthesizing kaempferol [210].
Microbial Synthesis in E. coli
Peng Xu et al. have successfully engineered an E. coli recombinant strain by increasing the level of intracellular malonyl-CoA levels; their naringenin production was 474 mg/L [211]. By optimizing relevant genes and enhancing the intracellular acetyl-CoA pool, recombinant strains were developed, achieving pinocembrin and naringenin production levels of 391 mg/L [212].
Microbial Synthesis in S. cerevisiae
Duan et al. successfully achieved efficient production of kaempferol (66.29 mg/L in 40 h) in S. cerevisiae by introducing a potent flavonol synthase, enhancing acetyl-CoA synthesis, overexpressing the acetyl-CoA biosynthetic pathway, supplementing with p-coumaric acid, and optimizing fermentation conditions [210]. Similarly, S. cerevisiae was employed as a host for metabolic engineering to alter its metabolic pathway, facilitating the production of the flavonoid kaempferol from glucose, with a yield of 26.57 mg/L [213].
A recombinant strain with an efficient kaempferol biosynthetic pathway was constructed through screening of essential enzyme genes, engineering an enzyme for synthetic fusion, and increasing gene copy numbers. Through the optimization of fermentation conditions, kaempferol production achieved a yield of 1184.2 mg/L [204].
A cell factory with increased kaempferol production was constructed by metabolically engineering S. cerevisiae using a variety of techniques, such as gene screening, phenylethanol biosynthesis branch elimination, core flavonoid synthetic pathway optimization, precursor PEP/E4P supplementation, and mitochondrial engineering of F3H and FLS. Naringenin and kaempferol were obtained at concentrations of 220 mg/L and 86 mg/L, respectively [206].
Using naringenin as a substrate, PGK1 as a promoter, and CYC1t as a terminator, a kaempferol biosynthesis pathway was engineered in S. cerevisiae D452-2, catalyzed by rice flavanone 3-hydroxylase. A yield of 19.13 mg/L of kaempferol was achieved [214].
Guava leaf tea was fermented using Monascus anka and S. cerevisiae, followed by hydrolysis with a composite enzyme containing equal parts of cellulase, β-glucosidase, xylanase, and β-galactosidase. Fermentation and intricate enzymatic hydrolysis increased kaempferol levels by 6.8-fold [215].
A modular DNA assembly tool was developed for kaempferol synthesis in Phomopsis Liquidambaris (P. Liquidambaris). A shuttle plasmid was constructed utilizing S. cerevisiae, E. coli, and P. Liquidambaris. The refactored route employing DNA assembly improved kaempferol synthesis, reaching a yield of 75.38 mg/L [216].
Microbial Synthesis in Streptomyces albus (S. albus) and Streptomyces coelicolor (S. coelicolor)
Marín L et al. investigated the de novo biosynthesis of kaempferol in S. albus and S. coelicolor. First, genes necessary for the production of flavonoids were cloned from several organisms, and codons were optimized in E. coli. The genes were then cloned into a shuttle vector with a high copy number that was compatible with Streptomyces expression. Streptomyces J1074 and M1154 were the transformants of the generated recombinant plasmids, and the successful transformants were screened by cultivating on R5A solid medium. Flavonoids were isolated and examined after varying amounts of flavonoid precursors were introduced and cultivated for either 72 h (liquid culture) or 161 h (solid culture) in the following liquid culture experiment. In S. albus-pKF, kaempferol (0.212 μM) and its precursors naringenin and dihydrokaempferol were found [217].

3. Antibacterial Activity of Kaempferol

3.1. Anti Gram-Negative Bacteria

3.1.1. Antibacterial Activity Against Microcystis Aeruginosa (M. Aeruginosa)

In eutrophic waters, harmful algal blooms have become more frequent and severe recently [218]. M. aeruginosa is a major danger to ecological systems and human health [219]. A thorough analysis of the effects of kaempferol on M. aeruginosa and its underlying mechanism was carried out. With a dose of 20 mg/L, kaempferol showed a 96.69% inhibitory effect on M. aeruginosa at 96 h. By preventing photosynthesis, rupturing cell membranes, decreasing respiratory rate, and altering enzyme function, kaempferol prevents M. aeruginosa from growing [220].

3.1.2. Antibacterial Activity Against Pseudomonas aeruginosa (P. aeruginosa)

P. aeruginosa is challenging to remove due to its ability to create biofilms and its resistance to multiple drugs. Kaempferol could effectively inhibit the growth of P. aeruginosa in vivo and in vitro; the MIC against P. aeruginosa 01 was 32 µg/mL [221], and the inhibition zone against P. aeruginosa ATCC9027 was 6.8 mm (antibacterial activity was higher than amikacin with 17 mm) [222]. Kaempferol has therapeutic effectivity on the coinfections caused by S. aureus and P. aeruginosa in vitro and in vivo. Kaempferol therapized the bacterial coinfection by inhibiting S. aureus α-hemolysin [223].
Kaempferol inhibited the growth of P. aeruginosa PAO1 in a dose-dependent manner. At 50 µg/mL concentration induced reduction in pyocyanin production and elastolytic and proteolytic activities in P. aeruginosa PAO1 by 50% [224].
The mechanism behind this is that kaempferol inhibits the quorum-sensing system by preventing competitive ligands from connecting to LasR [225]. Meanwhile, it reduces acute lung inflammation and damage brought on by P. aeruginosa and increases the survival rate of mice by inhibiting the signaling pathway of GSK3β/JNK/c-Jun and NF-κB [226].

3.1.3. Antibacterial Activity Against Salmonella typhimurium (S. typhimurium)

Kaempferol demonstrated activity against S. typhimurium. The inhibition zone against S. enteritidis ATCC13076 was 7.2 mm, which was better than that of amikacin (17 mm) [222]. It plays an antibacterial role by reducing transmembrane potential and oxygen consumption.

3.1.4. Antibacterial Activity Against Xanthomonas spp.

Plant diseases are a major threat to global food production [227]. Two stubborn plant bacterial infections are Xanthomonas oryzae (X. oryzae) and Xanthomonas axonopodis (X. axonopodis) [228]. In vitro, kaempferol possessed better antibacterial action against X. oryzae (EC50 = 15.91 µg/mL) than the positive control, thiodiazole copper (EC50 = 16.79 µg/mL) [229]. In vivo, kaempferol showed significant preventive and therapeutic properties against rice bacterial leaf blight, with efficiencies of 55.8% and 42.9%, which were higher than those of thiodiazole copper (39.5% and 38.0%). Kaempferol exerts antibacterial effects by damaging the bacterial cell wall or membrane, altering energy metabolism, disrupting the secretion system, and interfering with quorum sensing.

3.1.5. Antibacterial Activity Against Porphyromonas gingivalis (P. gingivalis)

Kaempferol displayed excellent antibacterial activity against P. gingivalis. The MIC towards ATCC 33277 was 20 µg/mL [45], and 8 µg/mL kaempferol showed 84% antibacterial activity against P. gingivalis [230]. Kaempferol ameliorates the inflammatory response by targeting the TLR4/MyD88/NFκB signaling pathway in rats [231].

3.1.6. Antibacterial Activity Against Vibrio cholerae

Kaempferol had good activity against V. cholerae and no toxicity to lymphocytes [41].

3.1.7. Antibacterial Activity Against Helicobacter pylori (H. pylori)

H. pylori infections are associated with stomach diseases like ulcers, gastritis, and perhaps stomach cancer. Both in vitro and in vivo studies showed that 0.1 mM kaempferol significantly inhibited the growth of H. pylori [53,232,233]. Kaempferol may greatly increase the eradication rate of H. pylori by suppressing urease activity and modulating virulence factors [234,235,236,237,238]. Furthermore, antibacterial action is linked to fatty acid metabolism, flagellar assembly, ATP-binding cassette transporters, and energy binding with CagA, Urease, and NikR proteins. More importantly, it did not cause any cytotoxicity to host cells [234,239]. HsrA was a necessary protein for microbial viability. This protein is involved in translation, transcription, energy metabolism, nitrogen metabolism and redox homeostasis. Kaempferol exhibited strong bactericidal activities against H. pylori strains by binding to HsrA [240].
The MICs of kaempferol against H. pylori were 8 µg/mL (ATCC 700392), 16 µg/mL (metronidazole-resistant strain ATCC 43504), and 16 µg/mL (clarithromycin-resistant strain ATCC 700684), respectively [240]. In vivo, 5.0 mg/body of kaempferol decreased H. pylori levels significantly [53].

3.1.8. Antibacterial Activity Against E. coli

Kaempferol demonstrated significant antibacterial activity against E. coli [241,242,243,244]. The MICs were 12.5 µg/mL, 128 µg/mL (ATTC 10536), 64 µg/mL (AG102), 25 µg/mL (ATCC 25922), and 64 µg/mL (ATCC 8739), respectively [221,245,246,247]. The inhibition zone for E. coli 25922 was 7.2 mm, which was better than amikacin (17 mm) [222].
An important mechanism of kaempferol against E. coli is inhibition of DNA gyrase. Kaempferol’s inhibitory activity against DNA gyrase is caused by the obligatory C-4 keto group and hydroxyl group substitutions at C-3, C-7, and C-4′. For flavonols, 4′-OH increased antibacterial activity, while 3′-OH and 5′-OH decreased activity [245].

3.1.9. Antibacterial Activity Against Acinetobacter baumannii

Kaempferol effectively prevented biofilm formation and reduced the number of mature biofilms of A. baumannii [248,249].

3.1.10. Antibacterial Activity Against Klebsiella pneumoniae (K. pneumoniae)

Kaempferol exhibited antibacterial activity against K. pneumoniae. The MICs were 64 µg/mL (multidrug-resistant MDR-KP5), 128 µg/mL (ATCC 11296), and 64 µg/mL (KP55, ATCC 11296), respectively [245,246,250].
A dose of 10 μM kaempferol can inhibit growth of K. pneumoniae. The mechanism is that kaempferol inhibits dNTP binding of the primary replicative DnaB helicase of K. pneumoniae, specifically disrupting the DnaB-dATP interaction. DnaB is an essential component for bacterial survival [251]. Moreover, kaempferol exerts antibacterial effects by disrupting biofilm integrity and enhancing cell membrane permeability.
Kaempferol plays an important role in the PI3K/AKT and MAPK signaling pathways. It mainly binds to the active site of PI3K through hydrogen bonds and salt bridges with binding energies of −6.677 kcal/mol; it binds to AKT1 and MAPK1 through hydrogen bonds, with binding energies of −6.597 kcal/mol and −7.090 kcal/mol, respectively [252]. The impact of kaempferol on K. pneumoniae biofilms was moderate to weak.

3.1.11. Antibacterial Activity Against Proteus mirabilis

Kaempferol exhibited efficacy against P. mirabilis [253].

3.2. Anti Gram-Positive Bacteria

3.2.1. Antibacterial Activity Against Streptococcus pneumoniae (S. pneumoniae)

S. pneumoniae triggers pneumonia, otitis media, septicemia, and meningitis, and is the most common pathogen of community-acquired pneumonia (CAP). [254]. S. pneumoniae secretes virulence factors of capsule, pneumolysin (PLY), and sortase A (SrtA); these virulence factors are essential for bacterial colonization and spread [255,256,257]. The MIC of kaempferol against S. pneumoniae was 12.50 µg/mL [247].
Kaempferol (8 µg/mL) inhibits SrtA transpeptidase activity and biofilm development and maturation. Furthermore, kaempferol greatly reduced PLY-mediated hemolytic activity in a concentration-dependent manner by disrupting PLY oligomerization and reducing its toxicity. Kaempferol significantly reduced the adherence of S. pneumoniae to A549 cells. Kaempferol therapy significantly lowers bacterial load and lung damage in mice. Overall, kaempferol exhibited significant anti-infective effects in both in vitro and in vivo studies [256]. Kaempferol is an efficient therapy for CAP due to its inhibition of the PI3K/ATK/NF-κB signaling pathway, alleviating CAP-related lung tissue injury [258].

3.2.2. Antibacterial Activity Against Streptococcus mutans (S. mutans)

Kaempferol exhibited significant antibacterial activity against S. mutans, achieving a 97% growth suppression rate at concentration of 8 µg/mL [230]. The acidogenicity and acidurity of S. mutans were significantly reduced by 1~4 mg/mL kaempferol [259,260]. The mechanisms behind this include that kaempferol decreases ATPase activity and prevents the formation of biofilms. Using 0.5 mg/mL of kaempferol decreased F-ATPase activity by 47.37% [230,259,260].

3.2.3. Antibacterial Activity Against Listeria monocytogenes (L. monocytogenes)

L. monocytogenes is one of the most significant foodborne bacteria. Public health is seriously threatened by the high death rate (20–30%) of L. monocytogenes infection [261]. The pathogenicity of L. monocytogenes depends on the pore-forming activity of listeriolysin O (LLO), which is essential for the intracellular lifecycle, barrier permeability, colonization, and transmission of Listeria [262].
Researchers discovered that kaempferol is an efficient LLO inhibitor, blocking LLO-mediated membrane perforation and barrier disruption. LLO pore formation was successfully suppressed by kaempferol at 32 µg/mL [262]. In addition, kaempferol inhibits NADH oxidase activity and destroys cell membrane integrity, therefore protecting against L. monocytogenes [263]. The MIC of kaempferol against L. monocytogenes ATCC 1392 was 125 µg/mL [264].

3.2.4. Antibacterial Activity Against Staphylococcus aureus and Staphylococcus epidermidis

Kaempferol showed notable antimicrobial activity against S. aureus and S. epidermidis. The MICs of kaempferol against S. aureus were 6.25 µg/mL, 7.8 µg/mL (ATCC 49444), 32 µg/mL (ATCC 25923, FDA 209P), 8 µg/mL (USA300), 16 µg/mL (Mu50), and 8 µg/mL (VRS1, VRS5), respectively [221,247,264,265,266].
Kaempferol reduced intracellular colonization of S. aureus in lung epithelial cells by about 80%; moreover, its intracellular antibacterial activities surpassed the extracellular activity. The mechanism behind this is that kaempferol mitigates membrane damage and inhibits apoptotic cell death by internalized bacteria [267]. Kaempferol binds to β-lactamase, thereby inhibiting its activity and reducing the secretion of β-lactamase into the external environment [268].

3.2.5. Antibacterial Activity Against Mycobacterium tuberculosis (M. tuberculosis)

A total of 10.8 million new cases of tuberculosis and 1.25 million fatalities worldwide were attributed to M. tuberculosis in 2023 [269]. Standard medications for tuberculosis are no longer effective due to the emergence of multidrug-resistant bacteria [270]. CYP121 enzyme is essential for M. tuberculosis to survive [271]. Kaempferol is the most effective CYP121 inhibitor, with inhibition primarily stabilized in the binding pocket by hydrogen bonds and hydrophobic interactions [91].
1-deoxy-d-xylulose-5-phosphate reductoisomerase (DXR) is a key enzyme in M. tuberculosis. Kaempferol stably binds at the active site of DXR. Additionally, its good lipophilicity raises the probability of uptake by the M. tuberculosis cell wall [272].

3.2.6. Antibacterial Activity Against Enterococcus

Kaempferol exhibited good activity against E. faecalis, with MIC of 16 ug/mL (ATCC 29212) [218]. The MIC of kaempferol against E. hirae ATCC 10541 was 250 µg/mL [264].

3.2.7. Antibacterial Activity Against Bacillus cereus (B. cereus)

Kaempferol showed antimicrobial activity against B. cereus [241,273]. The inhibition zone against B. cereus (ATCC 14579) was 5.9 mm, while that of amikacin was >18 mm [222]. It inhibited B. cereus by disrupting cell wall and cell membrane integrity [274].

3.2.8. Antibacterial Activity Against Bacillus subtilis (B. subtilis)

Kaempferitrin was active against B. subtilis, with an MIC of 8 µg/mL [273]; the inhibition zone for B. subtilis (IMG22) was 6.4 mm, higher than that of amikacin [222].

3.2.9. Antibacterial Activity Against Micrococcus luteus (M. luteus)

Kaempferol extracted from Labisa pumila Benth exhibited moderate antibacterial activities against M. luteus [273].

3.2.10. Antibacterial Activity Against Propionibacterium acnes (P. acnes)

Kaempferol isolated from Impatiens balsamina was found to be effective against P. acnes [275].

3.3. Antifungal Activity

3.3.1. Against Candida parapsilosis (C. parapsilosis)

Rocha et al. evaluated the susceptibility of kaempferol to C. parapsilosis (C. parapsilosis sensu stricto, C. orthopsilosis, and C. metapsilosis). Their results showed that the MIC range was 32–128 µg/mL [276]. The mechanism behind this was that kaempferol inhibited microbial biofilm formation and growth by weakening the cellular adhesion to abiotic surfaces.

3.3.2. Against Candida albicans (C. albicans)

Kaempferol had good activity against C. albicans, inhibiting the growth of candida and adhesion to cells. It markedly reduced the number of isolated viable C. albicans cells and mortality, and decreased both the metabolic activity and biomass of C. parapsilosis biofilms [241,276,277]. The MIC of kaempferol was 12.50 µg/mL [247].

4. Synergistic Antibacterial Activity

4.1. Combination with Fluoroquinolones Against S. aureus

The combination of tiliroside with norfloxacin, ciprofloxacin, lomefloxacin, and ofloxacin resulted in reductions in the MIC against S. aureus by 16-fold, 16-fold, 4-fold, and 2-fold, respectively [278].
A kaempferol-derivative combination with norfloxacin and ciprofloxacin had a synergistic antibacterial effect against MRSA [279]. The combination with norfloxacin reduced the MIC values from 128 µg/mL to 0.25 µg/mL.

