Characterization and Antimicrobial Resistance of Bacteria Causing Subclinical Mastitis in Dairy Cows in the Upper Cheliff Region, Northern Algeria
Abstract
1. Introduction
2. Results
2.1. Prevalence of Subclinical Mastitis at Cows and Quarters
2.2. Prevalence of Bacterial Species Found in Subclinical Mastitis
2.3. Antimicrobial Susceptibility
2.4. Risk Factors Associated with Subclinical Mastitis
2.5. Effect of Subclinical Mastitis on Dairy Production and Reproductive Performances
3. Discussion
4. Materials and Methods
4.1. Description of the Study Area
4.2. Study Design
4.3. Mastitis Screening with California Mastitis Test
4.4. Collection of Milk Samples
4.5. Bacterial Isolation
4.6. MALDI-TOF MS Identification
4.7. Antimicrobial Susceptibly Testing
4.8. Data Processing and Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| AMR | Antimicrobial resistance |
| AST | Antimicrobial susceptibility testing |
| ATCC | American Type Culture Collection |
| BTS | Bacterial Test Standard |
| °C | Degree Celsius |
| CCI | Calving-to-Conception Interval |
| CFSI | Calving-to-First-Service Interval |
| CIP | Cleaning-In-Place |
| CLSI | Clinical & Laboratory Standards Institute |
| CMT | California Mastitis Test |
| CoNS | Coagulase-negative staphylococci |
| DT | Direct transfer |
| E | East |
| eDT | Extended direct transfer |
| EUCAST | European Committee on Antimicrobial Susceptibility Testing |
| FL | Front Left |
| FR | Front Right |
| HCCA | α-cyano-4-hydroxycinnamic acid matrix |
| HPLC | High-performance liquid chromatography |
| IL | Interleukin |
| L | Liter |
| MALDI-TOF MS | Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry |
| mecA/mecC | Methicillin Resistance Genes |
| ml | Milliliter |
| MR-CoNS | Methicillin-Resistant Coagulase-negative staphylococci. |
| MRSA | Methicillin-Resistant Staphylococcus aureus |
| MSSA | Methicillin-Sensitive Staphylococcus aureus |
| N | North |
| NSPC | Number of Services per Conception |
| OR | Odds ratio |
| p | Probability |
| PE | Protein extraction |
| PRFS | Pregnancy rate at first service |
| RL | Rear Left |
| RR | Rear Right |
| SCC | Somatic Cell Count |
| SCM | Subclinical Mastitis |
| TNF-α | Tumor necrosis factor-alpha |
| χ2 | Pearson’s Chi-squared test |
References
- Rahularaj, R.; Deshapriya, R.M.C.; Ranasinghe, R.M.S.B. Influence of bovine sub-clinical mastitis and associated risk factors on calving interval in a population of crossbred lactating cows in Sri Lanka. Trop. Anim. Health Prod. 2019, 51, 2413–2419. [Google Scholar] [CrossRef]
- Ruegg, P.L. A 100-Year Review: Mastitis detection, management, and prevention. J. Dairy Sci. 2017, 100, 10381–10397. [Google Scholar] [CrossRef]
- Fonseca, M.; Kurban, D.; Roy, J.P.; Santschi, D.E.; Molgat, E.; Yang, D.A.; Dufour, S. Usefulness of differential somatic cell count for udder health monitoring: Identifying referential values for differential somatic cell count in healthy quarters and quarters with subclinical mastitis. J. Dairy Sci. 2024, 108, 3917–3928. [Google Scholar] [CrossRef]
- Ranasinghe, R.; Deshapriya, R.; Abeygunawardana, D.; Rahularaj, R.; Dematawewa, C. Subclinical mastitis in dairy cows in major milk-producing areas of Sri Lanka: Prevalence, associated risk factors, and effects on reproduction. J. Dairy Sci. 2021, 104, 12900–12911. [Google Scholar] [CrossRef]
- Santman-Berends, I.M.; Lam, T.J.; Keurentjes, J.; van Schaik, G. An estimation of the clinical mastitis incidence per 100 cows per year based on routinely collected herd data. J. Dairy Sci. 2015, 98, 6965–6977. [Google Scholar] [CrossRef]
- Taponen, S.; Liski, E.; Heikkilä, A.M.; Pyörälä, S. Factors associated with intramammary infection in dairy cows caused by coagulase-negative staphylococci, Staphylococcus aureus, Streptococcus uberis, Streptococcus dysgalactiae, Corynebacterium bovis, or Escherichia coli. J. Dairy Sci. 2017, 100, 493–503. [Google Scholar] [CrossRef]
- van den Borne, B.H.; van Schaik, G.; Lam, T.J.; Nielen, M. Variation in herd level mastitis indicators between primi- and multiparae in Dutch dairy herds. Prev. Vet. Med. 2010, 96, 49–55. [Google Scholar] [CrossRef]
- Cardozo, L.L.; Thaler Neto, A.; Souza, G.N.; Picinin, L.C.; Felipus, N.C.; Reche, N.L.; Schmidt, F.A.; Werncke, D.; Simon, E.E. Risk factors for the occurrence of new and chronic cases of subclinical mastitis in dairy herds in southern Brazil. J. Dairy Sci. 2015, 98, 7675–7685. [Google Scholar] [CrossRef] [PubMed]