4.2. Combination with Colistin Against Gram-Negative Bacteria

Polymyxin serves as the final antibiotic option for treating multidrug-resistant Gram-negative bacterial infections. The rise in drug resistance necessitates novel strategies to enhance colistin efficacy, with combining traditional antibiotics and non-antibacterial drugs emerging as a swift and effective treatment option.
The antibacterial effects of combining kaempferol with colistin on colistin-resistant Gram-negative bacteria (P. aeruginosa, E. coli, K. pneumoniae, and A. baumannii) were evaluated. The colistin/kaempferol combination exhibited a strong synergistic effect on 83% of strains and additive effects on 17% of strains. Furthermore, the combination showed significant therapeutic effects in both in vitro and in vivo models, without cytotoxicity [280]. When combined with colistin, kaempferol killed bacteria by inducing dysregulation of iron homeostasis, leading to a lethal build-up of toxic reactive oxygen species [281].

4.3. Combination with Penicillin Against S. aureus

Combination of kaempferol and penicillin enhanced sensitivity of S. aureus to penicillin G and synergistically inhibited S. aureus growth. This was primarily attributed to the downregulation of penicillinase expression and various virulence factors associated with biofilm formation. SarA and/or σB are involved in biofilm development in both the initial and mature stages, and SarA was a potential pharmacological target [282].

4.4. Combination with Azithromycin Against S. aureus

S. aureus infection may result in osteomyelitis. According to Lei G. et al., the combination of azithromycin and kaempferol significantly inhibited bacterial growth and bone infection. The combined treatment had anti-biofilm activity, reduced oxidative stress, inhibited the phosphorylation of ERK1/2 and SAPK, and further attenuated S. aureus-induced osteomyelitis in rats [283].

4.5. Combination with Fluconazole Against Candida albicans (C. albicans)

The combination of kaempferol and fluconazole showed a significantly synergistic effect. The MIC90 values of fluconazole to different C. albicans strains were reduced 2–128-fold. Kaempferol combined with fluconazole exhibits antifungal effects by downregulating CDR1, CDR2, and MDR1 gene expression, thereby decreasing multidrug efflux pump activity and enhancing accumulation [284].

4.6. Combination with Aminoglycosides

The combination of a kaempferol derivative with gentamicin presented synergistic effects against S. aureus and E. coli with MIC reduced 4-fold and 2-fold, respectively. The MICs against S. aureus and E. coli reduced 4-fold when combined with amikacin [285].

4.7. Combination with Ceftiofur

The combination of ceftiofur and kaempferol demonstrated a synergistic antibacterial effect against extended-spectrum-beta-lactamase (ESBL)-producing E. coli both in vitro and in vivo [286]. Kaempferol restored ceftiofur activity on ESBL E. coli by influencing β-lactamase activity, biofilm formation, and the AI-2 quorum-sensing system.

4.8. Combination with Clindamycin

Kaempferol combination with clindamycin exhibited a greater synergic inhibition of P. acnes growth, reducing the MIC 8-fold [275].

5. Antibacterial Effect of Kaempferol Nanoagent

To address drug-resistance problems, nanotechnology offers significant potential for the diagnosis, treatment, and prevention of infectious diseases [287].

5.1. Lecithin/Chitosan Nanoparticles with Kaempferol Against Fusarium oxysporium

Flavonoid compounds are limited due to their poor solubility and bioavailability. Using the electrostatic self-assembly technique, kaempferol has been successfully encapsulated into lecithin/chitosan nanoparticles (KAE-LC NPs). KAE-LC NPs exhibited inhibition efficacy against F. oxysporium, and the inhibition rate reached 67% [288].

5.2. Silver Nanoparticles–Kaempferol (AgNP-K) Against S. aureus

Silver nanoparticles incorporating kaempferol (AgNP-Ks) were prepared by a green synthesis method, and its antibacterial activity against MRSA was evaluated [289]. The results demonstrated that AgNP-Ks effectively inhibit MRSA, with an MIC of 1.25 mg/mL. The mechanism behind this is that AgNPs may enhance kaempferol’s effectiveness by increasing bacterial cell wall permeability, facilitating its penetration.
Kaempferol–chitosan/silver (K-CS/Ag) showed concentration-dependent cytotoxicity against human breast cancer cells MDA-MB-231 [290]. A dose of 200 μg/mL K-CS/Ag reduced cancerous cell viability by 91.2% [290]. Moringa oleifera extract-loaded silver nanoparticles (Mo-AgNPs) can promote plant growth at 1 µg/mL, 5 µg/mL, and 10 µg/mL. While Mo-AgNPs exhibited toxicity to Artemia nauplii at 10 μg/mL, after exposure for 24 h, the mortality rate increased 80% [291].

5.3. Chitosan/Sodium Tripolyphosphate Nanoparticles–Kaempferol Against S. aureus

Kaempferol-loaded nanoparticles were synthesized using chitosan and sodium tripolyphosphate via an ion gel method based on electrostatic self-assembly, and subsequently characterized. The anti-quorum-sensing activity of kaempferol-loaded chitosan/tripolyphosphate was evaluated using violacein pigment production in the C. violaceum CV026 strain. Loaded chitosan can inhibit quorum-sensing-related processes [292].

5.4. Fucoidan-Modified Kaempferol-Loaded Glycyrrhizic Acid Lipid Nanovesicles (Fu-GaLip@KP) Against H. pylori

Fucoidan-modified glycyrrhizic acid lipid nanovesicles containing kaempferol (Fu-GaLip @ KP) were developed, and can effectively eradicate H. pylori and restore the diversity of intestinal flora [293]. Kaempferol, encapsulated in glycyrrhetinic-acid-stabilized nanovesicles, effectively penetrates the mucus barrier, disperses biofilms, and eliminates bacteria.

5.5. Flavonol-Loaded Cationic Gold Nanoparticles Against S. aureus and E. coli

Li X et al. [294] successfully prepared (11-mercaptoundecyl)-N,N,N-trimethylammonium bromide gold nanoparticles coated with flavonols (flavonol-MUTAB-AuNPs). Flavonol-MUTAB-AuNPs significantly enhanced the inhibition effect on S. aureus and E. coli.
Kaempferol–gold nanoclusters (K-AuNCs) were non-toxicity to the normal human cell and higher toxicity to the A549 lunch cancer cell [295]. Compared to rose extract, gold nanoparticles (AuNPs) significantly reduced the cytotoxicity on the SH-SY5Y cell line and C6 cell line [296].

5.6. Polyhydroxybutyrate–Chitosan–Kaempferol Nanocrystals (PHB-Cs-KAE-NCs) Against S. aureus and A. baumanni

PHB-Cs-KAE-NCs were developed, with powerful antibacterial effects against multidrug-resistant S. aureus and A. baumanni. In vitro, bacterial strain cell viability was reduced by almost 100% after 48 h [297].

6. Structure–Activity Relationship of Kaempferol

The structure–activity relationship analysis suggests that, for a good inhibitory effect, hydroxyl group substitution in the A ring in the B ring and the methoxyl group substitution in the A ring are essential. Kaempferol has two hydroxyl groups in the A ring and one hydroxyl group in the C ring. The hydroxyl groups at various places on rings A, B, and C form H-bonds with the important residues of the target, which helps the compounds adhere to the target, thus showing high activity [245,298].

7. Conclusions and Prospective

This paper focused on kaempferol, assessing its anti-bacterial properties. Kaempferol exists abundantly in various plants, fruits, and foods. It exhibits widely antimicrobial properties against Gram-negative bacteria, Gram-positive bacteria, and fungi, and holds significant promise as an antibacterial agent in vitro. However, its poor solubility and the low bioavailability still led to limited application. A new and effective drug delivery system or preparation of kaempferol analogs are needed. With the development of drug delivery, nanotechnology can modify the monomer of kaempferol, improve its water solubility, increase its bioavailability, and reduce its adverse effects. The development of kaempferol nanoformulations is a great strategy to alleviate antibiotic resistance. However, it is crucial to realize the challenges concerning dosage, stability, antibacterial activity in vivo, and routes of administration.
A drug delivery system based on platelet-derived extracellular vesicles (PEVs) was studied, with PEVs loaded with kaempferol (KM) for the treatment of corneal neovascularization. The effectiveness of the PEV-KMs was verified in vitro and in vivo. The results showed that PEVs had advantages such as biocompatibility and targeting. Meanwhile, the problems of KM hydrophobicity and low bioavailability were overcome [299].
Future research should focus on analyzing antimicrobial mechanisms, exploring intelligent delivery systems to achieve targeted drug delivery in infectious microenvironments, evaluating optimal dosage, and conducting clinical trials to establish pharmacokinetics and toxicity in vivo, achieving a thorough understanding of pharmacokinetics, toxicity, stability, safety, efficacy, and mechanisms.

Author Contributions

X.W.: Writing—review and editing, original draft; W.W. and X.G.: review and editing; R.H.: review and editing, B.L.: review and editing, supervision; Y.B.: review and editing, original draft; J.Z.: project administration, funding acquisition. All authors have read and agreed to the published version of the manuscript.

Funding

This study was supported by the Provincial Talent Project of Gansu Province [grant number: 2025QNTD44], the Innovation Project of Chinese Academy of Agricultural Sciences [grant number: 25-LZIHPS-05], Earmarked Fund for CARS [grant number: CARS-37], and the Central Public-interest Scientific Institution Basal Research Fund [grant number: 1610322025007]. The funding bodies played no role in the design of the study; the collection, analysis, interpretation of data; or in writing the manuscript.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

No data was used for the research described in the article.

Conflicts of Interest

The authors declare no conflicts of interest.