- Piepers, S.; Peeters, K.; Opsomer, G.; Barkema, H.W.; Frankena, K.; De Vliegher, S. Pathogen group specific risk factors at herd, heifer and quarter levels for intramammary infections in early lactating dairy heifers. Prev. Vet. Med. 2011, 99, 91–101. [Google Scholar] [CrossRef] [PubMed]
- Dufour, S.; Fréchette, A.; Barkema, H.W.; Mussell, A.; Scholl, D.T. Invited review: Effect of udder health management practices on herd somatic cell count. J. Dairy Sci. 2011, 94, 563–579. [Google Scholar] [CrossRef] [PubMed]
- Halasa, T.; Huijps, K.; Osteras, O.; Hogeveen, H. Economic effects of bovine mastitis and mastitis management: A review. Vet. Q. 2007, 29, 18–31. [Google Scholar] [CrossRef] [PubMed]
- Cheng, W.N.; Han, S.G. Bovine mastitis: Risk factors, therapeutic strategies, and alternative treatments—A review. Asian Australas. J. Anim. Sci. 2020, 33, 1699–1713. [Google Scholar] [CrossRef]
- Silva, A.C.; Laven, R.; Benites, N.R. Risk Factors Associated With Mastitis in Smallholder Dairy Farms in Southeast Brazil. Animals 2021, 11, 2089. [Google Scholar] [CrossRef]
- Romero, J.; Benavides, E.; Meza, C. Assessing Financial Impacts of Subclinical Mastitis on Colombian Dairy Farms. Front. Vet. Sci. 2018, 5, 00273. [Google Scholar] [CrossRef]
- Heikkilä, A.M.; Nousiainen, J.I.; Pyörälä, S. Costs of clinical mastitis with special reference to premature culling. J. Dairy Sci. 2012, 95, 139–150. [Google Scholar] [CrossRef] [PubMed]
- Oltenacu, P.A.; Broom, D.M. The impact of genetic selection for increased milk yield on the welfare of dairy cows. Anim. Welf. 2010, 19, 39–49. [Google Scholar] [CrossRef]
- Rollin, E.; Dhuyvetter, K.C.; Overton, M.W. The cost of clinical mastitis in the first 30 days of lactation: An economic modeling tool. Prev. Vet. Med. 2015, 122, 257–264. [Google Scholar] [CrossRef] [PubMed]
- Dolecheck, K.A.; García-Guerra, A.; Moraes, L.E. Quantifying the effects of mastitis on the reproductive performance of dairy cows: A meta-analysis. J. Dairy Sci. 2019, 102, 8454–8477. [Google Scholar] [CrossRef]
- Huszenicza, G.; Jánosi, S.; Kulcsár, M.; Kóródi, P.; Reiczigel, J.; Kátai, L.; Peters, A.R.; De Rensis, F. Effects of clinical mastitis on ovarian function in post-partum dairy cows. Reprod. Domest. Anim. 2005, 40, 199–204. [Google Scholar] [CrossRef]
- Ibrahim, N.; Regassa, F.; Yilma, T.; Tolosa, T. Impact of subclinical mastitis on uterine health, reproductive performances and hormonal profile of Zebu × Friesian crossbred dairy cows in and around Jimma town dairy farms, Ethiopia. Heliyon 2023, 9, e16793. [Google Scholar] [CrossRef]
- Oliver, S.P.; Murinda, S.E. Antimicrobial resistance of mastitis pathogens. Vet. Clin. Food Anim. Pract. 2012, 28, 165–185. [Google Scholar] [CrossRef]
- Naranjo-Lucena, A.; Slowey, R. Invited review: Antimicrobial resistance in bovine mastitis pathogens: A review of genetic determinants and prevalence of resistance in European countries. J. Dairy Sci. 2023, 106, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Khasapane, N.G.; de Smidt, O.; Lekota, K.E.; Nkhebenyane, J.; Thekisoe, O.; Ramatla, T. Antimicrobial Resistance and Virulence Determinants of Escherichia coli Isolates from Raw Milk of Dairy Cows with Subclinical Mastitis. Animals 2025, 15, 1980. [Google Scholar] [CrossRef] [PubMed]
- Akova, M. Epidemiology of antimicrobial resistance in bloodstream infections. Virulence 2016, 7, 252–266. [Google Scholar] [CrossRef] [PubMed]
- Becker, K.; Ballhausen, B.; Kahl, B.C.; Köck, R. The clinical impact of livestock-associated methicillin-resistant Staphylococcus aureus of the clonal complex 398 for humans. Vet. Microbiol. 2017, 200, 33–38. [Google Scholar] [CrossRef]
- Fastl, C.; De Carvalho Ferreira, H.C.; Babo Martins, S.; Sucena Afonso, J.; di Bari, C.; Venkateswaran, N.; Pires, S.M.; Mughini-Gras, L.; Huntington, B.; Rushton, J.; et al. Animal sources of antimicrobial-resistant bacterial infections in humans: A systematic review. Epidemiol. Infect. 2023, 151, e143. [Google Scholar] [CrossRef]
- Köck, R.; Daniels-Haardt, I.; Becker, K.; Mellmann, A.; Friedrich, A.W.; Mevius, D.; Schwarz, S.; Jurke, A. Carbapenem-resistant Enterobacteriaceae in wildlife, food-producing, and companion animals: A systematic review. Clin. Microbiol. Infect. 2018, 24, 1241–1250. [Google Scholar] [CrossRef]
- Frieri, M.; Kumar, K.; Boutin, A. Antibiotic resistance. J. Infect. Public Health 2017, 10, 369–378. [Google Scholar] [CrossRef]
- MADR. Statistiques Agricoles «Superficies et Productions»; Ministère de l’Agriculture et du Développement Rural: Algiers, Algeria, 2018.
- Belhadia, M.; Yakhlef, H.; Bourbouze, A.; Djermoun, A. Production et mise sur le marché du lait en Algérie, entre formel et informel: Stratégies des éleveurs du périmètre irrigué du Haut-Cheliff. New Medit 2014, 13, 41–50. [Google Scholar]
- Djermoun, A. Effet de L’adhésion de l’Algérie à l’OMC et à la Zone de Libre-Echange Union Européenne/Pays Tiers Méditerranéens. Ph.D. Thesis, Ecole Nationale Supérieure, Algiers, Algeria, 2011. [Google Scholar]
- Belhadia, M.; Saadoud, M.; Yakhlef, H.; Bourbouze, A. La production laitière bovine en Algérie: Capacité de production et typologie des exploitations des plaines du Moyen Cheliff. Rev. Nat. Et Technol. 2009, 1, 54–62. [Google Scholar]
- Boukhechem, S.; Moula, N.; Lakhdara, N.; Kaidi, R. Feeding practices of dairy cows in Algeria: Characterization, typology, and impact on milk production and fertility. J. Adv. Vet. Anim. Res. 2019, 6, 567–574. [Google Scholar] [CrossRef]
- Ferag, A.; Gherissi, D.E.; Khenenou, T.; Boughanem, A.; Moussa, H.H.; Kechroud, A.A.; Fares, M.A. Heat stress effect on fertility of two imported dairy cattle breeds from different Algerian agro-ecological areas. Int. J. Biometeorol. 2024, 68, 2515–2529. [Google Scholar] [CrossRef] [PubMed]
- Kechroud, A.A.; Merdaci, L.; Aoun, L.; Gherissi, D.E.; Saidj, D. Welfare evaluation of dairy cows reared in the East of Algeria. Trop. Anim. Health Prod. 2024, 56, 32. [Google Scholar] [CrossRef] [PubMed]
- Bouamra, M.; Mohammed, Z.; Akkou, M.; Bentayeb, L.; Titouche, Y. Effect of Subclinical Mastitis Detected in the First Month of Lactation on the Reproductive Performance of Dairy Cows in Western Algeria. Asian J. Dairy Food Res. 2024, 43, 650–656. [Google Scholar] [CrossRef]
- Meskini, Z.; Rechidi-Sidhoum, N.; Zouaoui, K.; Bounaama, K.; Homrani, A. Infectious aetiologies of subclinical bovine mastitis and antimicrobial susceptibility on northwest of Algeria. Veterinaria 2021, 70, 311–323. [Google Scholar] [CrossRef]
- Zaatout, N.; Ayachi, A.; Kecha, M. Epidemiological investigation of subclinical bovine mastitis in Algeria and molecular characterization of biofilm-forming Staphylococcus aureus. Trop. Anim. Health Prod. 2020, 52, 283–292. [Google Scholar] [CrossRef]
- Oliver, S.P.; Jayarao, B.M.; Almeida, R.A. Foodborne pathogens in milk and the dairy farm environment: Food safety and public health implications. Foodborne Pathog. Dis. 2005, 2, 115–129. [Google Scholar] [CrossRef] [PubMed]
- Maalaoui, A.; Majdoub, H.; Trimeche, A.; Souissi, N.; Saidani, F.; Marnet, P.G. Prevalence of bovine mastitis and main risk factors in Tunisia. Trop. Anim. Health Prod. 2021, 53, 469. [Google Scholar] [CrossRef]
- Ndahetuye, J.B.; Twambazimana, J.; Nyman, A.K.; Karege, C.; Tukei, M.; Ongol, M.P.; Persson, Y.; Båge, R. A cross sectional study of prevalence and risk factors associated with subclinical mastitis and intramammary infections, in dairy herds linked to milk collection centers in Rwanda. Prev. Vet. Med. 2020, 179, 28. [Google Scholar] [CrossRef]
- Zaatout, N.; Ayachi, A.; Kecha, M.; Kadlec, K. Identification of staphylococci causing mastitis in dairy cattle from Algeria and characterization of Staphylococcus aureus. J. Appl. Microbiol. 2019, 127, 1305–1314. [Google Scholar] [CrossRef]
- Akkou, M.; Titouche, Y.; Bentayeb, L.; Bes, M.; Laurent, F.; Ramdani-Bouguessa, N. Risk factors for dairy cows mastitis in Algeria, antibiotic resistance and molecular typing of the causative Staphylococcus aureus. Vet. Res. Commun. 2024, 48, 3007–3018. [Google Scholar] [CrossRef]
- Abed, A.H.; Menshawy, A.M.S.; Zeinhom, M.M.A.; Hossain, D.; Khalifa, E.; Wareth, G.; Awad, M.F. Subclinical Mastitis in Selected Bovine Dairy Herds in North Upper Egypt: Assessment of Prevalence, Causative Bacterial Pathogens, Antimicrobial Resistance and Virulence-Associated Genes. Microorganisms 2021, 9, 1175. [Google Scholar] [CrossRef]
- Saidi, R.; Khelef, D.; Kaidi, R. Subclinical mastitis in cattle in Algeria: Frequency of occurrence and bacteriological isolates. J. South Afr. Vet. Assoc. 2013, 84, 929. [Google Scholar] [CrossRef] [PubMed]
- Addis, M.F.; Locatelli, C.; Penati, M.; Poli, S.F.; Monistero, V.; Zingale, L.; Rota, N.; Gusmara, C.; Piccinini, R.; Moroni, P.; et al. Non-aureus staphylococci and mammaliicocci isolated from bovine milk in Italian dairy farms: A retrospective investigation. Vet. Res. Commun. 2024, 48, 547–554. [Google Scholar] [CrossRef] [PubMed]