References

  1. Painuli, S.; Semwal, P.; Sharma, R.; Akash, S. Superbugs or Multidrug Resistant Microbes: A New Threat to the Society. Health Sci. Rep. 2023, 6, e1480. [Google Scholar] [CrossRef] [PubMed]
  2. Murray, C.J.L.; Ikuta, K.S.; Sharara, F.; Swetschinski, L.; Aguilar, G.R.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E.; et al. Global Burden of Bacterial Antimicrobial Resistance in 2019: A Systematic Analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef]
  3. Zhao, W.; Cross, A.R.; Crowe-McAuliffe, C.; Weigert-Munoz, A.; Csatary, E.E.; Solinski, A.E.; Krysiak, J.; Goldberg, J.B.; Wilson, D.N.; Medina, E.; et al. The Natural Product Elegaphenone Potentiates Antibiotic Effects against Pseudomonas Aeruginosa. Angew. Chem. Int. Ed. Engl. 2019, 58, 8581–8584. [Google Scholar] [CrossRef]
  4. Rossiter, S.E.; Fletcher, M.H.; Wuest, W.M. Natural Products as Platforms To Overcome Antibiotic Resistance. Chem. Rev. 2017, 117, 12415–12474. [Google Scholar] [CrossRef]
  5. Lewis, K.; Lee, R.E.; Brötz-Oesterhelt, H.; Hiller, S.; Rodnina, M.V.; Schneider, T.; Weingarth, M.; Wohlgemuth, I. Sophisticated Natural Products as Antibiotics. Nature 2024, 632, 39–49. [Google Scholar] [CrossRef]
  6. Patridge, E.; Gareiss, P.; Kinch, M.S.; Hoyer, D. An Analysis of FDA-Approved Drugs: Natural Products and Their Derivatives. Drug Discov. Today 2016, 21, 204–207. [Google Scholar] [CrossRef]
  7. Tohge, T.; de Souza, L.P.; Fernie, A.R. Current Understanding of the Pathways of Flavonoid Biosynthesis in Model and Crop Plants. J. Exp. Bot. 2017, 68, 4013–4028. [Google Scholar] [CrossRef]
  8. Mishra, S.; Gandhi, D.; Tiwari, R.R.; Rajasekaran, S. Beneficial Role of Kaempferol and Its Derivatives from Different Plant Sources on Respiratory Diseases in Experimental Models. Inflammopharmacology 2023, 31, 2311–2336. [Google Scholar] [CrossRef]
  9. Alseekh, S.; Perez de Souza, L.; Benina, M.; Fernie, A.R. The Style and Substance of Plant Flavonoid Decoration; towards Defining Both Structure and Function. Phytochemistry 2020, 174, 112347. [Google Scholar] [CrossRef] [PubMed]
  10. Yang, L.; Gao, Y.; Bajpai, V.K.; El-Kammar, H.A.; Simal-Gandara, J.; Cao, H.; Cheng, K.-W.; Wang, M.; Arroo, R.R.J.; Zou, L.; et al. Advance toward Isolation, Extraction, Metabolism and Health Benefits of Kaempferol, a Major Dietary Flavonoid with Future Perspectives. Crit. Rev. Food Sci. Nutr. 2023, 63, 2773–2789. [Google Scholar] [CrossRef] [PubMed]
  11. Tang, R.; Lin, L.; Liu, Y.; Li, H. Bibliometric and Visual Analysis of Global Publications on Kaempferol. Front. Nutr. 2024, 11, 1442574. [Google Scholar] [CrossRef] [PubMed]
  12. Tucak, M.; Horvat, D.; Cupic, T.; Krizmanic, G.; Tomas, V.; Ravlic, M.; Popovic, S. Forage Legumes as Sources of Bioactive Phytoestrogens for Use in Pharmaceutics: A Review. Curr. Pharm. Biotechnol. 2018, 19, 537–544. [Google Scholar] [CrossRef]
  13. Bittar, V.P.; Silva Borges, A.L.; Justino, A.B.; Carrillo, M.S.P.; Mateus Duarte, R.F.; Silva, N.B.S.; Gonçalves, D.S.; Prado, D.G.; Araújo, I.A.C.; Martins, M.M.; et al. Bioactive Compounds from the Leaves of Maytenus Ilicifolia Mart. Ex Reissek: Inhibition of LDL Oxidation, Glycation, Lipid Peroxidation, Target Enzymes, and Microbial Growth. J. Ethnopharmacol. 2024, 319, 117315. [Google Scholar] [CrossRef]
  14. Topcagic, A.; Cavar Zeljkovic, S.; Karalija, E.; Galijasevic, S.; Sofic, E. Evaluation of Phenolic Profile, Enzyme Inhibitory and Antimicrobial Activities of Nigella sativa L. Seed Extracts. Bosn. J. Basic. Med. Sci. 2017, 17, 286–294. [Google Scholar] [CrossRef]
  15. Toma, C.-C.; Olah, N.-K.; Vlase, L.; Mogoșan, C.; Mocan, A. Comparative Studies on Polyphenolic Composition, Antioxidant and Diuretic Effects of Nigella sativa L. (Black Cumin) and Nigella damascena L. (Lady-in-a-Mist) Seeds. Molecules 2015, 20, 9560–9574. [Google Scholar] [CrossRef]
  16. Siniawska, M.; Bąbelewski, P.; Turkiewicz, I.P.; Wojdyło, A. Profiling of Polyphenolic Compounds Using LC-ESI-QTOF-MS/MS in Fruits of the Sorbus Subgenus as a Valuable Source of Polyphenolic Compounds. Food Chem. 2026, 498, 147178. [Google Scholar] [CrossRef] [PubMed]
  17. Peng, J.; Li, X.; Yuan, M.; Tang, Y.; Qiao, T.; Li, J.; Yu, H.; Zhang, M.; Li, X.; Lan, Y. Optimization of Extraction Methods, Component Identification of Bound Polyphenols from Sea-Buckthorn Pomace, and Its Ameliorative Effects on Oxidative Stress in Sleep-Deprived Mice. Food Chem. 2026, 498, 147018. [Google Scholar] [CrossRef] [PubMed]
  18. Loukili, E.H.; Elrherabi, A.; Hbika, A.; Elbouzidi, A.; Taibi, M.; Merzouki, M.; Bouhrim, M.; Shahat, A.A.; Noman, O.M.; Azougay, A.; et al. Chemical Analysis, Antihyperglycemic Properties and Enzyme Inhibition of Opuntia dillenii (Ker Gawl.) Haw.: A Detailed Analysis of Pulp and Peel Extracts. J. Pharm. Anal. 2025, 15, 101320. [Google Scholar] [CrossRef] [PubMed]
  19. Liu, H.; Yang, Z.; Chen, Q.; Zhang, H.; Liu, Y.; Wu, D.; Shao, D.; Wang, S.; Hao, B. The Flavonoid Extract of Polygonum viviparum L. Alleviates Dextran Sulfate Sodium-Induced Ulcerative Colitis by Regulating Intestinal Flora Homeostasis and Uric Acid Levels Through Inhibition of PI3K/AKT/NF-κB/IL-17 Signaling Pathway. Antioxidants 2025, 14, 1206. [Google Scholar] [CrossRef]
  20. Francis, J.A.; Rumbeiha, W.; Nair, M.G. Constituents in Easter Lily Flowers with Medicinal Activity. Life Sci. 2004, 76, 671–683. [Google Scholar] [CrossRef]
  21. Lin, Y.-L.; Shen, C.-C.; Huang, Y.-J.; Chang, Y.-Y. Homoflavonoids from Ophioglossum petiolatum. J. Nat. Prod. 2005, 68, 381–384. [Google Scholar] [CrossRef]
  22. Li, M.-M.; Wang, K.; Pan, Z.-H.; Chen, X.-Q.; Peng, L.-Y.; Li, Y.; Cheng, X.; Zhao, Q.-S. Two New Sesquiterpene Glucosides from Dennstaedtia scabra (WALL.) MOORE. Chem. Pharm. Bull. 2009, 57, 1123–1125. [Google Scholar] [CrossRef] [PubMed]
  23. Haraguchi, H.; Ishikawa, H.; Sanchez, Y.; Ogura, T.; Kubo, Y.; Kubo, I. Antioxidative Constituents in Heterotheca Inuloides. Bioorganic Med. Chem. 1997, 5, 865–871. [Google Scholar] [CrossRef] [PubMed]
  24. Hidalgo Báez, D.; De Los Ríos, C.; Crescente, O.; Caserta, A. Antibacterial and Chemical Evaluation of Chromolaena Moritziana. J. Ethnopharmacol. 1998, 59, 203–206. [Google Scholar] [CrossRef] [PubMed]
  25. Zhang, Y.; Zhao, L.; Shi, Y.-P. Separation and Determination of Flavonoids in Ixeridium Gracile by Capillary Electrophoresis. J. Chromatogr. Sci. 2007, 45, 600–604. [Google Scholar] [CrossRef]
  26. Kim, D.-K. Antioxidative Components from the Aerial Parts of Lactuca scariola L. Arch. Pharm. Res. 2001, 24, 427–430. [Google Scholar] [CrossRef]
  27. Choi, S.Z.; Choi, S.U.; Lee, K.R. Pytochemical Constituents of the Aerial Parts Fromsolidago Virga-Aurea Var. Gigantea. Arch. Pharm. Res. 2004, 27, 164–168. [Google Scholar] [CrossRef]
  28. Süzgeç, S.; Meriçli, A.H.; Houghton, P.J.; Çubukçu, B. Flavonoids of Helichrysum Compactum and Their Antioxidant and Antibacterial Activity. Fitoterapia 2005, 76, 269–272. [Google Scholar] [CrossRef]
  29. Kwak, J.H.; Kang, M.W.; Roh, J.H.; Choi, S.U.; Zee, O.P. Cytotoxic Phenolic Compounds from Chionanthus Retusus. Arch. Pharm. Res. 2009, 32, 1681–1687. [Google Scholar] [CrossRef]
  30. Youssef, F.S.; Altyar, A.E.; Omar, A.M.; Ashour, M.L. Phytoconstituents, In Vitro Anti-Infective Activity of Buddleja Indica Lam., and In Silico Evaluation of Its SARS-CoV-2 Inhibitory Potential. Front. Pharmacol. 2021, 12, 619373. [Google Scholar] [CrossRef]
  31. Chatzopoulou, A.; Karioti, A.; Gousiadou, C.; Lax Vivancos, V.; Kyriazopoulos, P.; Golegou, S.; Skaltsa, H. Depsides and Other Polar Constituents from Origanum dictamnus L. and Their in Vitro Antimicrobial Activity in Clinical Strains. J. Agric. Food Chem. 2010, 58, 6064–6068. [Google Scholar] [CrossRef] [PubMed]
  32. Bai, N.; He, K.; Roller, M.; Lai, C.-S.; Shao, X.; Pan, M.-H.; Ho, C.-T. Flavonoids and Phenolic Compounds from Rosmarinus Officinalis. J. Agric. Food Chem. 2010, 58, 5363–5367. [Google Scholar] [CrossRef] [PubMed]
  33. Pistelli, L.; Noccioli, C.; Giachi, I.; Dimitrova, B.; Gevrenova, R.; Morelli, I.; Potenza, D. Lupane-Triterpenes from Bupleurum flavum. Nat. Prod. Res. 2005, 19, 783–788. [Google Scholar] [CrossRef]
  34. Chien, M.M.; Svoboda, G.H.; Schiff, P.L.; Slatkin, D.J.; Knapp, J.E. Chemical Constituents of Echites hirsuta (Apocynaceae). J. Pharm. Sci. 1979, 68, 247–249. [Google Scholar] [CrossRef]
  35. Umehara, K.; Nemoto, K.; Ohkubo, T.; Miyase, T.; Degawa, M.; Noguchi, H. Isolation of a New 15-Membered Macrocyclic Glycolipid Lactone, Cuscutic Resinoside A from the Seeds of Cuscuta chinensis: A Stimulator of Breast Cancer Cell Proliferation. Planta Med. 2004, 70, 299–304. [Google Scholar] [CrossRef]
  36. Ye, M.; Yan, Y.; Guo, D. Characterization of Phenolic Compounds in the Chinese Herbal Drug Tu-Si-Zi by Liquid Chromatography Coupled to Electrospray Ionization Mass Spectrometry. Rapid Comm. Mass. Spectrom. 2005, 19, 1469–1484. [Google Scholar] [CrossRef]
  37. Deng, S.; Palu, A.K.; West, B.J.; Su, C.X.; Zhou, B.-N.; Jensen, J.C. Lipoxygenase Inhibitory Constituents of the Fruits of Noni (Morinda citrifolia ) Collected in Tahiti. J. Nat. Prod. 2007, 70, 859–862. [Google Scholar] [CrossRef] [PubMed]
  38. Cimanga, R.K.; Kambu, K.; Tona, L.; Hermans, N.; Apers, S.; Totté, J.; Pieters, L.; Vlietinck, A.J. Cytotoxicity and in Vitro Susceptibility of Entamoeba Histolytica to Morinda Morindoides Leaf Extracts and Its Isolated Constituents. J. Ethnopharmacol. 2006, 107, 83–90. [Google Scholar] [CrossRef]
  39. Majinda, R.R.T.; Motswaledi, M.; Waigh, R.D.; Waterman, P.G. Phenolic and Antibacterial Constftuents of Vahila capensis. Planta Medica 1997, 63, 268–270. [Google Scholar] [CrossRef]
  40. Huang, H.-C.; Syu, K.-Y.; Lin, J.-K. Chemical Composition of Solanum nigrum Linn Extract and Induction of Autophagy by Leaf Water Extract and Its Major Flavonoids in AU565 Breast Cancer Cells. J. Agric. Food Chem. 2010, 58, 8699–8708. [Google Scholar] [CrossRef]
  41. Martini, N.D.; Katerere, D.R.P.; Eloff, J.N. Biological Activity of Five Antibacterial Flavonoids from Combretum erythrophyllum (Combretaceae). J. Ethnopharmacol. 2004, 93, 207–212. [Google Scholar] [CrossRef]
  42. Calzada, F. Additional Antiprotozoal Constituents from Cuphea pinetorum, a Plant Used in Mayan Traditional Medicine to Treat Diarrhoea. Phytother. Res. 2005, 19, 725–727. [Google Scholar] [CrossRef]
  43. Amakura, Y.; Yoshimura, M.; Sugimoto, N.; Yamazaki, T.; Yoshida, T. Marker Constituents of the Natural Antioxidant Eucalyptus Leaf Extract for the Evaluation of Food Additives. Biosci. Biotechnol. Biochem. 2009, 73, 1060–1065. [Google Scholar] [CrossRef]
  44. Chen, K.-C.; Chuang, C.-M.; Lin, L.-Y.; Chiu, W.-T.; Wang, H.-E.; Hsieh, C.-L.; Tsai, T.; Peng, R.Y. The Polyphenolics in the Aqueous Extract of Psidium guajava Kinetically Reveal an Inhibition Model on LDL Glycation. Pharm. Biol. 2010, 48, 23–31. [Google Scholar] [CrossRef]
  45. Cai, L.; Wu, C.D. Compounds from Syzygium aromaticum Possessing Growth Inhibitory Activity Against Oral Pathogens. J. Nat. Prod. 1996, 59, 987–990. [Google Scholar] [CrossRef]
  46. Van Elswijk, D.A.; Schobel, U.P.; Lansky, E.P.; Irth, H.; Van Der Greef, J. Rapid Dereplication of Estrogenic Compounds in Pomegranate (Punica granatum) Using on-Line Biochemical Detection Coupled to Mass Spectrometry. Phytochemistry 2004, 65, 233–241. [Google Scholar] [CrossRef]
  47. Tomaino, A.; Martorana, M.; Arcoraci, T.; Monteleone, D.; Giovinazzo, C.; Saija, A. Antioxidant Activity and Phenolic Profile of Pistachio (Pistacia vera L., Variety Bronte) Seeds and Skins. Biochimie 2010, 92, 1115–1122. [Google Scholar] [CrossRef]
  48. Abou-Shoer, M.; Ma, G.-E.; Li, X.-H.; Koonchanok, N.M.; Geahlen, R.L.; Chang, C.-J. Flavonoids from Koelreuteria henryi and Other Sources as Protein-Tyrosine Kinase Inhibitors. J. Nat. Prod. 1993, 56, 967–969. [Google Scholar] [CrossRef] [PubMed]
  49. Lin, W.-H.; Deng, Z.-W.; Lei, H.-M.; Fu, H.-Z.; Li, J. Polyphenolic Compounds from the Leaves of Koelreuteria paniculata Laxm. J. Asian Nat. Prod. Res. 2002, 4, 287–295. [Google Scholar] [CrossRef] [PubMed]
  50. Arriaga, A.M.C.; Mesquita, A.C.D.; Pouliquen, Y.B.M.; Lima, R.A.D.; Cavalcante, S.H.; Carvalho, M.G.D.; Siqueira, J.A.D.; Alegrio, L.V.; Braz-Filho, R. Chemical Constituents of Simarouba Versicolor. An. Acad. Bras. Ciênc. 2002, 74, 415–424. [Google Scholar] [CrossRef] [PubMed]
  51. Salvador, M.J.; Ferreira, E.O.; Mertens-Talcott, S.U.; De Castro, W.V.; Butterweck, V.; Derendorf, H.; Dias, D.A. Isolation and HPLC Quantitative Analysis of Antioxidant Flavonoids from Alternanthera Tenella Colla. Z. Für Naturforschung C 2006, 61, 19–25. [Google Scholar] [CrossRef]
  52. Djouossi, M.G.; Tamokou, J.-D.; Ngnokam, D.; Kuiate, J.-R.; Tapondjou, L.A.; Harakat, D.; Voutquenne-Nazabadioko, L. Antimicrobial and Antioxidant Flavonoids from the Leaves of Oncoba spinosa Forssk. (Salicaceae). BMC Complement. Altern. Med. 2015, 15, 134. [Google Scholar] [CrossRef]
  53. Kataoka, M.; Hirata, K.; Kunikata, T.; Ushio, S.; Iwaki, K.; Ohashi, K.; Ikeda, M.; Kurimoto, M. Antibacterial Action of Tryptanthrin and Kaempferol, Isolated from the Indigo Plant (Polygonum tinctorium Lour.), against Helicobacter Pylori -Infected Mongolian Gerbils. J. Gastroenterol. 2001, 36, 5–9. [Google Scholar] [CrossRef] [PubMed]
  54. Parveen, Z.; Deng, Y.; Saeed, M.K.; Dai, R.; Ahamad, W.; Yu, Y.H. Antiinflammatory and Analgesic Activities of Thesium chinense Turcz Extracts and Its Major Flavonoids, Kaempferol and Kaempferol-3-O-glucoside. Yakugaku Zasshi 2007, 127, 1275–1279. [Google Scholar] [CrossRef] [PubMed]
  55. Loizzo, M.R.; Said, A.; Tundis, R.; Hawas, U.W.; Rashed, K.; Menichini, F.; Frega, N.G.; Menichini, F. Antioxidant and Antiproliferative Activity of Diospyros lotus L. Extract and Isolated Compounds. Plant Foods Hum. Nutr. 2009, 64, 264–270. [Google Scholar] [CrossRef]