- Kaczorowski, Ł.; Powierska-Czarny, J.; Wolko, Ł.; Piotrowska-Cyplik, A.; Cyplik, P.; Czarny, J. The Influence of Bacteria Causing Subclinical Mastitis on the Structure of the Cow’s Milk Microbiome. Molecules 2022, 27, 1829. [Google Scholar] [CrossRef]
- Monistero, V.; Graber, H.U.; Pollera, C.; Cremonesi, P.; Castiglioni, B.; Bottini, E.; Ceballos-Marquez, A.; Lasso-Rojas, L.; Kroemker, V.; Wente, N.; et al. Staphylococcus aureus Isolates from Bovine Mastitis in Eight Countries: Genotypes, Detection of Genes Encoding Different Toxins and Other Virulence Genes. Toxins 2018, 10, 247. [Google Scholar] [CrossRef]
- Khasapane, N.G.; Byaruhanga, C.; Thekisoe, O.; Nkhebenyane, S.J.; Khumalo, Z.T.H. Prevalence of subclinical mastitis, its associated bacterial isolates and risk factors among cattle in Africa: A systematic review and meta-analysis. BMC Vet. Res. 2023, 19, 123. [Google Scholar] [CrossRef]
- Sharma, N.; Singh, N.K.; Bhadwal, M.S. Relationship of Somatic Cell Count and Mastitis: An Overview. Asian-Australas. J. Anim. Sci. 2011, 24, 429–438. [Google Scholar] [CrossRef]
- Condas, L.A.Z.; De Buck, J.; Nobrega, D.B.; Carson, D.A.; Roy, J.P.; Keefe, G.P.; DeVries, T.J.; Middleton, J.R.; Dufour, S.; Barkema, H.W. Distribution of non-aureus staphylococci species in udder quarters with low and high somatic cell count, and clinical mastitis. J. Dairy Sci. 2017, 100, 5613–5627. [Google Scholar] [CrossRef]
- De Buck, J.; Ha, V.; Naushad, S.; Nobrega, D.B.; Luby, C.; Middleton, J.R.; De Vliegher, S.; Barkema, H.W. Non-aureus Staphylococci and Bovine Udder Health: Current Understanding and Knowledge Gaps. Front. Vet. Sci. 2021, 8, 658031. [Google Scholar] [CrossRef] [PubMed]
- Bechtold, V.; Petzl, W.; Huber-Schlenstedt, R.; Sorge, U.S. Distribution of Bovine Mastitis Pathogens in Quarter Milk Samples from Bavaria, Southern Germany, between 2014 and 2023—A Retrospective Study. Animals 2024, 14, 2504. [Google Scholar] [CrossRef]
- Dingwell, R.T.; Leslie, K.E.; Schukken, Y.H.; Sargeant, J.M.; Timms, L.L. Evaluation of the California mastitis test to detect an intramammary infection with a major pathogen in early lactation dairy cows. Can. Vet. J. 2003, 44, 413–415. [Google Scholar]
- George, L.W.; Divers, T.J.; Ducharme, N.; Welcome, F.L. Chapter 8—Diseases of the Teats and Udder. In Rebhun’s Diseases of Dairy Cattle, 2nd ed.; Divers, T.J., Peek, S.F., Eds.; W.B. Saunders: Saint Louis, MO, USA, 2008; pp. 327–394. [Google Scholar]
- Bouzidi, S.; Bourabah, A.; Cheriet, S.; Abbassi, M.S.; Meliani, S.; Bouzidi, H. Occurrence of virulence genes and methicillin-resistance in Staphylococcus aureus isolates causing subclinical bovine mastitis in Tiaret area, Algeria. Lett. Appl. Microbiol. 2023, 76, ovad003. [Google Scholar] [CrossRef]
- Tahar, S.; Nabil, M.M.; Safia, T.; Ngaiganam, E.P.; Omar, A.; Hafidha, C.; Hanane, Z.; Rolain, J.-M.; Diene, S.M. Molecular characterization of multidrug-resistant Escherichia coli isolated from milk of dairy cows with clinical mastitis in Algeria. J. Food Prot. 2020, 83, 2173–2178. [Google Scholar] [CrossRef] [PubMed]
- Djermoun, A.; Chehat, F.; Bencharif, A. Stratégies des éleveurs laitiers du Cheliff (Algérie). New Medit. 2017, 16, 19–27. [Google Scholar]
- Belkheir, B.; Ghozlane, F.; Benidir, M.; Bousbia, A.; Benahmed, N.; Agguini, S. Dairy production, breeding practices and characteristics of milk in dairy cattle farms in the mountains of Kabylie, Algeria. Livest. Res. Rural Dev. 2015, 27, 8. [Google Scholar]
- Alhaji, N.B.; Aliyu, M.B.; Ghali-Mohammed, I.; Odetokun, I.A. Survey on antimicrobial usage in local dairy cows in North-central Nigeria: Drivers for misuse and public health threats. PLoS ONE 2019, 14, e0224949. [Google Scholar] [CrossRef]
- Hamlaoui, M.W.; Hadef, A.; Meklati, F.R.; Bital, I. Dry cow antimicrobials use to control mastitis in Northern Algeria. Spermova 2021, 11, 144–158. [Google Scholar] [CrossRef]
- Ndahetuye, J.B.; Persson, Y.; Nyman, A.K.; Tukei, M.; Ongol, M.P.; Båge, R. Aetiology and prevalence of subclinical mastitis in dairy herds in peri-urban areas of Kigali in Rwanda. Trop. Anim. Health Prod. 2019, 51, 2037–2044. [Google Scholar] [CrossRef] [PubMed]
- Rainard, P.; Riollet, C. Innate immunity of the bovine mammary gland. Vet. Res. 2006, 37, 369–400. [Google Scholar] [CrossRef] [PubMed]
- Guarín, J.F.; Ruegg, P.L. Short communication: Pre- and postmilking anatomical characteristics of teats and their associations with risk of clinical mastitis in dairy cows. J. Dairy Sci. 2016, 99, 8323–8329. [Google Scholar] [CrossRef]
- Abrahmsén, M.; Persson, Y.; Kanyima, B.M.; Båge, R. Prevalence of subclinical mastitis in dairy farms in urban and peri-urban areas of Kampala, Uganda. Trop. Anim. Health Prod. 2014, 46, 99–105. [Google Scholar] [CrossRef] [PubMed]
- Bouchoucha, B.; Bouaziz, O.; Zeghelit, N.; Aimer, R.; Hireche, S.; Boussenna, S. Sensitivity of various methods (CMT, CE and Indicator Paper) of subclinical cattle’s mastitis diagnostic in some dairy cows breeding in east of Algeria. Int. J. Adv. Sci. Res. 2018, 4, 6. [Google Scholar] [CrossRef]
- Busato, A.; Trachsel, P.; Schällibaum, M.; Blum, J.W. Udder health and risk factors for subclinical mastitis in organic dairy farms in Switzerland. Prev. Vet. Med. 2000, 44, 205–220. [Google Scholar] [CrossRef]
- Hamlaoui, M.W.; Kayoueche, F.Z.; Benmakhlouf, A.; Badache, A.; Haouar, L. Influence de quelques paramètres intrinsèques liés à l’animal sur la fréquence des mammites subcliniques des vaches laitières. Rev. Mar. Sci. Agron. Vét 2019, 7, 433–436. [Google Scholar]
- Detilleux, J.; Kastelic, J.P.; Barkema, H.W. Mediation analysis to estimate direct and indirect milk losses due to clinical mastitis in dairy cattle. Prev. Vet. Med. 2015, 118, 449–456. [Google Scholar] [CrossRef] [PubMed]
- Hertl, J.A.; Schukken, Y.H.; Welcome, F.L.; Tauer, L.W.; Gröhn, Y.T. Pathogen-specific effects on milk yield in repeated clinical mastitis episodes in Holstein dairy cows. J. Dairy Sci. 2014, 97, 1465–1480. [Google Scholar] [CrossRef] [PubMed]
- Srinivasan, P.; Jagadeswaran, D.; Manoharan, R.; Giri, T.; Balasubramaniam, G.A.; Balachandran, P. Prevalence and etiology of subclinical mastitis among buffaloes (Bubalus bubalus) in Namakkal, India. Pak. J. Biol. Sci. 2013, 16, 1776–1780. [Google Scholar] [CrossRef]
- Tanwar, R.S.; Sarsar, V.; Soni, N.; Ahuja, A. Prevalence and severity of sub-clinical mastitis in lactating cows: Detection by surf field mastitis test. Int. J. Adv. Res. 2018, 6, 976–985. [Google Scholar] [CrossRef]
- Lancelot, R.; Faye, B.; Lescourret, F. Factors affecting the distribution of clinical mastitis among udder quarters in French dairy cows. Vet. Res. 1997, 28, 45–53. [Google Scholar]
- Stanek, P.; Żółkiewski, P.; Januś, E. A Review on Mastitis in Dairy Cows Research: Current Status and Future Perspectives. Agriculture 2024, 14, 1292. [Google Scholar] [CrossRef]
- Schreiner, D.A.; Ruegg, P.L. Relationship between udder and leg hygiene scores and subclinical mastitis. J. Dairy Sci. 2003, 86, 3460–3465. [Google Scholar] [CrossRef]
- Fadlelmoula, A.A.; Fahr, R.D.; Anacker, G.; Swalve, H.H. The management practices associated with prevalence and risk factors of mastitis in large scale dairy farms in Thuringia, Germany (ii-Management and Hygienic). Aust. J. Basic. Appl. Sci. 2007, 1, 619–624. [Google Scholar]
- Shittu, A.; Abdullahi, J.; Jibril, A.; Mohammed, A.A.; Fasina, F.O. Sub-clinical mastitis and associated risk factors on lactating cows in the Savannah Region of Nigeria. BMC Vet. Res. 2012, 8, 1746–6148. [Google Scholar] [CrossRef]
- Mir, A.Q.; Bansal, B.K.; Gupta, D.K. Short term changes in teats following machine milking with respect to quarter health status in cows. J. Anim. Res. 2015, 5, 467–471. [Google Scholar] [CrossRef]
- Gómez-Cifuentes, C.I.; Molineri, A.I.; Signorini, M.L.; Scandolo, D.; Calvinho, L.F. The association between mastitis and reproductive performance in seasonally-calved dairy cows managed on a pasture-based system. Arch. Med. Vet. 2014, 46, 197–206. [Google Scholar] [CrossRef]
- Pinedo, P.J.; Melendez, P.; Villagomez-Cortes, J.A.; Risco, C.A. Effect of high somatic cell counts on reproductive performance of Chilean dairy cattle. J. Dairy Sci. 2009, 92, 1575–1580. [Google Scholar] [CrossRef]
- Lavon, Y.; Leitner, G.; Voet, H.; Wolfenson, D. Naturally occurring mastitis effects on timing of ovulation, steroid and gonadotrophic hormone concentrations, and follicular and luteal growth in cows. J. Dairy Sci. 2010, 93, 911–921. [Google Scholar] [CrossRef]
- Hockett, M.E.; Hopkins, F.M.; Lewis, M.J.; Saxton, A.M.; Dowlen, H.H.; Oliver, S.P.; Schrick, F.N. Endocrine profiles of dairy cows following experimentally induced clinical mastitis during early lactation. Anim. Reprod. Sci. 2000, 58, 241–251. [Google Scholar] [CrossRef] [PubMed]