  56. Corradi, E.; De Mieri, M.; Cadisch, L.; Abbet, C.; Hamburger, M.; Potterat, O. New Acylated Flavonol Glycosides and a Phenolic Profile of Pritzelago alpina, a Forgotten Edible Alpine Plant. Chem. Biodivers. 2016, 13, 188–197. [Google Scholar] [CrossRef]
  57. Manguro, L.O.A.; Ugi, I.; Lemmen, P.; Hermann, R. Flavonol Glycosides of Warburgia ugandensis Leaves. Phytochemistry 2003, 64, 891–896. [Google Scholar] [CrossRef]
  58. Arot Manguro, L.O.; Ugi, I.; Hermann, R.; Lemmen, P. Flavonol and Drimane-Type Sesquiterpene Glycosides of Warburgia stuhlmannii Leaves. Phytochemistry 2003, 63, 497–502. [Google Scholar] [CrossRef]
  59. Sumino, M.; Sekine, T.; Ruangrungsi, N.; Igarashi, K.; Ikegami, F. Ardisiphenols and Other Antioxidant Principles from the Fruits of Ardisia colorata. Chem. Pharm. Bull. 2002, 50, 1484–1487. [Google Scholar] [CrossRef]
  60. Rocha, L.; Marston, A.; Potterat, O.; Kaplan, M.A.C.; Stoeckli-Evans, H.; Hostettmann, K. Antibacterial Phloroglucinols and Flavonoids from Hypericum brasiliense. Phytochemistry 1995, 40, 1447–1452. [Google Scholar] [CrossRef] [PubMed]
  61. Nguemeving, J.R.; Azebaze, A.G.B.; Kuete, V.; Eric Carly, N.N.; Beng, V.P.; Meyer, M.; Blond, A.; Bodo, B.; Nkengfack, A.E. Laurentixanthones A and B, Antimicrobial Xanthones from Vismia laurentii. Phytochemistry 2006, 67, 1341–1346. [Google Scholar] [CrossRef]
  62. Kuete, V.; Nguemeving, J.R.; Beng, V.P.; Azebaze, A.G.B.; Etoa, F.-X.; Meyer, M.; Bodo, B.; Nkengfack, A.E. Antimicrobial Activity of the Methanolic Extracts and Compounds from Vismia laurentii De Wild (Guttiferae). J. Ethnopharmacol. 2007, 109, 372–379. [Google Scholar] [CrossRef]
  63. Fuentes-Alventosa, J.M.; Rodríguez, G.; Cermeño, P.; Jiménez, A.; Guillén, R.; Fernández-Bolaños, J.; Rodríguez-Arcos, R. Identification of Flavonoid Diglycosides in Several Genotypes of Asparagus from the Huétor-Tájar Population Variety. J. Agric. Food Chem. 2007, 55, 10028–10035. [Google Scholar] [CrossRef]
  64. Pellegrini, N.; Chiavaro, E.; Gardana, C.; Mazzeo, T.; Contino, D.; Gallo, M.; Riso, P.; Fogliano, V.; Porrini, M. Effect of Different Cooking Methods on Color, Phytochemical Concentration, and Antioxidant Capacity of Raw and Frozen Brassica Vegetables. J. Agric. Food Chem. 2010, 58, 4310–4321. [Google Scholar] [CrossRef] [PubMed]
  65. Hertog, M.G.; Hollman, P.C.; Katan, M.B. Content of Potentially Anticarcinogenic Flavonoids of 28 Vegetables and 9 Fruits Commonly Consumed in the Netherlands. J. Agric. Food Chem. 1992, 40, 2379–2383. [Google Scholar] [CrossRef]
  66. Justesen, U.; Knuthsen, P.; Leth, T. Quantitative Analysis of Flavonols, Flavones, and Flavanones in Fruits, Vegetables and Beverages by High-Performance Liquid Chromatography with Photo-Diode Array and Mass Spectrometric Detection. J. Chromatogr. A 1998, 799, 101–110. [Google Scholar] [CrossRef]
  67. Franke, A.A.; Custer, L.J.; Arakaki, C.; Murphy, S.P. Vitamin C and Flavonoid Levels of Fruits and Vegetables Consumed in Hawaii. J. Food Compos. Anal. 2004, 17, 1–35. [Google Scholar] [CrossRef]
  68. Kevers, C.; Falkowski, M.; Tabart, J.; Defraigne, J.-O.; Dommes, J.; Pincemail, J. Evolution of Antioxidant Capacity during Storage of Selected Fruits and Vegetables. J. Agric. Food Chem. 2007, 55, 8596–8603. [Google Scholar] [CrossRef] [PubMed]
  69. Lugast, A.; Hóvári, J. Flavonoid Aglycons in Foods of Plant Origin I. Vegetables. Acta Aliment. 2000, 29, 345–352. [Google Scholar] [CrossRef]
  70. Mattila, P.; Astola, J.; Kumpulainen, J. Determination of Flavonoids in Plant Material by HPLC with Diode-Array and Electro-Array Detections. J. Agric. Food Chem. 2000, 48, 5834–5841. [Google Scholar] [CrossRef] [PubMed]
  71. Chu, Y.; Chang, C.; Hsu, H. Flavonoid Content of Several Vegetables and Their Antioxidant Activity. J. Sci. Food Agric. 2000, 80, 561–566. [Google Scholar] [CrossRef]
  72. Lako, J.; Trenerry, V.; Wahlqvist, M.; Wattanapenpaiboon, N.; Sotheeswaran, S.; Premier, R. Phytochemical Flavonols, Carotenoids and the Antioxidant Properties of a Wide Selection of Fijian Fruit, Vegetables and Other Readily Available Foods. Food Chem. 2007, 101, 1727–1741. [Google Scholar] [CrossRef]
  73. Young, J.E.; Zhao, X.; Carey, E.E.; Welti, R.; Yang, S.-S.; Wang, W. Phytochemical Phenolics in Organically Grown Vegetables. Mol. Nutr. Food Res. 2005, 49, 1136–1142. [Google Scholar] [CrossRef] [PubMed]
  74. Arai, Y.; Watanabe, S.; Kimira, M.; Shimoi, K.; Mochizuki, R.; Kinae, N. Dietary Intakes of Flavonols, Flavones and Isoflavones by Japanese Women and the Inverse Correlation between Quercetin Intake and Plasma LDL Cholesterol Concentration. J. Nutr. 2000, 130, 2243–2250. [Google Scholar] [CrossRef]
  75. Bilyk, A.; Sapers, G.M. Distribution of Quercetin and Kaempferol in Lettuce, Kale, Chive, Garlic Chive, Leek, Horseradish, Red Radish, and Red Cabbage Tissues. J. Agric. Food Chem. 1985, 33, 226–228. [Google Scholar] [CrossRef]
  76. Huang, Z.; Wang, B.; Eaves, D.H.; Shikany, J.M.; Pace, R.D. Phenolic Compound Profile of Selected Vegetables Frequently Consumed by African Americans in the Southeast United States. Food Chem. 2007, 103, 1395–1402. [Google Scholar] [CrossRef]
  77. Huber, L.S.; Hoffmann-Ribani, R.; Rodriguez-Amaya, D.B. Quantitative Variation in Brazilian Vegetable Sources of Flavonols and Flavones. Food Chem. 2009, 113, 1278–1282. [Google Scholar] [CrossRef]
  78. Olsen, H.; Aaby, K.; Borge, G.I.A. Characterization and Quantification of Flavonoids and Hydroxycinnamic Acids in Curly Kale (Brassica oleracea L. Convar. acephala Var. sabellica) by HPLC-DAD-ESI-MSn. J. Agric. Food Chem. 2009, 57, 2816–2825. [Google Scholar] [CrossRef]
  79. Hertog, M.G.L.; Hollman, P.C.H.; Venema, D.P. Optimization of a Quantitative HPLC Determination of Potentially Anticarcinogenic Flavonoids in Vegetables and Fruits. J. Agric. Food Chem. 1992, 40, 1591–1598. [Google Scholar] [CrossRef]
  80. Arabbi, P.R.; Genovese, M.I.; Lajolo, F.M. Flavonoids in Vegetable Foods Commonly Consumed in Brazil and Estimated Ingestion by the Brazilian Population. J. Agric. Food Chem. 2004, 52, 1124–1131. [Google Scholar] [CrossRef]
  81. Bilyk, A.; Cooper, P.L.; Sapers, G.M. Varietal Differences in Distribution of Quercetin and Kaempferol in Onion (Allium cepa L.) Tissue. J. Agric. Food Chem. 1984, 32, 274–276. [Google Scholar] [CrossRef]
  82. Ewald, C.; Fjelkner-Modig, S.; Johansson, K.; Sjöholm, I.; Åkesson, B. Effect of Processing on Major Flavonoids in Processed Onions, Green Beans, and Peas. Food Chem. 1999, 64, 231–235. [Google Scholar] [CrossRef]
  83. Sellappan, S.; Akoh, C.C. Flavonoids and Antioxidant Capacity of Georgia-Grown Vidalia Onions. J. Agric. Food Chem. 2002, 50, 5338–5342. [Google Scholar] [CrossRef]
  84. Sampson, L.; Rimm, E.R.I.C.; Hollman, P.C.; de Vries, J.H.; Katan, M.B. Flavonol and Flavone Intakes in US Health Professionals. J. Am. Diet. Assoc. 2002, 102, 1414–1420. [Google Scholar] [CrossRef]
  85. Martínez-Sánchez, A.; Gil-Izquierdo, A.; Gil, M.I.; Ferreres, F. A Comparative Study of Flavonoid Compounds, Vitamin C, and Antioxidant Properties of Baby Leaf Brassicaceae Species. J. Agric. Food Chem. 2008, 56, 2330–2340. [Google Scholar] [CrossRef]
  86. Nuutila, A.M.; Kammiovirta, K.; Oksman-Caldentey, K.-M. Comparison of Methods for the Hydrolysis of Flavonoids and Phenolic Acids from Onion and Spinach for HPLC Analysis. Food Chem. 2002, 76, 519–525. [Google Scholar] [CrossRef]
  87. Kuti, J.O.; Konuru, H.B. Antioxidant Capacity and Phenolic Content in Leaf Extracts of Tree Spinach (Cnidoscolus spp.). J. Agric. Food Chem. 2004, 52, 117–121. [Google Scholar] [CrossRef]
  88. Justesen, U.; Knuthsen, P. Composition of Flavonoids in Fresh Herbs and Calculation of Flavonoid Intake by Use of Herbs in Traditional Danish Dishes. Food Chem. 2001, 73, 245–250. [Google Scholar] [CrossRef]
  89. Trichopoulou, A.; Vasilopoulou, E.; Hollman, P.; Chamalides, C.; Foufa, E.; Kaloudis, T.; Kromhout, D.; Miskaki, P.; Petrochilou, I.; Poulima, E.; et al. Nutritional Composition and Flavonoid Content of Edible Wild Greens and Green Pies: A Potential Rich Source of Antioxidant Nutrients in the Mediterranean Diet. Food Chem. 2000, 70, 319–323. [Google Scholar] [CrossRef]
  90. Maas, M.; Hensel, A.; Costa, F.B.D.; Brun, R.; Kaiser, M.; Schmidt, T.J. An Unusual Dimeric Guaianolide with Antiprotozoal Activity and Further Sesquiterpene Lactones from Eupatorium perfoliatum. Phytochemistry 2011, 72, 635–644. [Google Scholar] [CrossRef] [PubMed]
  91. Prasasty, V.D.; Cindana, S.; Ivan, F.X.; Zahroh, H.; Sinaga, E. Structure-Based Discovery of Novel Inhibitors of Mycobacterium tuberculosis CYP121 from Indonesian Natural Products. Comput. Biol. Chem. 2020, 85, 107205. [Google Scholar] [CrossRef]
  92. Schmitzer, V.; Veberic, R.; Slatnar, A.; Stampar, F. Elderberry (Sambucus nigra L.) Wine: A Product Rich in Health Promoting Compounds. J. Agric. Food Chem. 2010, 58, 10143–10146. [Google Scholar] [CrossRef]
  93. Sharififar, F.; Yassa, N.; Mozaffarian, V. Bioactivity of Major Components from the Seeds of Bunium persicum (Boiss.) Fedtch. Pak. J. Pharm. Sci. 2010, 23, 300–304. [Google Scholar]
  94. Ollanketo, M.; Riekkola, M.-L. Column-Switching Technique for Selective Determination of Flavonoids in Finnish Berry Wines by High-Performance Liquid Chromatography with Diode Array Detection. J. Liq. Chromatogr. Relat. Technol. 2000, 23, 1339–1351. [Google Scholar] [CrossRef]
  95. Crublet, M.-L.; Long, C.; Sévenet, T.; Hadi, H.A.; Lavaud, C. Acylated Flavonol Glycosides from Leaves of Planchonia grandis. Phytochemistry 2003, 64, 589–594. [Google Scholar] [CrossRef]
  96. Aung, H.H.; Chia, L.S.; Goh, N.K.; Chia, T.F.; Ahmed, A.A.; Pare, P.W.; Mabry, T.J. Phenolic Constituents from the Leaves of the Carnivorous Plant Nepenthes gracilis. Fitoterapia 2002, 73, 445–447. [Google Scholar] [CrossRef] [PubMed]
  97. Jung, C.H.; Kim, J.H.; Hong, M.H.; Seog, H.M.; Oh, S.H.; Lee, P.J.; Kim, G.J.; Kim, H.M.; Um, J.Y.; Ko, S.-G. Phenolic-Rich Fraction from Rhus verniciflua Stokes (RVS) Suppress Inflammatory Response via NF-κB and JNK Pathway in Lipopolysaccharide-Induced RAW 264.7 Macrophages. J. Ethnopharmacol. 2007, 110, 490–497. [Google Scholar] [CrossRef]
  98. Violaa, H.; Wolfman, C.; de Steina, M.L.; Wasowskib, C.; Pefiab, C.; Medinaa, J.H. Isolation of Pharmacologically Active Benzodiazepine Receptor Ligands from Tibia tomentosa (Tiliaceae). J. Ethnopharmacol. 1994, 44, 47–53. [Google Scholar] [CrossRef] [PubMed]
  99. Pattamadilok, D.; Suttisri, R. Seco-Terpenoids and Other Constituents from Elateriospermum tapos. J. Nat. Prod. 2008, 71, 292–294. [Google Scholar] [CrossRef] [PubMed]
  100. Öksüz, S.; Gürek, F.; Lin, L.; Gil, R.R.; Pezzuto, J.M.; Cordell, G.A. Aleppicatines A and B from Euphorbia aleppica. Phytochemistry 1996, 42, 473–478. [Google Scholar] [CrossRef]
  101. Sousa, M.; Ousingsawat, J.; Seitz, R.; Puntheeranurak, S.; Regalado, A.; Schmidt, A.; Grego, T.; Jansakul, C.; Amaral, M.D.; Schreiber, R.; et al. An Extract from the Medicinal Plant Phyllanthus acidus and Its Isolated Compounds Induce Airway Chloride Secretion: A Potential Treatment for Cystic Fibrosis. Mol. Pharmacol. 2007, 71, 366–376. [Google Scholar] [CrossRef]
  102. Yang, R.-Y.; Lin, S.; Kuo, G. Content and Distribution of Flavonoids among 91 Edible Plant Species. Asia Pac. J. Clin. Nutr. 2008, 17, 275. [Google Scholar] [PubMed]
  103. Penna, C.; Marino, S.; Vivot, E.; Cruañes, M.C.; Muñoz, J.d.D.; Cruañes, J.; Ferraro, G.; Gutkind, G.; Martino, V. Antimicrobial Activity of Argentine Plants Used in the Treatment of Infectious Diseases. Isolation of Active Compounds from Sebastiania Brasiliensis. J. Ethnopharmacol. 2001, 77, 37–40. [Google Scholar] [CrossRef] [PubMed]
  104. Zhang, X.; Hung, T.M.; Phuong, P.T.; Ngoc, T.M.; Min, B.-S.; Song, K.-S.; Seong, Y.H.; Bae, K. Anti-Inflammatory Activity of Flavonoids from Populus davidiana. Arch. Pharm. Res. 2006, 29, 1102–1108. [Google Scholar] [CrossRef] [PubMed]
  105. Jung, H.A.; Jung, M.J.; Kim, J.Y.; Chung, H.Y.; Choi, J.S. Inhibitory Activity of Flavonoids from Prunus davidiana and Other Flavonoids on Total ROS and Hydroxyl Radical Generation. Arch. Pharm. Res. 2003, 26, 809–815. [Google Scholar] [CrossRef]
  106. Nowak, R.; Gawlik-Dziki, U. Polyphenols of Rosa L. Leaves Extracts and Their Radical Scavenging Activity. Z. Für Naturforschung C 2007, 62, 32–38. [Google Scholar] [CrossRef]
  107. Suntornsuk, L.; Anurukvorakun, O. Precision Improvement for the Analysis of Flavonoids in Selected Thai Plants by Capillary Zone Electrophoresis. Electrophoresis 2005, 26, 648–660. [Google Scholar] [CrossRef]
  108. Giannasi, D.E.; Niklas, K.J. Flavonoid and Other Chemical Constituents of Fossil Miocene Celtis and Ulmus (Succor Creek Flora). Science 1977, 197, 765–767. [Google Scholar] [CrossRef]
  109. Fang, X.-K.; Gao, J.; Zhu, D.-N. Kaempferol and Quercetin Isolated from Euonymus alatus Improve Glucose Uptake of 3T3-L1 Cells without Adipogenesis Activity. Life Sci. 2008, 82, 615–622. [Google Scholar] [CrossRef]
  110. Yang, H.; Protiva, P.; Cui, B.; Ma, C.; Baggett, S.; Hequet, V.; Mori, S.; Weinstein, I.B.; Kennelly, E.J. New Bioactive Polyphenols from Theobroma grandiflorum (“Cupuaçu”). J. Nat. Prod. 2003, 66, 1501–1504. [Google Scholar] [CrossRef]
  111. Nsonde Ntandou, G.F.; Banzouzi, J.T.; Mbatchi, B.; Elion-Itou, R.D.G.; Etou-Ossibi, A.W.; Ramos, S.; Benoit-Vical, F.; Abena, A.A.; Ouamba, J.M. Analgesic and Anti-Inflammatory Effects of Cassia siamea Lam. Stem Bark Extracts. J. Ethnopharmacol. 2010, 127, 108–111. [Google Scholar] [CrossRef]
  112. Calvo, T.R.; Cardoso, C.R.P.; Da Silva Moura, A.C.; Dos Santos, L.C.; Colus, I.M.S.; Vilegas, W.; Varanda, E.A. Mutagenic Activity of Indigofera truxillensis and I. suffruticosa Aerial Parts. Evid. Based Complement. Altern. Med. 2011, 2011, 323276. [Google Scholar] [CrossRef]