- Siatka, K.; Sawa, A.; Bogucki, M.; Piwczynski, D.; Krezel-Czopek, S. The relationships between the somatic cell counts in the milk and the fertility of Polish Holstein-Friesian cows. Vet. Med. 2019, 64, 433–439. [Google Scholar] [CrossRef]
- Filho, V.B.S.; Schiavonl, R.S.; Gastal, G.D.A.; Timm, C.D.; Lucia, T., Jr. Association of the occurrence of some diseases with Trop Anim Health Prod reproductive performance and milk production of dairy herds in southern Brazil. Rev. Bras. Zootec. 2014, 41, 467–471. [Google Scholar] [CrossRef]
- Blum, J.W.; Dosogne, H.; Hoeben, D.; Vangroenweghe, F.; Hammon, H.M.; Bruckmaier, R.M.; Burvenich, C. Tumor necrosis factor-alpha and nitrite/nitrate responses during acute mastitis induced by Escherichia coli infection and endotoxin in dairy cows. Domest. Anim. Endocrinol. 2000, 19, 223–235. [Google Scholar] [CrossRef]
- Waller, K.P.; Colditz, I.G.; Lun, S.; Ostensson, K. Cytokines in mammary lymph and milk during endotoxin-induced bovine mastitis. Res. Vet. Sci. 2003, 74, 31–36. [Google Scholar] [CrossRef] [PubMed]
- Barker, A.R.; Schrick, F.N.; Lewis, M.J.; Dowlen, H.H.; Oliver, S.P. Influence of clinical mastitis during early lactation on reproductive performance of Jersey cows. J. Dairy Sci. 1998, 81, 1285–1290. [Google Scholar] [CrossRef] [PubMed]
- Schrick, F.N.; Hockett, M.E.; Saxton, A.M.; Lewis, M.J.; Dowlen, H.H.; Oliver, S.P. Influence of subclinical mastitis during early lactation on reproductive parameters. J. Dairy Sci. 2001, 84, 1407–1412. [Google Scholar] [CrossRef] [PubMed]
- Bouderbala, A.; Gharbi, B. Hydrogeochemical characterization and groundwater quality assessment in the intensive agricultural zone of the Upper Cheliff plain, Algeria. Environ. Earth Sci. 2017, 76, 744. [Google Scholar] [CrossRef]
- Bouderbala, A.; Merouchi, H. Impact of climate change and human activities on groundwater resources in the Alluvial Aquifer of upper Cheliff, Algeria. Indian J. Ecol. 2023, 50, 575–583. [Google Scholar] [CrossRef]
- Kaban, O.; Maizi, D.; Takorabt, M. Sequential direct and inverse modeling of underground flows in the Upper Cheliff Alluvial Aquifer, Algeria. Acque Sotter.-Ital. J. Groundw. 2023, 12, 39–47. [Google Scholar] [CrossRef]
- Sadoud, M.; Hocquette, J.F. La Filiere Viande Bovine en Algérie; L’Harmattan: Paris, France, 2022. [Google Scholar]
- MADR. Statistiques Agricoles, Superficies et Productions; Direction des Statistiques Agricoles et des Systèmes d’Information: Algiers, Algeria, 2021; p. 81.
- Saidani, K.; Zeroual, F.; Metref, A.K.; Dahmani, A.; Tennah, S. Détection de la mammite bovine par le test CMT dans les conditions de terrain en Algérie. Rev. D’élevage Méd. Vét. Pays Trop. 2024, 77, 1–7. [Google Scholar] [CrossRef]
- National Mastitis Council (NMC). Laboratory Handbook on Bovine Mastitis; Rev. Ed.; National Mastitis Council Inc.: New Prague, MN, USA, 2017. [Google Scholar]
- Freiwald, A.; Sauer, S. Phylogenetic classification and identification of bacteria by mass spectrometry. Nat. Protoc. 2009, 4, 732–742. [Google Scholar] [CrossRef]
- Idelevich, E.A.; Nedow, B.; Vollmer, M.; Becker, K. Evaluation of a Novel Benchtop Tool for Acceleration of Sample Preparation for MALDI-TOF Mass Spectrometry. J. Clin. Microbiol. 2023, 61, e00212–e00223. [Google Scholar] [CrossRef] [PubMed]
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing, 34th ed.; CLSI Supplement M100; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2024; ISBN 978-1-68440-220-5 (Print), 978-68440-221-2 (Electronic). [Google Scholar]
| Variables | n (%) | Chi-2 Goodness | p-Value | |
|---|---|---|---|---|
| Number of infected quarters per affected cow n = 155 | One Tow Three Four | 55 (35.5) 53 (34.2) 29 (18.7) 18 (11.6) | 25.6 | <0.0001 |
| Side and position of infected quarter n = 317 | Front Right Front Left Rear Right Rear Left | 77 (24.3) 66 (20.8) 92 (29) 82 (25.9) | 4.4 | 0.219 |
| CMT Scores in infected quarters n = 317 | 1 (Traces) 2 (Weakly positive) 3 (Clearly positive) 4 (Strongly positive) | 31 (9.8) 105 (33.1) 174 (54.9) 7 (2.2) | 216.9 | <0.0001 |
| CMT Score | Total | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 Traces | 2 Weakly Positive | 3 Clearly Positive | 4 Strongly Positive | ||||||||
| Isolate 1 | Isolate 2 | Isolate 1 | Isolate 2 | Isolate 1 | Isolate 2 | Isolate 1 | Isolate 2 | ||||
| S. aureus | 18 | - | - | 7 | - | 10 | 1 | - | - | 18 | |