  113. Krauze-Baranowska, M. Flavonoids from the Genus Taxus. Z. Für Naturforschung C 2004, 59, 43–47. [Google Scholar] [CrossRef]
  114. Calzada, F.; Correa-Basurto, J.; Barbosa, E.; Mendez-Luna, D.; Yepez-Mulia, L. Antiprotozoal Constituents from Annona cherimola Miller, a Plant Used in Mexican Traditional Medicine for the Treatment of Diarrhea and Dysentery. Pharmacogn. Mag. 2017, 13, 148–152. [Google Scholar]
  115. Rodríguez Galdón, B.; Rodríguez Rodríguez, E.M.; Díaz Romero, C. Flavonoids in Onion Cultivars (Allium cepa L.). J. Food Sci. 2008, 73, C599–C605. [Google Scholar] [CrossRef]
  116. Keyhanian, S.; Stahl-Biskup, E. Phenolic Constituents in Dried Flowers of Aloe vera (Aloe barbadensis) and Their in Vitro Antioxidative Capacity. Planta Med. 2007, 73, 599–602. [Google Scholar] [CrossRef]
  117. Xu, J.; Li, X.; Zhang, P.; Li, Z.-L.; Wang, Y. Antiinflammatory Constituents from the Roots of Smilax bockii Warb. Arch. Pharm. Res. 2005, 28, 395–399. [Google Scholar] [CrossRef] [PubMed]
  118. Jiang, R.-W.; Zhou, J.-R.; Hon, P.-M.; Li, S.-L.; Zhou, Y.; Li, L.-L.; Ye, W.-C.; Xu, H.-X.; Shaw, P.-C.; But, P.P.-H. Lignans from Dysosma versipellis with Inhibitory Effects on Prostate Cancer Cell Lines. J. Nat. Prod. 2007, 70, 283–286. [Google Scholar] [CrossRef] [PubMed]
  119. Marín, C.; Boutaleb-Charki, S.; Díaz, J.G.; Huertas, O.; Rosales, M.J.; Pérez-Cordon, G.; Guitierrez-Sánchez, R.; Sánchez-Moreno, M. Antileishmaniasis Activity of Flavonoids from Consolida oliveriana. J. Nat. Prod. 2009, 72, 1069–1074. [Google Scholar] [CrossRef]
  120. Je Ma, C.; Jung, W.J.; Lee, K.Y.; Kim, Y.C.; Sung, S.H. Calpain Inhibitory Flavonoids Isolated from Orostachys japonicus. J. Enzym. Inhib. Med. Chem. 2009, 24, 676–679. [Google Scholar] [CrossRef] [PubMed]
  121. Song, E.; Kim, J.; Kim, J.; Cho, H.; Nan, J.; Sohn, D.; Ko, G.; Oh, H.; Kim, Y. Hepatoprotective Phenolic Constituents of Rhodiola sachalinensis on Tacrine-induced Cytotoxicity in Hep G2 Cells. Phytother. Res. 2003, 17, 563–565. [Google Scholar] [CrossRef]
  122. Richwagen, N.; Lyles, J.T.; Dale, B.L.F.; Quave, C.L. Antibacterial Activity of Kalanchoe mortagei and K. fedtschenkoi Against ESKAPE Pathogens. Front. Pharmacol. 2019, 10, 67. [Google Scholar] [CrossRef]
  123. Saleem, M.; Kim, H.J.; Jin, C.; Lee, Y.S. Antioxidant Caffeic Acid Derivatives from Leaves Ofparthenocissus tricuspidata. Arch. Pharm. Res. 2004, 27, 300–304. [Google Scholar] [CrossRef] [PubMed]
  124. Kumar, D.; Gupta, J.; Gupta, A.; Kumar, S.; Arya, R. A Review on Chemical and Biological Properties of Cayratia trifolia Linn. (Vitaceae). Pharmacogn. Rev. 2011, 5, 184. [Google Scholar] [CrossRef]
  125. Yin, F.; Zhang, Y.; Yang, Z.; Cheng, Q.; Hu, L. Triterpene Saponins from Gynostemma cardiospermum. J. Nat. Prod. 2006, 69, 1394–1398. [Google Scholar] [CrossRef] [PubMed]
  126. Mazimba, O.; Majinda, R.R.T.; Modibedi, C.; Masesane, I.B.; Cencič, A.; Chingwaru, W. Tylosema esculentum Extractives and Their Bioactivity. Bioorganic Med. Chem. 2011, 19, 5225–5230. [Google Scholar] [CrossRef]
  127. Nguyen, T.-T.; Ketha, A.; Hieu, H.V.; Tatipamula, V.B. In Vitro Antimycobacterial Studies of Flavonols from Bauhinia vahlii Wight and Arn. 3 Biotech 2021, 11, 128. [Google Scholar] [CrossRef]
  128. Singh, R.; Singh, B.; Singh, S.; Kumar, N.; Kumar, S.; Arora, S. Anti-Free Radical Activities of Kaempferol Isolated from Acacia nilotica (L.) Willd. Ex. Del. Toxicology Vitr. 2008, 22, 1965–1970. [Google Scholar] [CrossRef]
  129. Costa-Lotufo, L.V.; Jimenez, P.C.; Wilke, D.V.; Leal, L.K.A.M.; Cunha, G.M.A.; Silveira, E.R.; Canuto, K.M.; Viana, G.S.B.; Moraes, M.E.A.; Moraes, M.O.D.; et al. Antiproliferative Effects of Several Compounds Isolated from Amburana cearensis A. C. Smith. Z. Für Naturforschung C 2003, 58, 675–680. [Google Scholar] [CrossRef] [PubMed]
  130. Terreaux, C.; Wang, Q.; Ioset, J.-R.; Ndjoko, K.; Grimminger, W.; Hostettmann, K. Complete LC/MS Analysis of a Tinnevelli Senna Pod Extract and Subsequent Isolation and Identification of Two New Benzophenone Glucosides. Planta Med. 2002, 68, 349–354. [Google Scholar] [CrossRef]
  131. Jiang, H.; Zhan, W.Q.; Liu, X.; Jiang, S.X. Antioxidant Activities of Extracts and Flavonoid Compounds from Oxytropis falcate Bunge. Nat. Prod. Res. 2008, 22, 1650–1656. [Google Scholar] [CrossRef] [PubMed]
  132. Xiang, W.; Li, R.-T.; Mao, Y.-L.; Zhang, H.-J.; Li, S.-H.; Song, Q.-S.; Sun, H.-D. Four New Prenylated Isoflavonoids in Tadehagi triquetrum. J. Agric. Food Chem. 2005, 53, 267–271. [Google Scholar] [CrossRef]
  133. Sharaf, M. Chemical Constituents from the Seeds of Trifolium alexandrinum. Nat. Prod. Res. 2008, 22, 1620–1623. [Google Scholar] [CrossRef] [PubMed]
  134. Papiez, M.; Gancarczyk, M.; Bilińska, B. The Compounds from the Hollyhock Extract (Althaea rosea Cav. Var. Nigra) Affect the Aromatization in Rat Testicular Cells in Vivo and in Vitro. Folia Histochem. Cytobiol. 2002, 40, 353–359. [Google Scholar]
  135. Panou, E.; Graikou, K.; Tsafantakis, N.; Sakellarakis, F.N.; Chinou, I. Flavonoids of the Aerial Parts of Helianthemum Glomeratu. Sci. Pharm. 2024, 92, 42. [Google Scholar] [CrossRef]
  136. Li, J.; Huang, H.; Zhou, W.; Feng, M.; Zhou, P. Anti-Hepatitis B Virus Activities of Geranium carolinianum L. Extracts and Identification of the Active Components. Biol. Pharm. Bull. 2008, 31, 743–747. [Google Scholar] [CrossRef]
  137. Şeker, M.E.; Ay, E.; Aktaş Karaçelik, A.; Hüseyinoğlu, R.; Efe, D. First Determination of Some Phenolic Compounds and Antimicrobial Activities of Geranium ibericum subsp. Jubatum: A Plant Endemic to Turkey. Turk. J. Chem. 2021, 45, 60–70. [Google Scholar] [CrossRef]
  138. Williams, C.A.; Harborne, J.B.; Newman, M.; Greenham, J.; Eagles, J. Chrysin and Other Leaf Exudate Flavonoids in the Genus Pelargonium. Phytochemistry 1997, 46, 1349–1353. [Google Scholar] [CrossRef]
  139. Rochfort, S.J.; Imsic, M.; Jones, R.; Trenerry, V.C.; Tomkins, B. Characterization of Flavonol Conjugates in Immature Leaves of Pak Choi [Brassica rapa L. Ssp. chinensis L. (Hanelt.)] by HPLC-DAD and LC-MS/MS. J. Agric. Food Chem. 2006, 54, 4855–4860. [Google Scholar] [CrossRef]
  140. Bennett, R.N.; Rosa, E.A.S.; Mellon, F.A.; Kroon, P.A. Ontogenic Profiling of Glucosinolates, Flavonoids, and Other Secondary Metabolites in Eruca sativa (Salad Rocket), Diplotaxis erucoides (Wall Rocket), Diplotaxis tenuifolia (Wild Rocket), and Bunias orientalis (Turkish Rocket). J. Agric. Food Chem. 2006, 54, 4005–4015. [Google Scholar] [CrossRef]
  141. Tomas-Barberan, F.A.; Garcia-Grau, M.M.; Tomas-Lorente, F. Flavonoid Concentration Changes in Maturing Broad Bean Pods. J. Agric. Food Chem. 1991, 39, 255–258. [Google Scholar] [CrossRef]
  142. Romani, A.; Vignolini, P.; Galardi, C.; Mulinacci, N.; Benedettelli, S.; Heimler, D. Germplasm Characterization of Zolfino Landraces (Phaseolus vulgaris L.) by Flavonoid Content. J. Agric. Food Chem. 2004, 52, 3838–3842. [Google Scholar] [CrossRef] [PubMed]
  143. Milbury, P.E.; Chen, C.-Y.; Dolnikowski, G.G.; Blumberg, J.B. Determination of Flavonoids and Phenolics and Their Distribution in Almonds. J. Agric. Food Chem. 2006, 54, 5027–5033. [Google Scholar] [CrossRef] [PubMed]
  144. Shan, B.; Cai, Y.Z.; Sun, M.; Corke, H. Antioxidant Capacity of 26 Spice Extracts and Characterization of Their Phenolic Constituents. J. Agric. Food Chem. 2005, 53, 7749–7759. [Google Scholar] [CrossRef] [PubMed]
  145. Inocencio, C.; Rivera, D.; Alcaraz, F.; Tomás-Barberán, F.A. Flavonoid Content of Commercial Capers (Capparis spinosa, C. sicula and C. orientalis) Produced in Mediterranean Countries. Eur. Food Res. Technol. 2000, 212, 70–74. [Google Scholar] [CrossRef]
  146. Zheng, W.; Wang, S.Y. Oxygen Radical Absorbing Capacity of Phenolics in Blueberries, Cranberries, Chokeberries, and Lingonberries. J. Agric. Food Chem. 2003, 51, 502–509. [Google Scholar] [CrossRef]
  147. Dabeek, W.M.; Marra, M.V. Dietary Quercetin and Kaempferol: Bioavailability and Potential Cardiovascular-Related Bioactivity in Humans. Nutrients 2019, 11, 2288. [Google Scholar] [CrossRef]
  148. Dragovic-Uzelac, V.; Delonga, K.; Levaj, B.; Djakovic, S.; Pospisil, J. Phenolic Profiles of Raw Apricots, Pumpkins, and Their Purees in the Evaluation of Apricot Nectar and Jam Authenticity. J. Agric. Food Chem. 2005, 53, 4836–4842. [Google Scholar] [CrossRef]
  149. Dragovic-Uzelac, V.; Pospišil, J.; Levaj, B.; Delonga, K. The Study of Phenolic Profiles of Raw Apricots and Apples and Their Purees by HPLC for the Evaluation of Apricot Nectars and Jams Authenticity. Food Chem. 2005, 91, 373–383. [Google Scholar] [CrossRef]
  150. Dragovicuzelac, V.; Levaj, B.; Mrkic, V.; Bursac, D.; Boras, M. The Content of Polyphenols and Carotenoids in Three Apricot Cultivars Depending on Stage of Maturity and Geographical Region. Food Chem. 2007, 102, 966–975. [Google Scholar] [CrossRef]
  151. Lugasi, A.; Takács, M. Flavonoid Aglycons in Foods of Plant Origin II. Fresh and Dried Fruits. Acta Aliment. 2002, 31, 63–71. [Google Scholar] [CrossRef]
  152. Bilyk, A.; Sapers, G.M. Varietal Differences in the Quercetin, Kaempferol, and Myricetin Contents of Highbush Blueberry, Cranberry, and Thornless Blackberry Fruits. J. Agric. Food Chem. 1986, 34, 585–588. [Google Scholar] [CrossRef]
  153. Jakobek, L.; Šeruga, M.; Novak, I.; Medvidović-Kosanović, M. Flavonols, Phenolic Acids and Antioxidant Activity of Some Red Fruits. Dtsch. Lebensm. Rundsch. 2007, 103, 369–377. [Google Scholar]
  154. Mertz, C.; Cheynier, V.; Günata, Z.; Brat, P. Analysis of Phenolic Compounds in Two Blackberry Species (Rubus glaucus and Rubus adenotrichus) by High-Performance Liquid Chromatography with Diode Array Detection and Electrospray Ion Trap Mass Spectrometry. J. Agric. Food Chem. 2007, 55, 8616–8624. [Google Scholar] [CrossRef] [PubMed]
  155. Sellappan, S.; Akoh, C.C.; Krewer, G. Phenolic Compounds and Antioxidant Capacity of Georgia-Grown Blueberries and Blackberries. J. Agric. Food Chem. 2002, 50, 2432–2438. [Google Scholar] [CrossRef] [PubMed]
  156. Hoffmann-Ribani, R.; Huber, L.S.; Rodriguez-Amaya, D.B. Flavonols in Fresh and Processed Brazilian Fruits. J. Food Compos. Anal. 2009, 22, 263–268. [Google Scholar] [CrossRef]
  157. Kirakosyan, A.; Seymour, E.M.; Llanes, D.E.U.; Kaufman, P.B.; Bolling, S.F. Chemical Profile and Antioxidant Capacities of Tart Cherry Products. Food Chem. 2009, 115, 20–25. [Google Scholar] [CrossRef]
  158. Häkkinen, S.H.; Kärenlampi, S.O.; Heinonen, I.M.; Mykkänen, H.M.; Törrönen, A.R. Content of the Flavonols Quercetin, Myricetin, and Kaempferol in 25 Edible Berries. J. Agric. Food Chem. 1999, 47, 2274–2279. [Google Scholar] [CrossRef]
  159. Chun, O.K.; Kim, D.-O.; Moon, H.Y.; Kang, H.G.; Lee, C.Y. Contribution of Individual Polyphenolics to Total Antioxidant Capacity of Plums. J. Agric. Food Chem. 2003, 51, 7240–7245. [Google Scholar] [CrossRef]
  160. Ayerza, R.; Coates, W. Some Quality Components of Four Chia (Salvia hispanica L.) Genotypes Grown under Tropical Coastal Desert Ecosystem Conditions. Asian J. Plant Sci. 2009, 8, 301. [Google Scholar] [CrossRef]
  161. Mikkonen, T.P.; Määttä, K.R.; Hukkanen, A.T.; Kokko, H.I.; Törrönen, A.R.; Kärenlampi, S.O.; Karjalainen, R.O. Flavonol Content Varies among Black Currant Cultivars. J. Agric. Food Chem. 2001, 49, 3274–3277. [Google Scholar] [CrossRef] [PubMed]
  162. Määttä, K.R.; Kamal-Eldin, A.; Törrönen, A.R. High-Performance Liquid Chromatography (HPLC) Analysis of Phenolic Compounds in Berries with Diode Array and Electrospray Ionization Mass Spectrometric (MS) Detection: Ribes Species. J. Agric. Food Chem. 2003, 51, 6736–6744. [Google Scholar] [CrossRef]
  163. Lee, J.; Finn, C.E. Anthocyanins and Other Polyphenolics in American Elderberry (Sambucus canadensis) and European Elderberry (S. nigra) Cultivars. J. Sci. Food Agric. 2007, 87, 2665–2675. [Google Scholar] [CrossRef]
  164. Le, K.; Chiu, F.; Ng, K. Identification and Quantification of Antioxidants in Fructus Lycii. Food Chem. 2007, 105, 353–363. [Google Scholar] [CrossRef]
  165. Karadeniz, F.; Durst, R.W.; Wrolstad, R.E. Polyphenolic Composition of Raisins. J. Agric. Food Chem. 2000, 48, 5343–5350. [Google Scholar] [CrossRef]
  166. Mullen, W.; Marks, S.C.; Crozier, A. Evaluation of Phenolic Compounds in Commercial Fruit Juices and Fruit Drinks. J. Agric. Food Chem. 2007, 55, 3148–3157. [Google Scholar] [CrossRef]
  167. Hertog, M.G.L.; Hollman, P.C.H.; Van De Putte, B. Content of Potentially Anticarcinogenic Flavonoids of Tea Infusions, Wines, and Fruit Juices. J. Agric. Food Chem. 1993, 41, 1242–1246. [Google Scholar] [CrossRef]
  168. Lombardi-Boccia, G.; Lucarini, M.; Lanzi, S.; Aguzzi, A.; Cappelloni, M. Nutrients and Antioxidant Molecules in Yellow Plums (Prunus domestica L.) from Conventional and Organic Productions: A Comparative Study. J. Agric. Food Chem. 2004, 52, 90–94. [Google Scholar] [CrossRef]
  169. Kuti, J.O. Antioxidant Compounds from Four Opuntia Cactus Pear Fruit Varieties. Food Chem. 2004, 85, 527–533. [Google Scholar] [CrossRef]
  170. Mullen, W.; Stewart, A.J.; Lean, M.E.J.; Gardner, P.; Duthie, G.G.; Crozier, A. Effect of Freezing and Storage on the Phenolics, Ellagitannins, Flavonoids, and Antioxidant Capacity of Red Raspberries. J. Agric. Food Chem. 2002, 50, 5197–5201. [Google Scholar] [CrossRef] [PubMed]
  171. Määttä-Riihinen, K.R.; Kamal-Eldin, A.; Törrönen, A.R. Identification and Quantification of Phenolic Compounds in Berries of Fragaria and Rubus Species (Family Rosaceae). J. Agric. Food Chem. 2004, 52, 6178–6187. [Google Scholar] [CrossRef] [PubMed]
  172. Wang, S.Y.; Lin, H.-S. Compost as a Soil Supplement Increases the Level of Antioxidant Compounds and Oxygen Radical Absorbance Capacity in Strawberries. J. Agric. Food Chem. 2003, 51, 6844–6850. [Google Scholar] [CrossRef] [PubMed]
  173. Papagiannopoulos, M.; Wollseifen, H.R.; Mellenthin, A.; Haber, B.; Galensa, R. Identification and Quantification of Polyphenols in Carob Fruits (Ceratonia siliqua L.) and Derived Products by HPLC-UV-ESI/MSn. J. Agric. Food Chem. 2004, 52, 3784–3791. [Google Scholar] [CrossRef]
  174. Chang, Q.; Wong, Y.-S. Identification of Flavonoids in Hakmeitau Beans (Vigna sinensis) by High-Performance Liquid Chromatography−Electrospray Mass Spectrometry (LC-ESI/MS). J. Agric. Food Chem. 2004, 52, 6694–6699. [Google Scholar] [CrossRef]
  175. Gil, M.I.; Ferreres, F.; Ortiz, A.; Subra, E.; Tomas-Barberan, F.A. Plant Phenolic Metabolites and Floral Origin of Rosemary Honey. J. Agric. Food Chem. 1995, 43, 2833–2838. [Google Scholar] [CrossRef]
  176. Kenjerić, D.; Mandić, M.L.; Primorac, L.; Čačić, F. Flavonoid Pattern of Sage (Salvia officinalis L.) Unifloral Honey. Food Chem. 2008, 110, 187–192. [Google Scholar] [CrossRef]
  177. Yao, L.; Jiang, Y.; D’Arcy, B.; Singanusong, R.; Datta, N.; Caffin, N.; Raymont, K. Quantitative High-Performance Liquid Chromatography Analyses of Flavonoids in Australian Eucalyptus Honeys. J. Agric. Food Chem. 2004, 52, 210–214. [Google Scholar] [CrossRef]
  178. Tomas-Lorente, F.; Garcia-Viguera, C.; Ferreres, F.; Tomas-Barberan, F.A. Phenolic Compounds Analysis in the Determination of Fruit Jam Genuineness. J. Agric. Food Chem. 1992, 40, 1800–1804. [Google Scholar] [CrossRef]
  179. Zafrilla, P.; Ferreres, F.; Tomás-Barberán, F.A. Effect of Processing and Storage on the Antioxidant Ellagic Acid Derivatives and Flavonoids of Red Raspberry (Rubus idaeus) Jams. J. Agric. Food Chem. 2001, 49, 3651–3655. [Google Scholar] [CrossRef]
  180. Da Silva Pinto, M.; Lajolo, F.M.; Genovese, M.I. Bioactive Compounds and Antioxidant Capacity of Strawberry Jams. Plant Foods Hum. Nutr. 2007, 62, 127–131. [Google Scholar] [CrossRef] [PubMed]
  181. Revilla, E.; Alonso, E.; Estrella, M.I. Analysis of Flavonol Aglycones in Wine Extracts by High Performance Liquid Chromatography. Chromatographia 1986, 22, 157–159. [Google Scholar] [CrossRef]
  182. Rodríguez-Delgado, M.-Á.; González-Hernández, G.; Conde-González, J.-E.; Pérez-Trujillo, J.-P. Principal Component Analysis of the Polyphenol Content in Young Red Wines. Food Chem. 2002, 78, 523–532. [Google Scholar] [CrossRef]
  183. Rodrıguez-Delgado, M.A.; Malovana, S.; Perez, J.P.; Borges, T.; Montelongo, F.G. Separation of Phenolic Compounds by High-Performance Liquid Chromatography with Absorbance and Fluorimetric Detection. J. Chromatogr. A 2001, 912, 249–257. [Google Scholar] [CrossRef]
  184. Tsanova-Savova, S.; Ribarova, F. Free and Conjugated Myricetin, Quercetin, and Kaempferol in Bulgarian Red Wines. J. Food Compos. Anal. 2002, 15, 639–645. [Google Scholar] [CrossRef]
  185. Rechner, A.R.; Wagner, E.; Van Buren, L.; Van De Put, F.; Wiseman, S.; Rice-Evans, C.A. Black Tea Represents a Major Source of Dietary Phenolics Among Regular Tea Drinkers. Free Radic. Res. 2002, 36, 1127–1135. [Google Scholar] [CrossRef]
  186. Burns, J.; Gardner, P.T.; O’Neil, J.; Crawford, S.; Morecroft, I.; McPhail, D.B.; Lister, C.; Matthews, D.; MacLean, M.R.; Lean, M.E.J.; et al. Relationship among Antioxidant Activity, Vasodilation Capacity, and Phenolic Content of Red Wines. J. Agric. Food Chem. 2000, 48, 220–230. [Google Scholar] [CrossRef]
  187. Stecher, G.; Huck, C.W.; Popp, M.; Bonn, G.K. Determination of Flavonoids and Stilbenes in Red Wine and Related Biological Products by HPLC and HPLC–ESI–MS–MS. Fresenius J. Anal. Chem. 2001, 371, 73–80. [Google Scholar] [CrossRef]
  188. La Torre, G.L.; Saitta, M.; Vilasi, F.; Pellicanò, T.; Dugo, G. Direct Determination of Phenolic Compounds in Sicilian Wines by Liquid Chromatography with PDA and MS Detection. Food Chem. 2006, 94, 640–650. [Google Scholar] [CrossRef]
  189. Liza, M.S.; Abdul Rahman, R.; Mandana, B.; Jinap, S.; Rahmat, A.; Zaidul, I.S.M.; Hamid, A. Supercritical Carbon Dioxide Extraction of Bioactive Flavonoid from Strobilanthes crispus (Pecah Kaca). Food Bioprod. Process. 2010, 88, 319–326. [Google Scholar] [CrossRef]
  190. Nie, R.; Zhang, Y.; Zhang, H.; Jin, Q.; Wu, G.; Wang, X. Effect of Different Processing Methods on Physicochemical Properties, Chemical Compositions and in Vitro Antioxidant Activities of Paeonia lactiflora Pall Seed Oils. Food Chem. 2020, 332, 127408. [Google Scholar] [CrossRef] [PubMed]
  191. Yuan, Y.; Zheng, S.; Zeng, L.; Deng, Z.; Zhang, B.; Li, H. The Phenolic Compounds, Metabolites, and Antioxidant Activity of Propolis Extracted by Ultrasound-Assisted Method. J. Food Sci. 2019, 84, 3850–3865. [Google Scholar] [CrossRef] [PubMed]
  192. Gwiazdowska, D.; Waśkiewicz, A.; Juś, K.; Marchwińska, K.; Frąk, S.; Popowski, D.; Pawlak-Lemańska, K.; Uwineza, P.A.; Gwiazdowski, R.; Padewska, D.; et al. Antimicrobial and Antibiofilm Activity of Origanum vulgare Extracts Obtained by Supercritical Fluid Extraction Under Various Extraction Conditions. Molecules 2024, 29, 5823. [Google Scholar] [CrossRef]
  193. Wang, Y.; Ying, L.; Sun, D.; Zhang, S.; Zhu, Y.; Xu, P. Supercritical Carbon Dioxide Extraction of Bioactive Compounds from Ampelopsis grossedentata Stems: Process Optimization and Antioxidant Activity. Int. J. Mol. Sci. 2011, 12, 6856–6870. [Google Scholar] [CrossRef]
  194. Mikšovsky, P.; Kornpointner, C.; Parandeh, Z.; Goessinger, M.; Bica--Schröder, K.; Halbwirth, H. Enzyme-Assisted Supercritical Fluid Extraction of Flavonoids from Apple Pomace (Malus×domestica). ChemSusChem 2024, 17, e202301094. [Google Scholar] [CrossRef]
  195. Cai, P.; Zhao, Y.; Ruan, J. Preparation of Magnetic Molecularly Imprinted Polymers for Selective Isolation and Determination of Kaempferol and Protoapigenone in Macrothelypteris torresiana. Curr. Med Sci. 2014, 34, 845–855. [Google Scholar] [CrossRef]
  196. He, Y.; Wang, J.; Wang, S. Rapid Detection of Kaempferol Using Surface Molecularly Imprinted Mesoporous Molecular Sieves Embedded with Carbon Dots. Int. J. Anal. Chem. 2020, 5819062. [Google Scholar] [CrossRef]
  197. Cheng, Y.; Nie, J.; Liu, H.; Kuang, L.; Xu, G. Synthesis and Characterization of Magnetic Molecularly Imprinted Polymers for Effective Extraction and Determination of Kaempferol from Apple Samples. J. Chromatogr. A 2020, 1630, 461531. [Google Scholar] [CrossRef] [PubMed]
  198. Sun, Y.; Yin, X.; Zhang, L.; Cao, M. Preparation and Evaluation of Photo-Responsive Hollow SnO2 Molecularly Imprinted Polymers for the Selective Recognition of Kaempferol. Anal. Methods 2021, 13, 925–932. [Google Scholar] [CrossRef]
  199. Li, X.; Row, K.H. Preparation of Deep Eutectic Solvent-Based Hexagonal Boron Nitride-Molecularly Imprinted Polymer Nanoparticles for Solid Phase Extraction of Flavonoids. Microchim. Acta 2019, 186, 753. [Google Scholar] [CrossRef]
  200. Erol, E. Quantitative Analysis of Bioaccessible Phenolic Compounds in Aegean Bee Bread Using LC--HRMS Coupled with a Human Digestive System Model. Chem. Biodivers. 2024, 21, e202301497. [Google Scholar] [CrossRef]
  201. Wójciak, M.; Pacuła, W.; Tyszczuk-Rotko, K.; Ziemlewska, A.; Zagórska-Dziok, M.; Nizioł-Łukaszewska, Z.; Patryn, R.; Pacian, A.; Sowa, I. Comparative Analysis of Polyphenol-Rich Extracts from Hamamelis virginiana Leaves and Bark: ROS Scavenging and Anti-Inflammatory Effects on Skin Cells. Molecules 2025, 30, 3572. [Google Scholar] [CrossRef]
  202. Yeong, Y.L.; Pang, S.F.; Putranto, A.; Gimbun, J. Optimisation of Microwave-Assisted Extraction (MAE) of Anthraquinone and Flavonoids from Senna alata (L.) Roxb. Nat. Prod. Res. 2022, 36, 3756–3760. [Google Scholar] [CrossRef]
  203. Lin, T.-K.; Leu, J.-Y.; Lai, Y.-L.; Chang, Y.-C.; Chung, Y.-C.; Liu, H.-W. Application of Microwave-Assisted Water Extraction (MAWE) to Fully Realize Various Physiological Activities of Melaleuca quinquenervia Leaf Extract. Plants 2024, 13, 3362. [Google Scholar] [CrossRef]
  204. Pei, J.; Chen, A.; Dong, P.; Shi, X.; Zhao, L.; Cao, F.; Tang, F. Modulating Heterologous Pathways and Optimizing Fermentation Conditions for Biosynthesis of Kaempferol and Astragalin from Naringenin in Escherichia coli. J. Ind. Microbiol. Biotechnol. 2019, 46, 171–186. [Google Scholar] [CrossRef]
  205. Bangar, S.P.; Chaudhary, V.; Sharma, N.; Bansal, V.; Ozogul, F.; Lorenzo, J.M. Kaempferol: A Flavonoid with Wider Biological Activities and Its Applications. Crit. Rev. Food Sci. Nutr. 2023, 63, 9580–9604. [Google Scholar] [CrossRef]
  206. Lyu, X.; Zhao, G.; Ng, K.R.; Mark, R.; Chen, W.N. Metabolic Engineering of Saccharomyces cerevisiae for De Novo Production of Kaempferol. J. Agric. Food Chem. 2019, 67, 5596–5606. [Google Scholar] [CrossRef] [PubMed]
  207. Dong, Y.; Wei, W.; Li, M.; Qian, T.; Xu, J.; Chu, X.; Ye, B.-C. De Novo Biosynthesis of Quercetin in Yarrowia Lipolytica through Systematic Metabolic Engineering for Enhanced Yield. Bioresour. Bioprocess. 2025, 12, 5. [Google Scholar] [CrossRef]
  208. Routray, W.; Orsat, V. Microwave-Assisted Extraction of Flavonoids: A Review. Food Bioprocess. Technol. 2012, 5, 409–424. [Google Scholar] [CrossRef]
  209. Wang, Y.; Chen, S.; Yu, O. Metabolic Engineering of Flavonoids in Plants and Microorganisms. Appl. Microbiol. Biotechnol. 2011, 91, 949–956. [Google Scholar] [CrossRef] [PubMed]
  210. Duan, L.; Ding, W.; Liu, X.; Cheng, X.; Cai, J.; Hua, E.; Jiang, H. Biosynthesis and Engineering of Kaempferol in Saccharomyces cerevisiae. Microb. Cell Fact. 2017, 16, 165. [Google Scholar] [CrossRef] [PubMed]
  211. Xu, P.; Ranganathan, S.; Fowler, Z.L.; Maranas, C.D.; Koffas, M.A.G. Genome-Scale Metabolic Network Modeling Results in Minimal Interventions That Cooperatively Force Carbon Flux towards Malonyl-CoA. Metab. Eng. 2011, 13, 578–587. [Google Scholar] [CrossRef] [PubMed]
  212. Wu, J.; Yu, O.; Du, G.; Zhou, J.; Chen, J. Fine-Tuning of the Fatty Acid Pathway by Synthetic Antisense RNA for Enhanced (2 S)-Naringenin Production from l-Tyrosine in Escherichia coli. Appl. Environ. Microbiol. 2014, 80, 7283–7292. [Google Scholar] [CrossRef]
  213. Rodriguez, A.; Strucko, T.; Stahlhut, S.G.; Kristensen, M.; Svenssen, D.K.; Forster, J.; Nielsen, J.; Borodina, I. Metabolic Engineering of Yeast for Fermentative Production of Flavonoids. Bioresour. Technol. 2017, 245, 1645–1654. [Google Scholar] [CrossRef]
  214. Jan, R.; Asaf, S.; Paudel, S.; Lubna; Lee, S.; Kim, K.-M. Discovery and Validation of a Novel Step Catalyzed by OsF3H in the Flavonoid Biosynthesis Pathway. Biology 2021, 10, 32. [Google Scholar] [CrossRef]
  215. Wang, L.; Luo, Y.; Wu, Y.; Liu, Y.; Wu, Z. Fermentation and Complex Enzyme Hydrolysis for Improving the Total Soluble Phenolic Contents, Flavonoid Aglycones Contents and Bio-Activities of Guava Leaves Tea. Food Chem. 2018, 264, 189–198. [Google Scholar] [CrossRef]
  216. Wu, M.; Gong, D.-C.; Yang, Q.; Zhang, M.-Q.; Mei, Y.-Z.; Dai, C.-C. Activation of Naringenin and Kaempferol through Pathway Refactoring in the Endophyte Phomopsis liquidambaris. ACS Synth. Biol. 2021, 10, 2030–2039. [Google Scholar] [CrossRef]
  217. Marín, L.; Gutiérrez-del-Río, I.; Entrialgo-Cadierno, R.; Villar, C.J.; Lombó, F. De Novo Biosynthesis of Myricetin, Kaempferol and Quercetin in Streptomyces albus and Streptomyces coelicolor. PLoS ONE 2018, 13, e0207278. [Google Scholar] [CrossRef] [PubMed]
  218. Pan, C.; Qin, H.; Yan, M.; Qiu, X.; Gong, W.; Luo, W.; Guo, H.; Han, X. Environmental Microcystin Exposure Triggers the Poor Prognosis of Prostate Cancer: Evidence from Case-Control, Animal, and in Vitro Studies. J. Environ. Sci. 2023, 127, 69–81. [Google Scholar] [CrossRef] [PubMed]
  219. Li, J.; Li, R.; Li, J. Current Research Scenario for Microcystins Biodegradation—A Review on Fundamental Knowledge, Application Prospects and Challenges. Sci. Total Environ. 2017, 595, 615–632. [Google Scholar] [CrossRef]
  220. Kong, F.; Zhao, Q.; Wen, W.; He, P.; Shao, L. Allelopathic Effects and Mechanism of Kaempferol on Controlling Microcystis Aeruginosa Blooms. Mar. Pollut. Bull. 2025, 217, 118116. [Google Scholar] [CrossRef]
  221. Ngnokam Jouogo, D.C.; Eckhardt, P.; Tamokou, J.-D.-D.; Matsuete Takongmo, G.; Voutquenne-Nazabadioko, L.; Opatz, T.; Tapondjou, L.A.; Ngnokam, D.; Teponno, R.B. A New Phenolic Glycoside from the Leaves of Flacourtia flavescens Willd. Nat. Prod. Res. 2024, 38, 2737–2747. [Google Scholar] [CrossRef]
  222. Ayhan, B.S.; Yalçin, E.; Çavuşoğlu, K. In-Silico Receptor Interactions, Phytochemical Fingerprint and Biological Activities of Matricaria chamomilla Flower Extract and the Main Components. Sci. Rep. 2025, 15, 28875. [Google Scholar] [CrossRef]
  223. He, S.; Deng, Q.; Liang, B.; Yu, F.; Yu, X.; Guo, D.; Liu, X.; Dong, H. Suppressing Alpha-Hemolysin as Potential Target to Screen of Flavonoids to Combat Bacterial Coinfection. Molecules 2021, 26, 7577. [Google Scholar] [CrossRef] [PubMed]
  224. Rekha, P.D.; Vasavi, H.S.; Vipin, C.; Saptami, K.; Arun, A.B. A Medicinal Herb Cassia alata Attenuates Quorum Sensing in Chromobacterium violaceum and Pseudomonas aeruginosa. Lett. Appl. Microbiol. 2017, 64, 231–238. [Google Scholar] [CrossRef] [PubMed]
  225. Ibrahim, B.; Reis, A.; Arın, U.E.; Muhammed, M.T.; Önem, E. Investigation of the Antibacterial Activity of Rhamnus cathartica L. and Its Anti-QS Potential on Pseudomonas aeruginosa PAO1. Nat. Prod. Res. 2025, 39, 4762–4774. [Google Scholar] [CrossRef]
  226. Wang, J.; Zhang, L.; Fu, L.; Pang, Z. Kaempferol Mitigates Pseudomonas Aeruginosa-Induced Acute Lung Inflammation Through Suppressing GSK3β/JNK/c-Jun Signaling Pathway and NF-κB Activation. Pharmaceuticals 2025, 18, 322. [Google Scholar] [CrossRef]
  227. Wang, P.; Xiang, M.; Luo, M.; Liu, H.; Zhou, X.; Wu, Z.; Liu, L.; Li, Z.; Yang, S. Novel Piperazine-Tailored Ursolic Acid Hybrids as Significant Antibacterial Agents Targeting Phytopathogens Xanthomonas oryzae Pv. oryzae and X. axonopodis Pv. citri Probably Directed by Activation of Apoptosis. Pest. Manag. Sci. 2020, 76, 2746–2754. [Google Scholar] [CrossRef]