| Non-aureus staphylococci and mammaliicocci | Staphylococcus succinus | 2 | - | - | 2 | - | - | - | - | - | 45 |
| Staphylococcus auricularis | 2 | - | - | 2 | - | - | - | - | - | ||
| Staphylococcus saprophyticus | 3 | - | - | - | - | 3 | - | - | - | ||
| Staphylococcus simulans | 8 | - | - | 2 | - | 6 | - | - | - | ||
| Staphylococcus xylosus | 2 | 1 | - | - | - | 1 | - | - | - | ||
| Staphylococcus hominis | 1 | - | - | - | - | 1 | - | - | - | ||
| Staphylococcus chromogenes | 5 | - | - | 3 | - | 2 | - | - | - | ||
| Staphylococcus cohnii | 1 | - | - | 1 | - | - | - | - | - | ||
| Staphylococcus haemolyticus | 8 | 1 | - | 3 | 1 | 2 | 1 | - | - | ||
| Staphylococcus felis | 1 | - | - | 1 | - | - | - | - | - | ||
| Staphylococcus epidermidis | 10 | - | - | 4 | - | 6 | - | - | - | ||
| Staphylococcus warneri | 1 | - | - | 1 | - | - | - | - | - | ||
| Mammaliicoccus sciuri | 1 | - | - | - | - | 1 | - | - | - | ||
| Enterococci | Enterococcus durans | 1 | - | - | - | - | 1 | - | - | - | 125 |
| E. faecalis | 52 | 6 | - | 11 | 2 | 23 | 7 | 2 | 1 | ||
| E. faecium | 62 | 6 | 6 | 20 | 5 | 15 | 8 | 1 | 1 | ||
| Enterococcus gallinarum | 2 | - | - | - | - | 1 | 1 | - | - | ||
| Enterococcus hirae | 7 | - | - | - | 2 | 4 | 1 | - | - | ||
| Enterococcus mundtii | 1 | - | - | 1 | - | - | - | - | - | ||
| Streptococci | Streptococcus suis | 1 | - | - | - | - | 1 | - | - | - | 14 |
| Streptococcus gallolyticus | 12 | - | - | 5 | 2 | 2 | 3 | - | - | ||
| Streptococcus infantarius | 1 | - | - | - | - | - | - | 1 | - | ||
| Enterobacteriaceae | E. coli | 20 | - | - | 1 | - | 12 | 7 | - | - | 21 |
| Citrobacter freundii | 1 | - | - | - | 1 | - | - | - | - | ||
| Corynebacterium | Corynebacterium falsenii | 1 | - | - | - | - | 1 | - | - | - | 4 |
| Corynebacterium flavescens | 1 | - | - | - | - | 1 | - | - | - | ||
| Corynebacterium provencense | 2 | - | - | - | - | 1 | 1 | - | - | ||
| Bacillus | Bacillus mojavensis | 7 | - | - | 1 | - | 5 | 1 | - | - | 7 |
| Aerococcus viridans | 6 | 2 | 2 | 1 | 1 | - | - | - | - | 6 | |
| Lactococcus | Lactococcus garvieae | 5 | - | - | - | 1 | 1 | 3 | - | - | 11 |
| Lactococcus lactis | 6 | - | - | 1 | - | 3 | 2 | - | - | ||
| Macrococcus caseolyticus | 1 | - | - | - | 1 | - | - | - | - | 1 | |
| Bacillus (Niallia) circulans | 1 | - | - | - | - | 1 | - | - | - | 1 | |
| Rothia (Micrococcus, Kocuria) kristinae | 1 | - | - | 1 | - | - | - | - | - | 1 | |
| Total isolates | 16 | 8 | 68 | 16 | 104 | 36 | 4 | 2 | 254 | ||
| Contaminated samples | - | 6 | 12 | - | 18 | ||||||
| Negative samples | 11 | 21 | 38 | 2 | 72 | ||||||
| Antimicrobial Class | Antimicrobial Agent | Bacterial Isolates | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| S. aureus (18 isolates) | CoNS * (45 isolates) | Enterococci (125 isolates) | E. coli (20 isolates) | Streptococci (14 isolates) | |||||||
| R% | S% | R% | S% | R% | S% | R% | S% | R% | S% | ||
| Penicillins | Oxacillin | 0 | 100 | 22.2 | 77.8 | - | - | - | - | - | - |
| Benzylpenicillin | 0 | 100 | - | - | - | - | 35 | 65 | 0 | 100 | |
| Ampicillin | - | - | - | - | 0 | 100 | 0 | 92.3 | |||
| Piperacillin | - | - | - | - | - | - | 40 | 60 | - | - | |
| Cephalosporins | Cefotaxime | - | - | - | - | - | - | 0 | 100 | 0 | 92.3 |
| Ceftazidime | - | - | - | - | - | - | 0 | 100 | |||
| Cefuroxime | - | - | - | - | - | - | 0 | 100 | |||
| Ceftriaxone | - | - | - | - | - | - | - | - | 0 | 92.3 | |
| Carbapenems | Ertapenem | - | - | - | - | - | - | 0 | 100 | - | - |
| Imipenem | - | - | - | - | - | - | 0 | 100 | - | - | |
| Meropenem | - | - | - | - | - | - | 0 | 100 | - | - | |
| Phosphonic acid | Fosfomycin | 0 | 100 | 37.8 | 62.2 | - | - | - | - | - | - |
| Potentiated sulfonamides | Sulfamethoxazole-trimethoprim | 0 | 100 | 8.1 | 91.9 | - | - | - | - | - | - |
| Glycopeptides | Vancomycin | 0 | 100 | 0 | 100 | 0 | 100 | - | - | 0 | 100 |
| Teicoplanin | 0 | 100 | 0 | 82.2 | 0 | 100 | - | - | 0 | 100 | |
| Fluoroquinolones | Levofloxacin | 0 | 100 | 4.4 | 95.6 | 0.8 | 99.2 | - | - | 0 | 100 |
| Ciprofloxacin | - | - | - | - | - | - | 15 | 85 | - | - | |
| Tetracyclines | Tetracycline | 0 | 100 | 31.1 | 68.9 | - | - | - | - | - | - |
| Lincosamides | Clindamycin | 0 | 100 | 13.3 | 86.7 | - | - | - | - | 0 | 100 |
| Aminoglycosides | Gentamicin | 0 | 100 | 0 | 100 | - | - | 0 | 100 | - | - |
| Rifamycins | Rifampicin | 0 | 100 | 0 | 100 | - | - | - | - | - | - |
| Macrolides | Erythromycin | 0 | 100 | 15.5 | 84.5 | - | - | - | - | 0 | 100 |
| Lipopeptides | Daptomycin | 0 | 100 | 2.2 | 97.8 | - | - | - | - | ||
| Oxazolidinones | Linezolid | 0 | 100 | 2.2 | 97.8 | 0.8 | 99.2 | - | - | 0 | 100 |
| Nitrofuran | Nitrofurantoin | - | - | - | - | 0 | 42 | - | - | - | - |
| Streptogramins | Quinuiristin-dalfopristin | - | - | - | - | 0.8 | 99.2 | - | - | - | - |
| Risk Factors | Level | N (%) | CMT Results | Chi-2 Dependency | OR (95%CI) | p-Value | |
|---|---|---|---|---|---|---|---|
| Positive N (%) | Negative N (%) | ||||||
| Parity | Primiparous Multiparous | 51 (19.4) 212 (80.6) | 21 (41.2) 134 (63.2) | 30 (58.8) 78 (36.8) | 8.3 | 0.4 [0.2; 0.8] | 0.004 |
| Cow breed | Holstein Montbéliarde Fleckvieh Cross breed | 44 (16.7) 173 (65.8) 13 (4.9) 33 (12.5) | 30 (68.2) 103 (59.5) 6 (46.2) 16 (48.5) | 14 (31.8) 70 (40.5) 7 (53.8) 17 (51.5) | 4 | - | 0.267 |
| Farming system | Free-stall Mix-stall Tie-stall | 191 (72.6) 30 (11.4) 42 (16.0) | 119 (62.3) 12 (40) 24 (57.1) | 72 (37.7) 18 (60) 18 (42.9) | 5.4 | - | 0.067 |
| Milking method | Machine milking Hand milking | 229 (87.1) 34 (12.9) | 139 (60.7) 16 (47.1) | 90 (39.3) 18 (52.9) | 2.3 | 0.6 [0.3; 1.2] | 0.131 |
| Daily milk production | <12 L >12 L | 104 (39.5) 159 (60.5) | 95 (91.3) 60 (37.7) | 9 (8.7) 99 (62.3) | 74.7 | 17.4 [8.2; 37.1] | <0.0001 |
| Animal cleanliness | Score-1 Score-2 Score-3 | 138 (52.5) 103 (39.2) 22 (8.4) | 46 (33.3) 87 (84.5) 22 (100) | 92 (66.7) 16 (15.5) 0 (0) | 80.5 | - | <0.0001 |
| Lactation stage | Early Mid Late | 106(40.3) 60 (22.8) 97 (36.9) | 37 (34.9) 41 (68.3) 77 (79.4) | 69 (65.1) 19 (31.7) 20 (20.6) | 44.2 | - | <0.0001 |
| Previous history of SCM | Yes No | 45 (17.1) 218 (82.9) | 43 (95.6) 112 (51.4) | 2 (4.4) 106 (48.6) | 30.1 | 20.4 [4.8; 86.1] | <0.0001 |
| Disinfection before milking | Yes No application | 241 (91.6) 22 (8.4) | 146 (60.6) 9 (40.9) | 95 (39.4) 13 (59.1) | 3.2 | 2.2 [0.1; 5.4] | 0.073 |
| Disinfection after milking | Yes No application | 16 (6.1) 247 (93.9) | 10 (62.5) 145 (58.7) | 6 (37.5) 102 (41.3) | 0.1 | 1.2 [0.4; 3.3] | 0.765 |
| Reproductive Parameters | Positive SCM | Negative SCM | p-Value |
|---|---|---|---|
| CFSI (days) | 130.0 ± 39.9 | 102.7 ± 23.3 | <0.0001 |
| NSPC | 2.5 ± 1.4 | 1.9 ± 1 | |
| CCI (days) | 164.7 ± 67.6 | 124.4 ± 28.3 | |
| PRFS (%) | 24.5 | 48.1 | |
| ≥3 services (%) | 43.2 | 26.9 |
| Reproductive Parameters | One-Quarter | Two-Quarters | Three-Quarters | Four-Quarters | p-Value |
|---|---|---|---|---|---|
| CFSI (days) | 114.4 ± 27.2 | 127.9 ± 38.5 | 134.6 ± 35.5 | 176.8 ± 47.8 | <0.0001 |
| NSPC | 1.9 ± 1.1 | 2.4 ± 1.1 | 2.8 ± 1.1 | 4.4 ± 1.9 | |
| CCI (days) | 135.8 ± 46.8 | 160.1 ± 61.4 | 175.7 ± 57.3 | 249.8 ± 82.3 |
| CMT Score | Approximate SCC (cells/mL) | Gelling |
|---|---|---|
| 0 (Negative) | 0–200,000 | None |
| 1 (Traces) | 200,000–400,000 | Very mild |
| 2 | 400,000–1 million | Mild |
| 3 | 1–5 million | Moderate |
| 4 | >5 million | Heavy, almost solidifies |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khelili, A.; Achek, R.; Abdullah, M.R.; Karim, A.; Nabi, I.; Moawad, A.A.; Lankri, E.-H.; Idelevich, E.A.; Becker, K. Characterization and Antimicrobial Resistance of Bacteria Causing Subclinical Mastitis in Dairy Cows in the Upper Cheliff Region, Northern Algeria. Antibiotics 2025, 14, 1190. https://doi.org/10.3390/antibiotics14121190
Khelili A, Achek R, Abdullah MR, Karim A, Nabi I, Moawad AA, Lankri E-H, Idelevich EA, Becker K. Characterization and Antimicrobial Resistance of Bacteria Causing Subclinical Mastitis in Dairy Cows in the Upper Cheliff Region, Northern Algeria. Antibiotics. 2025; 14(12):1190. https://doi.org/10.3390/antibiotics14121190
Chicago/Turabian StyleKhelili, Ahmed, Rachid Achek, Mohammed R. Abdullah, Abdelkadir Karim, Ibrahim Nabi, Amira A. Moawad, El-Hassen Lankri, Evgeny A. Idelevich, and Karsten Becker. 2025. "Characterization and Antimicrobial Resistance of Bacteria Causing Subclinical Mastitis in Dairy Cows in the Upper Cheliff Region, Northern Algeria" Antibiotics 14, no. 12: 1190. https://doi.org/10.3390/antibiotics14121190
APA StyleKhelili, A., Achek, R., Abdullah, M. R., Karim, A., Nabi, I., Moawad, A. A., Lankri, E.-H., Idelevich, E. A., & Becker, K. (2025). Characterization and Antimicrobial Resistance of Bacteria Causing Subclinical Mastitis in Dairy Cows in the Upper Cheliff Region, Northern Algeria. Antibiotics, 14(12), 1190. https://doi.org/10.3390/antibiotics14121190