  228. Ji, Q.-T.; Mu, X.-F.; Hu, D.-K.; Fan, L.-J.; Xiang, S.-Z.; Ye, H.-J.; Gao, X.-H.; Wang, P.-Y. Fabrication of Host–Guest Complexes between Adamantane-Functionalized 1,3,4-Oxadiazoles and β-Cyclodextrin with Improved Control Efficiency against Intractable Plant Bacterial Diseases. ACS Appl. Mater. Interfaces 2022, 14, 2564–2577. [Google Scholar] [CrossRef]
  229. Li, A.-P.; He, Y.-H.; Zhang, S.-Y.; Shi, Y.-P. Antibacterial Activity and Action Mechanism of Flavonoids against Phytopathogenic Bacteria. Pestic. Biochem. Physiol. 2022, 188, 105221. [Google Scholar] [CrossRef]
  230. Patra, J.K.; Kim, E.S.; Oh, K.; Kim, H.-J.; Kim, Y.; Baek, K.-H. Antibacterial Effect of Crude Extract and Metabolites of Phytolacca americana on Pathogens Responsible for Periodontal Inflammatory Diseases and Dental Caries. BMC Complement. Altern. Med. 2014, 14, 343. [Google Scholar] [CrossRef]
  231. Le Sage, F.; Meilhac, O.; Gonthier, M.-P. Anti-Inflammatory and Antioxidant Effects of Polyphenols Extracted from Antirhea borbonica Medicinal Plant on Adipocytes Exposed to Porphyromonas gingivalis and Escherichia coli Lipopolysaccharides. Pharmacol. Res. 2017, 119, 303–312. [Google Scholar] [CrossRef]
  232. Yeon, M.J.; Lee, M.H.; Kim, D.H.; Yang, J.Y.; Woo, H.J.; Kwon, H.J.; Moon, C.; Kim, S.-H.; Kim, J.-B. Anti-Inflammatory Effects of Kaempferol on Helicobacter pylori-Induced Inflammation. Biosci. Biotechnol. Biochem. 2019, 83, 166–173. [Google Scholar] [CrossRef]
  233. Eftekhari, M.; Ardekani, M.R.S.; Amin, M.; Saeedi, M.; Akbarzadeh, T.; Khanavi, M. Anti-Helicobacter Pylori Compounds from Oliveria decumbens Vent. through Urease Inhibitory In-Vitro and In-Silico Studies. Biosci. Biotechnol. Biochem. 2021, 20, 476–489. [Google Scholar]
  234. Yang, R.; Li, J.; Wang, J.; Wang, Y.; Ma, F.; Zhai, R.; Li, P. Kaempferol Inhibits the Growth of Helicobacter pylori in a Manner Distinct from Antibiotics. J. Food Biochem. 2022, 46, e14210. [Google Scholar] [CrossRef] [PubMed]
  235. Yi, R.; Wang, F.-B.; Tan, F.; Long, X.; Pan, Y.; Zhao, X. Intervention Effects of Lotus Leaf Flavonoids on Gastric Mucosal Lesions in Mice Infected with Helicobacter pylori. RSC Adv. 2020, 10, 23510–23521. [Google Scholar] [CrossRef] [PubMed]
  236. Asadi, G.S.; Abdizadeh, R.; Abdizadeh, T. Investigation of a Set of Flavonoid Compounds as Helicobacter pylori Urease Inhibitors: Insights from in Silico Studies. J. Biomol. Struct. Dyn. 2025, 43, 2366–2388. [Google Scholar] [CrossRef]
  237. Qing, L.; Li, S.; Yan, S.; Wu, C.; Yan, X.; He, Z.; Chen, Q.; Huang, M.; Shen, C.; Wang, S.; et al. Anti-Helicobacter pylori Activity of Fagopyrum tataricum (L.) Gaertn. Bran Flavonoids Extract and Its Effect on Helicobacter pylori-induced Inflammatory Response. Food Sci. Nutr. 2023, 11, 3394–3403. [Google Scholar] [CrossRef] [PubMed]
  238. Wang, Y.; Wang, S.L.; Zhang, J.Y.; Song, X.N.; Zhang, Z.Y.; Li, J.F.; Li, S. Anti-Ulcer and Anti-Helicobacter pylori Potentials of the Ethyl Acetate Fraction of Physalis alkekengi L. Var. franchetii (Solanaceae) in Rodent. J. Ethnopharmacol. 2018, 211, 197–206. [Google Scholar] [CrossRef]
  239. Tan, A.; Scortecci, K.C.; Cabral De Medeiros, N.M.; Kukula-Koch, W.; Butler, T.J.; Smith, S.M.; Boylan, F. Plukenetia Volubilis Leaves as Source of Anti-Helicobacter pylori Agents. Front. Pharmacol. 2024, 15, 1461447. [Google Scholar] [CrossRef]
  240. González, A.; Salillas, S.; Velázquez-Campoy, A.; Espinosa Angarica, V.; Fillat, M.F.; Sancho, J.; Lanas, Á. Identifying Potential Novel Drugs against Helicobacter pylori by Targeting the Essential Response Regulator HsrA. Sci. Rep. 2019, 9, 11294. [Google Scholar] [CrossRef]
  241. Yeganegi, M.; Tabatabaei Yazdi, F.; Mortazavi, S.A.; Asili, J.; Alizadeh Behbahani, B.; Beigbabaei, A. Equisetum telmateia Extracts: Chemical Compositions, Antioxidant Activity and Antimicrobial Effect on the Growth of Some Pathogenic Strain Causing Poisoning and Infection. Microb. Pathog. 2018, 116, 62–67. [Google Scholar] [CrossRef]
  242. Attallah, N.G.M.; El-Sherbeni, S.A.; El-Kadem, A.H.; Elekhnawy, E.; El-Masry, T.A.; Elmongy, E.I.; Altwaijry, N.; Negm, W.A. Elucidation of the Metabolite Profile of Yucca gigantea and Assessment of Its Cytotoxic, Antimicrobial, and Anti-Inflammatory Activities. Molecules 2022, 27, 1329. [Google Scholar] [CrossRef]
  243. Özçelik, B.; Orhan, I.; Toker, G. Antiviral and Antimicrobial Assessment of Some Selected Flavonoids. Z. Für Naturforschung C 2006, 61, 632–638. [Google Scholar] [CrossRef]
  244. Christopoulou, C.; Graikou, K.; Chinou, I. Chemosystematic Value of Chemical Constituents from Scabiosa hymettia (Dipsacaceae). Chem. Biodivers. 2008, 5, 318–323. [Google Scholar] [CrossRef]
  245. Wu, T.; Zang, X.; He, M.; Pan, S.; Xu, X. Structure–Activity Relationship of Flavonoids on Their Anti-Escherichia coli Activity and Inhibition of DNA Gyrase. J. Agric. Food Chem. 2013, 61, 8185–8190. [Google Scholar] [CrossRef] [PubMed]
  246. Mouzié, C.M.; Guefack, M.-G.F.; Kianfé, B.Y.; Serondo, H.U.; Ponou, B.K.; Siwe-Noundou, X.; Teponno, R.B.; Krause, R.W.M.; Kuete, V.; Tapondjou, L.A. A New Chalcone and Antimicrobial Chemical Constituents of Dracaena Stedneuri. Pharmaceuticals 2022, 15, 725. [Google Scholar] [CrossRef] [PubMed]
  247. Tajuddeen, N.; Sani Sallau, M.; Muhammad Musa, A.; James Habila, D.; Muhammad Yahaya, S. Flavonoids with Antimicrobial Activity from the Stem Bark of Commiphora pedunculata (Kotschy & Peyr.) Engl. Nat. Prod. Res. 2014, 28, 1915–1918. [Google Scholar] [CrossRef] [PubMed]
  248. Meccatti, V.M.; Martins, K.M.C.; Ramos, L.D.P.; Pereira, T.C.; De Menezes, R.T.; Marcucci, M.C.; Abu Hasna, A.; De Oliveira, L.D. Synergistic Antibiofilm Action of Cinnamomum verum and Brazilian Green Propolis Hydroethanolic Extracts against Multidrug-Resistant Strains of Acinetobacter baumannii and Pseudomonas aeruginosa and Their Biocompatibility on Human Keratinocytes. Molecules 2023, 28, 6904. [Google Scholar] [CrossRef]
  249. Šuran, J.; Cepanec, I.; Mašek, T.; Starčević, K.; Tlak Gajger, I.; Vranješ, M.; Radić, B.; Radić, S.; Kosalec, I.; Vlainić, J. Nonaqueous Polyethylene Glycol as a Safer Alternative to Ethanolic Propolis Extracts with Comparable Antioxidant and Antimicrobial Activity. Antioxidants 2021, 10, 978. [Google Scholar] [CrossRef]
  250. Nganou, B.K.; Simo Konga, I.; Fankam, A.G.; Bitchagno, G.T.M.; Sonfack, G.; Nayim, P.; Celik, I.; Koyutürk, S.; Kuete, V.; Tane, P. Guttiferone BL with Antibacterial Activity from the Fruits of Allanblackia gabonensis. Nat. Prod. Res. 2019, 33, 2638–2646. [Google Scholar] [CrossRef]
  251. Chen, C.-C.; Huang, C.-Y. Inhibition of Klebsiella Pneumoniae DnaB Helicase by the Flavonol Galangin. Protein J. 2011, 30, 59–65. [Google Scholar] [CrossRef]
  252. Man, T.; Yu, H.; Li, L.; Nie, W.; Wang, C. Integrative Network Pharmacology and Experimental Validation of Multi-Target Synergy against Multidrug-Resistant Klebsiella Pneumoniae via PI3K/AKT-MAPK Pathway Disruption. Naunyn Schmiedeberg’s Arch. Pharmacol. 2025, 1–15. [Google Scholar] [CrossRef]
  253. Wasupalli, G.K.; Bhoi, N.; Sahoo, D.R.; Mishra, M.; Gartia, P.; Rath, S.; Naik, B.B.; Naik, P.K. Phytochemical Profiling and Bioactivity Assessment of Entada scandens Stem Extract: Insights Into Its Antioxidant, Antimicrobial, and Anticancer Activities. Chem. Biodivers. 2025, 22, e00771. [Google Scholar] [CrossRef]
  254. Brooks, L.R.K.; Mias, G.I. Streptococcus pneumoniae’s Virulence and Host Immunity: Aging, Diagnostics, and Prevention. Front. Immunol. 2018, 9, 1366. [Google Scholar] [CrossRef]
  255. Lucas, R.; Czikora, I.; Sridhar, S.; Zemskov, E.; Gorshkov, B.; Siddaramappa, U.; Oseghale, A.; Lawson, J.; Verin, A.; Rick, F.; et al. Mini-Review: Novel Therapeutic Strategies to Blunt Actions of Pneumolysin in the Lungs. Toxins 2013, 5, 1244–1260. [Google Scholar] [CrossRef] [PubMed]
  256. Bolken, T.C.; Franke, C.A.; Jones, K.F.; Zeller, G.O.; Jones, C.H.; Dutton, E.K.; Hruby, D.E. Inactivation of the srtA Gene in Streptococcus gordonii Inhibits Cell Wall Anchoring of Surface Proteins and Decreases In Vitro and In Vivo Adhesion. Infect. Immun. 2001, 69, 75–80. [Google Scholar] [CrossRef] [PubMed]
  257. Mazmanian, S.K.; Liu, G.; Ton-That, H.; Schneewind, O. Staphylococcus aureus Sortase, an Enzyme That Anchors Surface Proteins to the Cell Wall. Science 1999, 285, 760–763. [Google Scholar] [CrossRef]
  258. He, H.; Sun, S.; Zhang, M.; Shou, L. Research on Erchen Tang in the Treatment of Community-Acquired Pneumonia Based on Chemical Molecular Mechanisms of Quercetin and Kaempferol: PI3K/AKT/NF-κB Protein Signaling. Int. J. Biol. Macromol. 2025, 311, 144071. [Google Scholar] [CrossRef]
  259. Guan, X.; Zhou, Y.; Liang, X.; Xiao, J.; He, L.; Li, J. Effects of Compounds Found in Nidus Vespae on the Growth and Cariogenic Virulence Factors of Streptococcus mutans. Microbiol. Res. 2012, 167, 61–68. [Google Scholar] [CrossRef] [PubMed]
  260. Zeng, Y.; Nikitkova, A.; Abdelsalam, H.; Li, J.; Xiao, J. Activity of Quercetin and Kaemferol against Streptococcus mutans Biofilm. Arch. Oral. Biol. 2019, 98, 9–16. [Google Scholar] [CrossRef]
  261. Radoshevich, L.; Cossart, P. Listeria Monocytogenes: Towards a Complete Picture of Its Physiology and Pathogenesis. Nat. Rev. Microbiol. 2018, 16, 32–46. [Google Scholar] [CrossRef]
  262. Wang, T.; Liu, B.; Zhang, C.; Fang, T.; Ding, Y.; Song, G.; Zhang, S.; Shi, L.; Deng, X.; Wang, J. Kaempferol-Driven Inhibition of Listeriolysin O Pore Formation and Inflammation Suppresses Listeria Monocytogenes Infection. Microbiol. Spectr. 2022, 10, e01810–e01822. [Google Scholar] [CrossRef] [PubMed]
  263. Vallejo, C.V.; Minahk, C.J.; Rollán, G.C.; Rodríguez--Vaquero, M.J. Inactivation of Listeria monocytogenes and Salmonella Typhimurium in Strawberry Juice Enriched with Strawberry Polyphenols. J. Sci. Food Agric. 2021, 101, 441–448. [Google Scholar] [CrossRef] [PubMed]
  264. Mokhtar, M.; Soukup, J.; Donato, P.; Cacciola, F.; Dugo, P.; Riazi, A.; Jandera, P.; Mondello, L. Determination of the Polyphenolic Content of a Capsicum annuum L. Extract by Liquid Chromatography Coupled to Photodiode Array and Mass Spectrometry Detection and Evaluation of Its Biological Activity. J. Sep. Sci. 2015, 38, 171–178. [Google Scholar] [CrossRef]
  265. Hazni, H.; Ahmad, N.; Hitotsuyanagi, Y.; Takeya, K.; Choo, C.-Y. Phytochemical Constituents from Cassia alata with Inhibition against Methicillin-Resistant Staphylococcus aureus (MRSA). Planta Med. 2008, 74, 1802–1805. [Google Scholar] [CrossRef]
  266. Morimoto, Y.; Aiba, Y.; Miyanaga, K.; Hishinuma, T.; Cui, L.; Baba, T.; Hiramatsu, K. CID12261165, a Flavonoid Compound as Antibacterial Agents against Quinolone-Resistant Staphylococcus aureus. Sci. Rep. 2023, 13, 1725. [Google Scholar] [CrossRef]
  267. Lv, R.; Cai, Z.; Sun, Z.; Zhang, W.; Wang, J.; Bian, Y.; Li, Z.; Liu, X. Flavonols Interrupt Internalized Bacteria Hijacking Cellular Responses via Suppressing Oxidative Stress Induced Cellular Apoptotic Death. Int. J. Antimicrob. Agents 2025, 66, 107595. [Google Scholar] [CrossRef]
  268. Liu, J.; Wen, J.; Lu, J.; Zhou, H.; Wang, G. Kaempferol and Kaempferin Alleviate MRSA Virulence by Suppressing β-Lactamase and Inflammation. Molecules 2025, 30, 4132. [Google Scholar] [CrossRef]
  269. World Health Organization. Global Tuberculosis Report 2024, 1st ed.; World Health Organization: Geneva, Switzerland, 2024; ISBN 978-92-4-010153-1. [Google Scholar]
  270. Nzila, A.; Ma, Z.; Chibale, K. Drug Repositioning in the Treatment of Malaria and TB. Future Med. Chem. 2011, 3, 1413–1426. [Google Scholar] [CrossRef]
  271. Ortiz De Montellano, P.R. Potential Drug Targets in the Mycobacterium Tuberculosis Cytochrome P450 System. J. Inorg. Biochem. 2018, 180, 235–245. [Google Scholar] [CrossRef]
  272. Islam, S.; Salekeen, R.; Ashraf, A. Computational Screening of Natural MtbDXR Inhibitors for Novel Anti-Tuberculosis Compound Discovery. J. Biomol. Struct. Dyn. 2024, 42, 3593–3603. [Google Scholar] [CrossRef] [PubMed]
  273. Karimi, E.; Jaafar, H.Z.E.; Ahmad, S. Phytochemical Analysis and Antimicrobial Activities of Methanolic Extracts of Leaf, Stem and Root from Different Varieties of Labisa Pumila Benth. Molecules 2011, 16, 4438–4450. [Google Scholar] [CrossRef] [PubMed]
  274. Xu, N.; Du, L.; Chen, Y.; Zhang, J.; Zhu, Q.; Chen, R.; Peng, G.; Wang, Q.; Yu, H.; Rao, L. Lonicera japonica Thunb. as a Promising Antibacterial Agent for Bacillus cereus ATCC14579 Based on Network Pharmacology, Metabolomics, and in Vitro Experiments. RSC Adv. 2023, 13, 15379–15390. [Google Scholar] [CrossRef]
  275. Lim, Y.-H.; Kim, I.-H.; Seo, J.-J. In Vitro Activity of Kaempferol Isolated from the Impatiens Balsamina Alone and in Combination with Erythromycin or Clindamycin against Propionibacterium acnes. J. Microbiol. 2007, 45, 473–477. [Google Scholar]
  276. Rocha, M.F.G.; Sales, J.A.; Da Rocha, M.G.; Galdino, L.M.; De Aguiar, L.; Pereira-Neto, W.D.A.; De Aguiar Cordeiro, R.; Castelo-Branco, D.D.S.C.M.; Sidrim, J.J.C.; Brilhante, R.S.N. Antifungal Effects of the Flavonoids Kaempferol and Quercetin: A Possible Alternative for the Control of Fungal Biofilms. Biofouling 2019, 35, 320–328. [Google Scholar] [CrossRef] [PubMed]
  277. Yordanov, M.; Dimitrova, P.; Patkar, S.; Saso, L.; Ivanovska, N. Inhibition of Candida Albicans Extracellular Enzyme Activity by Selected Natural Substances and Their Application in Candida Infection. Can. J. Microbiol. 2008, 54, 435–440. [Google Scholar] [CrossRef]
  278. Falcão--Silva, V.S.; Silva, D.A.; Souza, M.D.F.V.; Siqueira--Junior, J.P. Modulation of Drug Resistance in Staphylococcus aureus by a Kaempferol Glycoside from Herissantia tiubae (Malvaceae). Phytother. Res. 2009, 23, 1367–1370. [Google Scholar] [CrossRef]
  279. Liu, M.-H.; Otsuka, N.; Noyori, K.; Shiota, S.; Ogawa, W.; Kuroda, T.; Hatano, T.; Tsuchiya, T. Synergistic Effect of Kaempferol Glycosides Purified from Laurus Nobilis and Fluoroquinolones on Methicillin-Resistant Staphylococcus aureus. Biol. Pharm. Bull. 2009, 32, 489–492. [Google Scholar] [CrossRef] [PubMed]
  280. Zhou, H.; Xu, M.; Guo, W.; Yao, Z.; Du, X.; Chen, L.; Sun, Y.; Shi, S.; Cao, J.; Zhou, T. The Antibacterial Activity of Kaempferol Combined with Colistin against Colistin-Resistant Gram-Negative Bacteria. Microbiol. Spectr. 2022, 10, e02265-22. [Google Scholar] [CrossRef]
  281. Gadar, K.; De Dios, R.; Kadeřábková, N.; Prescott, T.A.K.; Mavridou, D.A.I.; McCarthy, R.R. Disrupting Iron Homeostasis Can Potentiate Colistin Activity and Overcome Colistin Resistance Mechanisms in Gram-Negative Bacteria. Commun. Biol. 2023, 6, 937. [Google Scholar] [CrossRef]
  282. He, X.; Zhang, W.; Cao, Q.; Li, Y.; Bao, G.; Lin, T.; Bao, J.; Chang, C.; Yang, C.; Yin, Y.; et al. Global Downregulation of Penicillin Resistance and Biofilm Formation by MRSA Is Associated with the Interaction between Kaempferol Rhamnosides and Quercetin. Microbiol. Spectr. 2022, 10, e02782-22. [Google Scholar] [CrossRef] [PubMed]
  283. Gao, L.; Tang, Z.; Li, T.; Wang, J. Combination of Kaempferol and Azithromycin Attenuates Staphylococcus aureus-Induced Osteomyelitis via Anti-Biofilm Effects and by Inhibiting the Phosphorylation of ERK1/2 and SAPK. Pathog. Dis. 2021, 79, ftab048. [Google Scholar] [CrossRef]
  284. Shao, J.; Zhang, M.; Wang, T.; Li, Y.; Wang, C. The Roles of CDR1, CDR2, and MDR1 in Kaempferol-Induced Suppression with Fluconazole-Resistant Candida albicans. Pharm. Biol. 2016, 54, 984–992. [Google Scholar] [CrossRef]
  285. Cruz, B.G.; Dos Santos, H.S.; Bandeira, P.N.; Rodrigues, T.H.S.; Matos, M.G.C.; Nascimento, M.F.; De Carvalho, G.G.C.; Braz-Filho, R.; Teixeira, A.M.R.; Tintino, S.R.; et al. Evaluation of Antibacterial and Enhancement of Antibiotic Action by the Flavonoid Kaempferol 7-O-β-D-(6″-O-Cumaroyl)-Glucopyranoside Isolated from Croton piauhiensis Müll. Microb. Pathog. 2020, 143, 104144. [Google Scholar] [CrossRef]
  286. Li, P.-C.; Tong, Y.-C.; Xiao, X.-L.; Fan, Y.-P.; Ma, W.-R.; Liu, Y.-Q.; Zhuang, S.; Qing, S.-Z.; Zhang, W.-M. Kaempferol Restores the Susceptibility of ESBLs Escherichia coli to Ceftiofur. Front. Microbiol. 2024, 15, 1474919. [Google Scholar] [CrossRef]
  287. Suman, S.K.; Chandrasekaran, N.; Priya Doss, C.G. Micro-Nanoemulsion and Nanoparticle-Assisted Drug Delivery against Drug-Resistant Tuberculosis: Recent Developments. Clin. Microbiol. Rev. 2023, 36, e0008823. [Google Scholar] [CrossRef]
  288. Ilk, S.; Saglam, N.; Özgen, M. Kaempferol Loaded Lecithin/Chitosan Nanoparticles: Preparation, Characterization, and Their Potential Applications as a Sustainable Antifungal Agent. Artif. Cells Nanomed. Biotechnol. 2017, 45, 907–916. [Google Scholar] [CrossRef] [PubMed]
  289. Hairil Anuar, A.H.; Abd Ghafar, S.A.; Mohamad Hanafiah, R.; Lim, V.; Mohd Pazli, N.F.A. Critical Evaluation of Green Synthesized Silver Nanoparticles-Kaempferol for Antibacterial Activity Against Methicillin-Resistant Staphylococcus aureus. Int. J. Nanomed. 2024, 19, 1339–1350. [Google Scholar] [CrossRef]
  290. Bharathi, D.; Ranjithkumar, R.; Nandagopal, J.G.T.; Djearamane, S.; Lee, J.; Wong, L.S. Green Synthesis of Chitosan/Silver Nanocomposite Using Kaempferol for Triple Negative Breast Cancer Therapy and Antibacterial Activity. Environ. Res. 2023, 238, 117109. [Google Scholar] [CrossRef]
  291. Mohamed Yunus Saleem, N.F.; Soundhararajan, R.; Srinivasan, H. Antimicrobial Potential of Floral Extract-Decorated Nanoparticles against Food-Borne Pathogens. Discov. Nano 2025, 20, 103. [Google Scholar] [CrossRef] [PubMed]
  292. Ilk, S.; Sağlam, N.; Özgen, M.; Korkusuz, F. Chitosan Nanoparticles Enhances the Anti-Quorum Sensing Activity of Kaempferol. Int. J. Biol. Macromol. 2017, 94, 653–662. [Google Scholar] [CrossRef]
  293. Zhang, S.; Ma, S.; Hao, S.; Pan, J.; Li, Y.; Yuan, G.; Li, P.; Hu, H.; Yu, S. Fucoidan-Modified Antibiotic-Free Nanovesicles: A Multidimensional Approach to Eradicate Intracellular and Extracellular Helicobacter pylori and Restore Gastrointestinal Homeostasis. Int. J. Biol. Macromol. 2025, 307, 141786. [Google Scholar] [CrossRef] [PubMed]
  294. Li, X.; Xu, R.; Shi, L.; Ni, T. Design of Flavonol-Loaded Cationic Gold Nanoparticles with Enhanced Antioxidant and Antibacterial Activities and Their Interaction with Proteins. Int. J. Biol. Macromol. 2023, 253, 127074. [Google Scholar] [CrossRef]
  295. Govindaraju, S.; Roshini, A.; Lee, M.-H.; Yun, K. Kaempferol Conjugated Gold Nanoclusters Enabled Efficient for Anticancer Therapeutics to A549 Lung Cancer Cells. Int. J. Nanomed. 2019, 14, 5147–5157. [Google Scholar] [CrossRef] [PubMed]
  296. Farjam, H.; Mohammadi, S.; Larijani, K.; Hosseini, S. Green Synthesis Gold Nanoparticle from Rosa damascena: Antioxidant, Antimicrobial, Cytotoxic Activities on Nerve Cells and Inhibitory Effects on Parkinson’s Disease. Artif. Cells Nanomed. Biotechnol. 2025, 53, 543–556. [Google Scholar] [CrossRef]
  297. Rofeal, M.; El-Malek, F.A.; Qi, X. In Vitro Assessment of Green Polyhydroxybutyrate/Chitosan Blend Loaded with Kaempferol Nanocrystals as a Potential Dressing for Infected Wounds. Nanotechnology 2021, 32, 375102. [Google Scholar] [CrossRef]
  298. Nandhini, P.; Gupta, P.K.; Mahapatra, A.K.; Das, A.P.; Agarwal, S.M.; Mickymaray, S.; Alothaim, A.S.; Rajan, M. In-Silico Molecular Screening of Natural Compounds as a Potential Therapeutic Inhibitor for Methicillin-Resistant Staphylococcus aureus Inhibition. Chem. Biol. Interact. 2023, 374, 110383. [Google Scholar] [CrossRef]
  299. Liu, G.-S.; Chen, H.-A.; Chang, C.-Y.; Chen, Y.-J.; Wu, Y.-Y.; Widhibrata, A.; Yang, Y.-H.; Hsieh, E.-H.; Delila, L.; Lin, I.-C.; et al. Platelet-Derived Extracellular Vesicle Drug Delivery System Loaded with Kaempferol for Treating Corneal Neovascularization. Biomaterials 2025, 319, 123205. [Google Scholar] [CrossRef]
Figure 1. Chemical structure of kaempferol.
Figure 1. Chemical structure of kaempferol.
Antibiotics 14 01254 g001
Table 1. Species containing kaempferol.
Table 1. Species containing kaempferol.
SpeciesReferences
Maytenus ilicifolia Mart[13]
Nigella sativa[14,15]
Sorbus[16]
Sea buckthorn pomace[17]
Opuntia dillenii[18]
Polygonum viviparum L.[19]
Easter lily[20]
Ophioglossum petiolatum[21]
Dennstaedtia scabra[22]
Heterotheca inuloides[23]
Chromolaena moritziana[24]
Ixeridium gracile[25]
Lactuca scariola[26]
Solidago virga-aurea[27]
Helichrysum compactum[28]
Chionanthus retusus[29]
Buddleja indica Lam.[30]
Origanum dictamnus L.[31]
Rosmarinus officinalis[32]
Bupleurum flavum[33]
Echites hirsuta[34]
Cuscuta chinensis[35]
Cuscuta australis[36]
Morinda citrifolia[37]
Morinda morindoides[38]
Vahlia capensis[39]
Solanum nigrum[40]
Combretum erythrophyllum[41]
Cuphea pinetorum[42]
Eucalyptus globulus[43]
Psidium guajava[44]
Syzygium aromaticum[45]
Punica granatum[46]
Pistacia vera[47]
Koelreuteria henryi[48]
Koelreuteria paniculata[49]
Simarouba versicolor[50]
Alternanthera tenella[51]
Oncoba spinosa[52]
Polygonum tinctorium[53]
Thesium chinense[54]
Diospyros lotus.[55]
Pritzelago alpina[56]
Warburgia ugandensis[57]
Warburgia stuhlmannii[58]
Ardisia colorata[59]
Hypericum brasiliense[60]
Vismia laurentii[61,62]
Asparagus[42,63]
Broccoli[64,65,66,67,68,69,70]
Chinese cabbage (Brassica rapa)[67,69,71,72,73]
Cabbage (Brassica oleracea)[65,69,71,74]
Kale (Brassica oleracea)[65,66,69,75,76,77,78]
Leeks (Allium ampeloprasum)[65,66,68,69,75,79]
Lettuce (Lactuca sativa var. logifolia)[73]
Lettuce (Lactuca sativa var. crispa)[68,71,72,73,74,75,80]
Lettuce (Lactuca sativa var. capitata)[65,67,69,75]
Onions (Allium cepa or Allium fistulosum)[65,66,67,68,69,72,76,77,79,80,81,82,83,84]
Mizuna (Japanese mustard)[85]
Spinach (Spinacia oleracea)[65,67,68,69,71,74,86]
Tree spinach (Cnidoscolus aconitifolius)[87]
Water spinach[71,72]
Chives (Alliumschoenoprasum)[75,88,89]
Dill weed (Anethum graveolens)[69,88]
Foeniculi Fructus, leaves [89]
Europatorium perfoliatum[90]
Pluchea indica[91]
Sambucus nigra[92]
Bunium persicum[93]
Empetrum nigrum L.[94]
Echites hirsuta[34]
Planchonia grandis[95]
Nepenthes gracilis[96]
Rhus verniciflua[97]
Eucalyptus spp.[43]
Tilia tomentosa[98]
Elateriospermum tapos[99]
Euphorbia aleppica[100]
Phyllanthus acidus[101]
Sauropus androgynus[102]
Sebastiania brasiliensis[103]
Populus davidiana[104]
Rhamnus nakaharai[104]
Prunus davidiana[105]
Rosa spp.[106]
Rosa hybrids[107]
Zelkova oregoniana[108]
Euonymus alatus[109]
Theobroma grandiflorum[110]
Cassia siamea[111]
Indigofera suffruticosa[112]
Indigofera truxillensis[112]
Taxus baccata[113]
Annona cherimola Miller[114]
Allium cepa[115]
aloe vera (Aloe barbadensis)[116]
Lilium longiflorum[20]
Smilax bockii[117]
Dysosma versipellis[118]
Consolida oliveriana[119]
Orostachys japonicus[120]
Rhodiola sachalinensis[121]
Kalanchoe fedtschenkoi[122]
Parthenocissus tricuspidata[123]
Cayratia trifolia Linn[124]
Gynostemma cardiospermum[125]
Tylosema esculentum[126]
Bauhinia vahlii[127]
Acacia nilotica[128]
Amburana cearensis[129]
Cassia angustifolia[130]
Oxytropis falcate[131]
Tadehagi triquetrum[132]
Trifolium alexandrinum[133]
Althaea rosea[134]
Helianthemum glomeratum[135]
Geranium carolinianum[136]
Geranium ibericum subs. jubatum[137]
Pelargonium quercifolium[138]
Brassica rapa[139]
Bunias orientalis[140]
Diplotaxis erucoides[140]
Diplotaxis tenuifolia[140]
Broad bean pod, raw[141]
Common bean [white], whole, raw[142]
Almond[143]
Cumin[144]
Cloves[144]
Caraway[144]
Capers[145]
Lingonberry[146]
Blueberry[147]
Cherry[147]
Cranberry[147]
Apricots (Prunus armeniaca)[65,68,148,149,150]
Bananas, raw (Musa acuminata Colla)[68,72,151]
Bilberry, raw[151,152,153,154,155]
Blueberries (Vaccinium spp.)[67,155]
Cashew apple[156]
Cherries (Prunus avium)[65,68,72,151,153,157]
Chokeberry[153,158]
Cranberries (Vaccinium macrocarpon)[149,159,160]
Cranberry sauce[67]
Currants[65,66,151,153,158,161,162]
Elderberries (Sambucuss)[163]
Goji berry[164]
Gooseberries (Ribes spp.)[151,158]
Grapefruit (Citrus paradisi)[66]
Grapes (Vitis vinifera)[65,68,151,165]
Juice, sour cherry[157]
Juice, cranberry cocktail, bottled[25,67,166]
Juice, grape,[67,167]
Lemons (Citrus limon)[68,151]
Lingonberries[66,146,158]
Mangos (Mangifera indica)[67,72]
Melons (Cucumis melo)[68,84,151]
Nectarines (Prunus persica var. nucipersica) tina[68]
Oranges (Citrus sinensis)[67,68,74,151,156]
Papayas (Carica papaya[67,72]
Pitanga (Eugenia uniflora)[156]
Plum (Prunus domestica)[67,68,69,168]
Prickly pears (Opuntia spp.)[169]
Raisins (Vitis vinifera)[67,165]
Red raspberry[170]
Strawberries (Fragaria Xananassa)[65,66,67,68,74,151,153,156,158,171,172]
Watermelon (Citrullus lanatus)[72,74,151]
Arugula (Eruca sativa)[77,85]
Beans (Phaseolus vulgaris)[65,67,68,74,82]
Brussels sprouts (Brassica oleracea)[59,61,64]
Carrots (Daucus carota)[65,68,69,72,74]
Cauliflower[64]
Celery (Apium graveolens)[68]
Chicory (Cichorium intybus)[65,80]
Collards (Brassica oleracea var. viridis)[73,76]
Corn poppy[89]
Cress (Lepidium sativum)[88]
Cucumber (Cucumis sativus)[65,68,69,71,72,74]
Doc (Rumex spp.)[89]
Eggplant[67,72]
Endive (Cichorium endivia)[65,79]
Garlic (Allium sativum)[68]
Ginger (Zingiber zerumbet)[72]
Hartwort, leaves[89]
Horseradish[69,72,75]
Lettuce (Lactuca sativa var. capitata)[75]
Nelumbo nucifera[74]
Lovage, leaves[88]
Mung beans (Vigna radiata)[74]
Mustard greens (Brassica juncea)[72,76]
Nalta jute[74]
Pako fern (Athyrium esculentum)[72]
Parsley (Petroselinum crispum)[66,69,74,77,88]
Peas[67,82]
Peppers (Capsicum annuum)[65,68,69,74,80]
Potato (Solanum tuberosum)[71,74]
Sweet potato (Ipomoea batatas)[67,71,72,76]
Purslane (Portulaca oleracea)[65,76]
Queen Anne’s Lace, leaves[89]
Radishes (Raphanus sativus)[74]
Diplotaxis tenuifolia[85]
Rutabagas (Brassica napus var. napobrassica)[65,69,76]
Sauerkraut[65]
Turnip greens (Brassica rapa)[65]
Watercress (Nasturtium officinale)[67,85,88]
Watercress, steamed[72]
Chia seeds[160]
Nuts, almonds (Prunus dulcis)[143]
Soybeans, green (Glycine max)[74]
Yardlong bean[67]
Beans (Phaseolus vulgaris, cv. Zolfino)
(Phoaseolus vulgaris, cv. Zolfino)
[72,142]
Broad beans (fava beans)[65]
Carob (Ceratonia siliqua)[173]
Cowpeas (Vigna unguiculata Subsp. Sinensis)[174]
Locust bean powder[173]
Greek greens pie[89]
Honey, mixed varieties[175,176,177]
Jams and preserves, apricot[149,178]
Jams and preserves, grape[67]
Jams and preserves, guava[67]
Jams and preserves, peach[178]
Jams and preserves, raspberry[179]
Jams and preserves, strawberry[178,180]
Alcoholic beverages[94,167,181,182,183,184]
Black tea[66,70,84,167,185]
White wine[181,183]
Blackcurrant wine [67,85,88]
Red wine[181,182,183,184,186,187,188]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Wei, X.; Wang, W.; Hu, R.; Gao, X.; Li, B.; Bai, Y.; Zhang, J. Advances in Kaempferol: Extraction, Biosynthesis, and Application with Antibacterial Agents. Antibiotics 2025, 14, 1254. https://doi.org/10.3390/antibiotics14121254

AMA Style

Wei X, Wang W, Hu R, Gao X, Li B, Bai Y, Zhang J. Advances in Kaempferol: Extraction, Biosynthesis, and Application with Antibacterial Agents. Antibiotics. 2025; 14(12):1254. https://doi.org/10.3390/antibiotics14121254

Chicago/Turabian Style

Wei, Xiaojuan, Weiwei Wang, Rongbin Hu, Xun Gao, Bing Li, Yubin Bai, and Jiyu Zhang. 2025. "Advances in Kaempferol: Extraction, Biosynthesis, and Application with Antibacterial Agents" Antibiotics 14, no. 12: 1254. https://doi.org/10.3390/antibiotics14121254

APA Style

Wei, X., Wang, W., Hu, R., Gao, X., Li, B., Bai, Y., & Zhang, J. (2025). Advances in Kaempferol: Extraction, Biosynthesis, and Application with Antibacterial Agents. Antibiotics, 14(12), 1254. https://doi.org/10.3390/antibiotics14121254

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop