Multicentric Surveillance of Antimicrobial Resistance to Generate Data-Driven Regional Antibiograms: A Laboratory-Based Cross-Sectional Study in Pakistan
Abstract
1. Introduction
2. Results
2.1. Socio-Demographic Characteristics and Antimicrobial Prescriptions in the Study Population
2.2. Distribution of Bacterial Isolates and Consumption of ABs
2.3. Antimicrobial Susceptibility Analysis of Clinically Relevant Bacteria
3. Discussion
4. Materials and Methods
4.1. Study Design, Setting, and Duration
4.2. Data Collection and Sample Size Determination
4.3. Inclusion and Exclusion Criteria and Sample Size Determination
4.4. Sample Collection and Processing
4.5. Antimicrobial Susceptibility Testing and Reporting of Results
4.6. Data Management and Statistical Analysis
4.7. Ethical Considerations
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Salam, M.A.; Al-Amin, M.Y.; Salam, M.T.; Pawar, J.S.; Akhter, N.; Rabaan, A.A.; Alqumber, M.A.A. Antimicrobial Resistance: A Growing Serious Threat for Global Public Health. Healthcare 2023, 11, 1946. [Google Scholar] [CrossRef]
- Uddin, T.M.; Chakraborty, A.J.; Khusro, A.; Zidan, B.M.R.M.; Mitra, S.; Emran, T.B.; Dhama, K.; Ripon, M.K.H.; Gajdács, M.; Sahibzada, M.U.K.; et al. Antibiotic resistance in microbes: History, mechanisms, therapeutic strategies and future prospects. J. Infect. Public Health 2021, 14, 1750–1766. [Google Scholar] [CrossRef]
- Gupta, V.; Satlin, M.J.; Kalvin, C.Y.; Martei, Y.; Sung, L.; Westblade, L.F.; Howard, S.; Ai, C.; Flayhart, D.C. Incidence and prevalence of antimicrobial resistance in outpatients with cancer: A multicentre, retrospective, cohort study. Lancet Oncol. 2025, 26, 620–628. [Google Scholar] [CrossRef]
- Castagnola, E.; Bagnasco, F.; Mesini, A.; Agyeman, P.K.A.; Ammann, R.A.; Carlesse, F.; Santolaya de Pablo, M.E.; Groll, A.H.; Haeusler, G.M.; Lehrnbecher, T.; et al. Antibiotic Resistant Bloodstream Infections in Pediatric Patients Receiving Chemotherapy or Hematopoietic Stem Cell Transplant: Factors Associated with Development of Resistance, Intensive Care Admission and Mortality. Antibiotics 2021, 10, 266. [Google Scholar] [CrossRef]
- Mirha, H.T.; Ali, S.H.; Aamar, H.; Sadiq, M.; Tharwani, Z.H.; Habib, Z.; Malikzai, A. The impact of antibiotic resistance on the rampant spread of infectious diseases in Pakistan: Insights from a narrative review. Health Sci. Rep. 2024, 7, e2050. [Google Scholar] [CrossRef] [PubMed]
- Gajdács, M.; Urbán, E.; Stájer, A.; Baráth, Z. Antimicrobial Resistance in the Context of the Sustainable Development Goals: A Brief Review. Eur. J. Investig. Health Psychol. Educ. 2021, 11, 71–82. [Google Scholar] [CrossRef] [PubMed]
- Marino, A.; Maniaci, A.; Lentini, M.; Ronsivalle, S.; Nunnari, G.; Cocuzza, S.; Parisi, F.M.; Cacopardo, B.; Lavalle, S.; La Via, L. The Global Burden of Multidrug-Resistant Bacteria. Epidemiologia 2025, 6, 21. [Google Scholar] [CrossRef] [PubMed]
- Global burden of bacterial antimicrobial resistance 1990–2021: A systematic analysis with forecasts to 2050. Lancet 2024, 404, 1199–1226. [CrossRef]
- Atif, M.; Ihsan, B.; Malik, I.; Ahmad, N.; Saleem, Z.; Sehar, A.; Babar, Z.-u.-D. Antibiotic stewardship program in Pakistan: A multicenter qualitative study exploring medical doctors’ knowledge, perception and practices. BMC Infect. Dis. 2021, 21, 374. [Google Scholar] [CrossRef]
- Aslam, A.; Zin, C.S.; Jamshed, S.; Rahman, N.S.A.; Ahmed, S.I.; Pallós, P.; Gajdács, M. Self-Medication with Antibiotics: Prevalence, Practices and Related Factors among the Pakistani Public. Antibiotics 2022, 11, 795. [Google Scholar] [CrossRef]
- Abbas, M.; Inam, A.; Tahira, E.; Qamar, H.; Shakil, J.; Bashir, S. Prescribing practices at a secondary healthcare setting of Islamabad, Pakistan: A descriptive cross-sectional study. J. Pharm. Health Serv. Res. 2021, 12, 152–158. [Google Scholar] [CrossRef]
- Torumkuney, D.; Jamil, B.; Nizamuddin, S.; van Hasselt, J.; Pirzada, U.; Manenzhe, R. Country data on AMR in Pakistan in the context of community-acquired respiratory tract infections: Links between antibiotic susceptibility, local and international antibiotic prescribing guidelines, access to medicine and clinical outcome. J. Antimicrob. Chemother. 2022, 77, i18–i25. [Google Scholar] [CrossRef] [PubMed]
- Harris, P.N.A.; Tambyah, P.A.; Lye, D.C.; Mo, Y.; Lee, T.H.; Yilmaz, M.; Alenazi, T.H.; Arabi, Y.; Falcone, M.; Bassetti, M.; et al. Effect of Piperacillin-Tazobactam vs Meropenem on 30-Day Mortality for Patients with E coli or Klebsiella pneumoniae Bloodstream Infection and Ceftriaxone Resistance: A Randomized Clinical Trial. JAMA 2018, 320, 984–994. [Google Scholar] [CrossRef] [PubMed]
- Maryam, S.; Saleem, Z.; Haseeb, A.; Qamar, M.U.; Amir, A.; Almarzoky Abuhussain, S.S.; Imam, M.T.; Afzal, S.; Meyer, J.C.; Mudenda, S.; et al. Progress on the Global Research Agenda for Antimicrobial Resistance in Human Health in Pakistan: Findings and Implications. Infect. Drug Resist. 2025, 18, 3795–3828. [Google Scholar] [CrossRef]
- Figueras, A. A Global Call to Action on Antimicrobial Resistance at the UN General Assembly. Antibiotics 2024, 13, 915. [Google Scholar] [CrossRef] [PubMed]
- World Health Orgaizaton. WHO Publishes List of Bacteria for Which New Antibiotics Are Urgently Needed; WHO: Singapore, 2017. [Google Scholar]
- Sati, H.; Carrara, E.; Savoldi, A.; Hansen, P.; Garlasco, J.; Campagnaro, E.; Boccia, S.; Castillo-Polo, J.A.; Magrini, E.; Garcia-Vello, P.; et al. The WHO Bacterial Priority Pathogens List 2024: A prioritisation study to guide research, development, and public health strategies against antimicrobial resistance. Lancet Infect. Dis. 2025, 25, 1033–1043. [Google Scholar] [CrossRef]
- World Health Orgaizaton. Seventy-Eighth World Health Assembly–Daily Update: 27 May 2025; WHO: Singapore, 2025. [Google Scholar]
- Pezzani, M.D.; Mazzaferri, F.; Compri, M.; Galia, L.; Mutters, N.T.; Kahlmeter, G.; Zaoutis, T.E.; Schwaber, M.J.; Rodríguez-Baño, J.; Harbarth, S.; et al. Linking antimicrobial resistance surveillance to antibiotic policy in healthcare settings: The COMBACTE-Magnet EPI-Net COACH project. J. Antimicrob. Chemother. 2020, 75, ii2–ii19. [Google Scholar] [CrossRef]
- Safdar, N.; Saleem, S.; Salman, M.; Tareq, A.H.; Ishaq, S.; Ambreen, S.; Hameed, A.; Habib, M.B.; Ali, T.M. Economic burden of antimicrobial resistance on patients in Pakistan. Front. Public Health 2025, 13, 1481212. [Google Scholar] [CrossRef]
- Mendelson, M.; Morris, A.M.; Thursky, K.; Pulcini, C. How to start an antimicrobial stewardship programme in a hospital. Clin. Microbiol. Infect. 2020, 26, 447–453. [Google Scholar] [CrossRef]
- Truong, W.R.; Hidayat, L.; Bolaris, M.A.; Nguyen, L.; Yamaki, J. The antibiogram: Key considerations for its development and utilization. JAC Antimicrob. Resist. 2021, 3, dlab060. [Google Scholar] [CrossRef]
- Iftikhar, M.; Khan, I.; Khan, S.J.; Khan, J.Z.; Rahman, S.U. Antibiogram and Antibiotic Resistance Patterns in Bacterial Isolates from Hayatabad Medical Complex, Peshawar. Cureus 2024, 16, e71934. [Google Scholar] [CrossRef]
- Fatima, A.; Iffat, W.; Dawood, K.; Sarfaraz, S.; Hussain, Z.; Siddiqui, H.; Gajdács, M. Prevalence and antimicrobial resistance of uropathogens in Karachi, Pakistan. Acta Biol. Szeged. 2024, 67, 25–33. [Google Scholar] [CrossRef]
- Jamil, B.; Gawlik, D.; Syed, M.A.; Shah, A.A.; Abbasi, S.A.; Müller, E.; Reißig, A.; Ehricht, R.; Monecke, S. Hospital-acquired methicillin-resistant Staphylococcus aureus (MRSA) from Pakistan: Molecular characterisation by microarray technology. Eur. J. Clin. Microbiol. Infect. Dis. 2018, 37, 691–700. [Google Scholar] [CrossRef]
- Var, S.K.; Hadi, R.; Khardori, N.M. Evaluation of regional antibiograms to monitor antimicrobial resistance in hampton roads, Virginia. Ann. Clin. Microbiol. Antimicrob. 2015, 14, 22. [Google Scholar] [CrossRef][Green Version]
- Zeggil, T.; Dobbyn, D.; Kudrowich, B.; Beahm, N.P. Development of a national web-based antibiogram tool. Can. Pharm. J. 2022, 155, 200–205. [Google Scholar] [CrossRef]
- Zaidi, S.; Bigdeli, M.; Aleem, N.; Rashidian, A. Access to essential medicines in Pakistan: Policy and health systems research concerns. PLoS ONE 2013, 8, e63515. [Google Scholar] [CrossRef] [PubMed]
- Aslam, B.; Asghar, R.; Muzammil, S.; Shafique, M.; Siddique, A.B.; Khurshid, M.; Ijaz, M.; Rasool, M.H.; Chaudhry, T.H.; Aamir, A.; et al. AMR and Sustainable Development Goals: At a crossroads. Glob. Health 2024, 20, 73. [Google Scholar] [CrossRef] [PubMed]
- Coque, T.M.; Cantón, R.; Pérez-Cobas, A.E.; Fernández-de-Bobadilla, M.D.; Baquero, F. Antimicrobial Resistance in the Global Health Network: Known Unknowns and Challenges for Efficient Responses in the 21st Century. Microorganisms 2023, 11, 1050. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Chauhan, A.; Ranjan, A.; Mathkor, D.M.; Haque, S.; Ramniwas, S.; Tuli, H.S.; Jindal, T.; Yadav, V. Emerging challenges in antimicrobial resistance: Implications for pathogenic microorganisms, novel antibiotics, and their impact on sustainability. Front. Microbiol. 2024, 15, 1403168. [Google Scholar] [CrossRef]
- Saleem, Z.; Haseeb, A.; Abuhussain, S.S.A.; Moore, C.E.; Kamran, S.H.; Qamar, M.U.; Azmat, A.; Pichierri, G.; Raees, F.; Asghar, S.; et al. Antibiotic Susceptibility Surveillance in the Punjab Province of Pakistan: Findings and Implications. Medicina 2023, 59, 1215. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Global Antibiotic Resistance Surveillance Report 2025: Summary. Available online: https://www.who.int/publications/i/item/B09585 (accessed on 29 October 2025).
- Serwecińska, L. Antimicrobials and Antibiotic-Resistant Bacteria: A Risk to the Environment and to Public Health. Water 2020, 12, 3313. [Google Scholar] [CrossRef]
- Hayat, K.; Rosenthal, M.; Gillani, A.H.; Zhai, P.; Aziz, M.M.; Ji, W.; Chang, J.; Hu, H.; Fang, Y. Perspective of Pakistani Physicians towards Hospital Antimicrobial Stewardship Programs: A Multisite Exploratory Qualitative Study. Int. J. Environ. Res. Public Health 2019, 16, 1565. [Google Scholar] [CrossRef] [PubMed]
- Abbas, M. Functional health literacy among undergraduate pharmacy students: A cross-sectional study from Pakistan. Pharm. Pharmacol. Int. J. 2018, 5, 00136. [Google Scholar]
- Rehman, T.u.; Aslam, R.; Aqib, A.I.; Mohsin, M.; Manzoor, A.; Shoaib, M.; Naseer, M.A.; Hasan, A.; Sattar, H.; Fakhar-e-Alam Kulyar, M.; et al. Phylogeny of hospital acquired MRSA, and its comparative phenotypic clinico-epidemiology with vancomycin resistant S. aureus (VRSA). Microb. Pathog. 2020, 149, 104537. [Google Scholar] [CrossRef]
- Alam, M.; Saleem, Z.; Haseeb, A.; Qamar, M.U.; Sheikh, A.; Almarzoky Abuhussain, S.S.; Iqbal, M.S.; Raees, F.; Chigome, A.; Cook, A.; et al. Tackling antimicrobial resistance in primary care facilities across Pakistan: Current challenges and implications for the future. J. Infect. Public Health 2023, 16 (Suppl. 1), 97–110. [Google Scholar] [CrossRef]
- Aslam, A.; Gajdács, M.; Zin, C.S.; Ab Rahman, N.S.; Ahmed, S.I.; Zafar, M.Z.; Jamshed, S. Evidence of the Practice of Self-Medication with Antibiotics among the Lay Public in Low- and Middle-Income Countries: A Scoping Review. Antibiotics 2020, 9, 597. [Google Scholar] [CrossRef]
- Gul, B.; Sana, M.; Saleem, A.; Mustafa, Z.U.; Salman, M.; Khan, Y.H.; Mallhi, T.H.; Sono, T.M.; Meyer, J.C.; Godman, B.B. Antimicrobial Dispensing Practices during COVID-19 and the Implications for Pakistan. Antibiotics 2023, 12, 1018. [Google Scholar] [CrossRef]
- Qiu, Y.; Ferreira, J.P.; Ullah, R.W.; Flanagan, P.; Zaheer, M.U.; Tahir, M.F.; Alam, J.; Hoet, A.E.; Song, J.; Akram, M. Assessment of the Implementation of Pakistan’s National Action Plan on Antimicrobial Resistance in the Agriculture and Food Sectors. Antibiotics 2024, 13, 206. [Google Scholar] [CrossRef]
- Abdelsalam Elshenawy, R.; Umaru, N.; Aslanpour, Z. WHO AWaRe classification for antibiotic stewardship: Tackling antimicrobial resistance—A descriptive study from an English NHS Foundation Trust prior to and during the COVID-19 pandemic. Front. Microbiol. 2023, 14, 1298858. [Google Scholar] [CrossRef]
- Jamil, H.; Nuhiro, S.M.; Memon, A.A.; Soomro, A.A.; Savera, S.; Nohri, A.R. Uncovering the roadblocks: Challenges to implementing antimicrobial stewardship in Pakistan. Link Med. J. 2025, 3, 1–7. [Google Scholar] [CrossRef]
- Rolfe, R., Jr.; Kwobah, C.; Muro, F.; Ruwanpathirana, A.; Lyamuya, F.; Bodinayake, C.; Nagahawatte, A.; Piyasiri, B.; Sheng, T.; Bollinger, J.; et al. Barriers to implementing antimicrobial stewardship programs in three low- and middle-income country tertiary care settings: Findings from a multi-site qualitative study. Antimicrob. Resist. Infect. Control. 2021, 10, 60. [Google Scholar] [CrossRef]
- Lim, C.; Ashley, E.A.; Hamers, R.L.; Turner, P.; Kesteman, T.; Akech, S.; Corso, A.; Mayxay, M.; Okeke, I.N.; Limmathurotsakul, D.; et al. Surveillance strategies using routine microbiology for antimicrobial resistance in low- and middle-income countries. Clin. Microbiol. Infect. 2021, 27, 1391–1399. [Google Scholar] [CrossRef]
- Ghaffar, M.; Mazhar, B.; Niaz, M.; Naeem, T.; Tabassam, M.; Abbas, M.; Imtiaz, A.; Amjad, M. Prescribing trends and drug-related problems at tertiary healthcare facility: A descriptive cross-sectional study from pakistan. J. Popul. Ther. Clin. Pharmacol. 2024, 31, 278–291. [Google Scholar] [CrossRef]
- Afzal, S.; Bajwa, M.; Haroon, M.S.; Arooj, H.; Mushtaq, R.M.Z.; Saleem, Z. Unequal budgeting and limited WHO AWaRe Access antibiotics in Punjab: Procurement policy gaps in Pakistan’s National Action Plan against antimicrobial resistance. Arch. Pub. Health 2025, 83, e259. [Google Scholar] [CrossRef]
- Iweriebor, B.C.; Egbule, O.S.; Obi, L.C. The Emergence of Colistin- and Imipenem-Associated Multidrug Resistance in Escherichia coli Isolates from Retail Meat. Pol. J. Microbiol. 2022, 71, 519–528. [Google Scholar] [CrossRef]
- Ali, S.; Tobin, A.; Lapthorne, S.; Collison, M.; Murphy, D.; Chan, G.; Doyle, M. Preserving the antimicrobial arsenal: Exploring alternatives to carbapenems in ESBL battles within the southeast of Ireland. J. Med. Microbiol. 2025, 74, 001955. [Google Scholar] [CrossRef]
- Rusu, A.; Munteanu, A.-C.; Arbănași, E.-M.; Uivarosi, V. Overview of Side-Effects of Antibacterial Fluoroquinolones: New Drugs versus Old Drugs, a Step Forward in the Safety Profile? Pharmaceutics 2023, 15, 804. [Google Scholar] [CrossRef]
- Löfmark, S.; Edlund, C.; Nord, C.E. Metronidazole is still the drug of choice for treatment of anaerobic infections. Clin. Infect. Dis. 2010, 50 (Suppl. 1), S16–S23. [Google Scholar] [CrossRef]
- Biniek, J.P.; Schwab, F.; Graf, K.; Vonberg, R.-P. Adherence to Antibiotic Prescription Guidelines in Four Community Hospitals in Germany. Antibiotics 2024, 13, 635. [Google Scholar] [CrossRef] [PubMed]
- Farooqui, M.; Iqbal, Z.; Sadiq, A.; Raziq, A.; Alshammari, M.S.; Iqbal, Q.; Haider, S.; Saleem, F. Hospital Pharmacists’ Viewpoint on Quality Use of Antibiotics and Resistance: A Qualitative Exploration from a Tertiary Care Hospital of Quetta City, Pakistan. Antibiotics 2023, 12, 1343. [Google Scholar] [CrossRef] [PubMed]
- Saleem, Z.; Haseeb, A.; Godman, B.; Batool, N.; Altaf, U.; Ahsan, U.; Khan, F.U.; Mustafa, Z.U.; Nadeem, M.U.; Farrukh, M.J.; et al. Point Prevalence Survey of Antimicrobial Use during the COVID-19 Pandemic among Different Hospitals in Pakistan: Findings and Implications. Antibiotics 2022, 12, 70. [Google Scholar] [CrossRef]
- Handa, V.L.; Patel, B.N.; Bhattacharya, D.A.; Kothari, R.K.; Kavathia, D.G.; Vyas, B.R.M. A study of antibiotic resistance pattern of clinical bacterial pathogens isolated from patients in a tertiary care hospital. Front. Microbiol. 2024, 15, 1383989. [Google Scholar] [CrossRef]
- Tran-Quang, K.; Nguyen-Thi-Dieu, T.; Tran-Do, H.; Pham-Hung, V.; Nguyen-Vu, T.; Tran-Xuan, B.; Larsson, M.; Duong-Quy, S. Antibiotic resistance of Streptococcus pneumoniae in Vietnamese children with severe pneumonia: A cross-sectional study. Front. Public Health 2023, 11, 1110903. [Google Scholar] [CrossRef] [PubMed]
- Kalizang’oma, A.; Chaguza, C.; Gori, A.; Davison, C.; Beleza, S.; Antonio, M.; Beall, B.; Goldblatt, D.; Kwambana-Adams, B.; Bentley, S.D.; et al. Streptococcus pneumoniae serotypes that frequently colonise the human nasopharynx are common recipients of penicillin-binding protein gene fragments from Streptococcus mitis. Microb. Genom. 2021, 7, 000622. [Google Scholar] [CrossRef] [PubMed]
- Lehtinen, S.; Chewapreecha, C.; Lees, J.; Hanage, W.P.; Lipsitch, M.; Croucher, N.J.; Bentley, S.D.; Turner, P.; Fraser, C.; Mostowy, R.J. Horizontal gene transfer rate is not the primary determinant of observed antibiotic resistance frequencies in Streptococcus pneumoniae. Sci. Adv. 2020, 6, eaaz6137. [Google Scholar] [CrossRef] [PubMed]
- Hassan, S.A.; Ahmed, Y.M.A.; Hassan, G.D. Antimicrobial susceptibility of Escherichia coli isolated from diabetic patients in Mogadishu, Somalia. Front. Microbiol. 2023, 14, 1204052. [Google Scholar] [CrossRef]
- Khan, M.A.; Rahman, A.U.; Khan, B.; Al-Mijalli, S.H.; Alswat, A.S.; Amin, A.; Eid, R.A.; Zaki, M.S.A.; Butt, S.; Ahmad, J.; et al. Antibiotic Resistance Profiling and Phylogenicity of Uropathogenic Bacteria Isolated from Patients with Urinary Tract Infections. Antibiotics 2023, 12, 1508. [Google Scholar] [CrossRef]
- Iqbal, Z.; Sheikh, A.S.; Basheer, A.; Hafsa, H.T.; Ahmed, M.; Sabri, A.N.; Shahid, S. Antibiotic Drug Resistance Pattern of Uropathogens in Pediatric Patients in Pakistani Population. Antibiotics 2023, 12, 395. [Google Scholar] [CrossRef]
- Khan, I.; Osama, M.; Ullah, I.; Haq, I.U. Microbiological Spectrum and Antibiotics Sensitivity Pattern of Chronic Suppurative Otitis Media (CSOM) Patients: A prospective study from a Tertiary Care Hospital in Peshawar. Pak. J. Med. Sci. 2025, 41, 194–199. [Google Scholar] [CrossRef]
- Gajdács, M.; Ábrók, M.; Lázár, A. Epidemiology and antibiotic resistance profile of bacterial uropathogens in male patients: A 10-year retrospective study. Farmacia 2021, 69, 530–539. [Google Scholar] [CrossRef]
- Hombach, M.; Bloemberg, G.V.; Böttger, E.C. Effects of clinical breakpoint changes in CLSI guidelines 2010/2011 and EUCAST guidelines 2011 on antibiotic susceptibility test reporting of Gram-negative bacilli. J. Antimicrob. Chemother. 2012, 67, 622–632. [Google Scholar] [CrossRef]
- Guo, L.; Ye, L.; Zhao, Q.; Ma, Y.; Yang, J.; Luo, Y. Comparative study of MALDI-TOF MS and VITEK 2 in bacteria identification. J. Thorac. Dis 2014, 6, 534–538. [Google Scholar] [CrossRef]
- Gajic, I.; Kabic, J.; Kekic, D.; Jovicevic, M.; Milenkovic, M.; Mitic Culafic, D.; Trudic, A.; Ranin, L.; Opavski, N. Antimicrobial Susceptibility Testing: A Comprehensive Review of Currently Used Methods. Antibiotics 2022, 11, 427. [Google Scholar] [CrossRef] [PubMed]
- Leclercq, R.; Cantón, R.; Brown, D.F.; Giske, C.G.; Heisig, P.; MacGowan, A.P.; Mouton, J.W.; Nordmann, P.; Rodloff, A.C.; Rossolini, G.M.; et al. EUCAST expert rules in antimicrobial susceptibility testing. Clin. Microbiol. Infect. 2013, 19, 141–160. [Google Scholar] [CrossRef] [PubMed]
- Leshem, T.; Schnall, B.S.; Azrad, M.; Baum, M.; Rokney, A.; Peretz, A. Incidence of biofilm formation among MRSA and MSSA clinical isolates from hospitalized patients in Israel. J. Appl. Microbiol. 2022, 133, 922–929. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Cuellar, E.; Tsuchiya, K.; Valle-Ríos, R.; Medina-Contreras, O. Differences in Biofilm Formation by Methicillin-Resistant and Methicillin-Susceptible Staphylococcus aureus Strains. Diseases 2023, 11, 160. [Google Scholar] [CrossRef]
| Variable | n (%) |
|---|---|
| Gender | |
| Male | 285 (58.8%) |
| Female | 200 (41.2%) |
| Age group | |
| <20 years | 80 (16.5%) |
| 20–39 years | 150 (30.9%) |
| 40–60 years | 170 (35.1%) |
| >60 years | 85 (17.5%) |
| Healthcare Facility | |
| Hospital 1 (Public) | 120 (24.7%) |
| Hospital 2 (Public) | 130 (26.8%) |
| Hospital 3 (Private) | 235 (48.5%) |
| Patient status during treatment | |
| Inpatient | 310 (63.9%) |
| Outpatient | 175 (36.1%) |
| Hospital department associated with treatment | |
| Cardiology | 50 (10.3%) |
| Gastroenterology | 40 (8.2%) |
| Gynecology | 55 (11.3%) |
| Kidney and Pancreas | 35 (7.2%) |
| Internal medicine | 60 (12.4%) |
| Oncology | 45 (9.3%) |
| Orthopedics | 30 (6.2%) |
| Pediatrics | 50 (10.3%) |
| Pulmonology | 40 (8.2%) |
| Surgical | 50 (10.3%) |
| Urology | 30 (6.2%) |
| Bacterial Groups | Bacterial Genera/Species | n (%) |
|---|---|---|
| Gram-positive bacteria | 291 (60.00%) | |
| Staphylococcus aureus | 59 (12.16%) | |
| Streptococcus pneumoniae | 50 (10.31%) | |
| Streptococcus pyogenes | 35 (7.22%) | |
| Enterococcus faecalis | 28 (5.77%) | |
| Bacillus subtilis | 27 (5.57%) | |
| Bacillus cereus | 24 (4.95%) | |
| Clostridium perfringens | 22 (4.54%) | |
| Listeria monocytogenes | 20 (4.12%) | |
| Corynebacterium diphtheriae | 15 (3.09%) | |
| Actinomyces spp. | 11 (2.27%) | |
| Gram-negative bacteria | 194 (40.00%) | |
| Escherichia coli | 68 (14.02%) | |
| Pseudomonas aeruginosa | 28 (5.77%) | |
| Klebsiella pneumoniae | 18 (3.71%) | |
| Salmonella Enterica | 17 (3.51%) | |
| Haemophilus influenzae | 13 (2.68%) | |
| Neisseria gonorrhoeae | 8 (1.65%) | |
| Neisseria meningitidis | 8 (1.65%) | |
| Vibrio cholerae | 8 (1.65%) | |
| Proteus mirabilis | 8 (1.65%) | |
| Campylobacter jejuni | 7 (1.44%) | |
| Acinetobacter baumannii | 7 (1.44%) | |
| Shigella spp. | 4 (0.82%) |
| Ranks Based on Frequency of Antibiotics Prescribed | |||||
|---|---|---|---|---|---|
| 1. | 2. | 3. | 4. | 5. | |
| Based on department | |||||
| Cardiology (n = 75) | CRO (n = 24; 32.0%) | CIP (n = 16; 21.3%) | PIP/TAZO (n = 14; 18.7%) | MER (n = 12; 16.0%) | VAN (n = 9; 12.0%) |
| Gastroenterology (n = 237) | MET (n = 90; 38.0%) | CRO (n = 75; 31.6%) | CIP (n = 30; 12.7%) | PIP/TAZO (n = 24; 10.1%) | MOX (n = 18; 7.6%) |
| Gynecology (n = 88) | CRO (n = 39; 44.3%) | MET (n = 23; 26.1%) | CIP (n = 11; 12.5%) | PIP/TAZO (n = 9; 10.2%) | CAZ (n = 6; 6.8%) |
| Kidney and Pancreas (n = 55) | MER (n = 18; 32.7%) | CRO (n = 12; 21.8%) | PIP/TAZO (n = 11; 20.0%) | AMK (n = 8; 14.5%) | VAN (n = 6; 10.9%) |
| Internal Medicine (n = 156) | CRO (n = 72; 46.2%) | MET (n = 27; 17.3%) | CIP (n = 23; 14.7%) | MOX (n = 18; 11.5%) | PIP/TAZO (n = 16; 10.3%) |
| Oncology (n = 174) | CRO (n = 27; 36.5%) | MER (n = 18; 24.3%) | PIP/TAZO (n = 11; 14.9%) | VAN (n = 9; 12.2%) | AMK (n = 9; 12.2%) |
| Orthopedics (n = 58) | CRO (n = 18; 31.0%) | CIP (n = 13; 22.4%) | AMK (n = 12; 20.7%) | PIP/TAZO (n = 9; 15.5%) | CAZ (n = 6; 10.3%) |
| Pediatrics (n = 129) | CRO (n = 18; 31.0%) | CTX (n = 27; 20.9%) | AMK (n = 18; 14.0%) | MET (n = 15; 11.6%) | CIP (n = 9; 7.0%) |
| Pulmonology (n = 84) | CRO (n = 33; 39.3%) | CIP (n = 23; 27.4%) | MOX (n = 13; 15.5%) | MER (n = 9; 10.7%) | PIP/TAZO (n = 6; 7.1%) |
| Surgery (n = 128) | CRO (n = 47; 36.7%) | MET (n = 30; 23.4%) | PIP/TAZO (n = 23; 18.0%) | CIP (n = 16; 12.5%) | CAZ (n = 12; 9.4%) |
| Urology (n = 64) | CIP (n = 26; 40.6%) | CRO (n = 15; 23.4%) | PIP/TAZO (n = 9; 14.1%) | AMK (n = 8; 12.5%) | MOX (n = 6; 9.4%) |
| Based on age groups | |||||
| <20 years (n = 167) | CRO (n = 84; 50.3%) | MET (n = 22; 13,2%) | CIP (n = 17; 10.2%) | MOX (n = 11; 6.6%) | AMK (n = 10; 6.0%) |
| 20–39 years (n = 373) | CRO (n = 139; 37.3%) | MET (n = 70; 18.8%) | CIP (n = 67; 18.0%) | PIP/TAZO (n = 33; 8.8%) | MOX (n = 19; 5.1%) |
| 40–60 years (n = 364) | CRO (n = 127; 34.9%) | MET (n = 65; 17.9%) | CIP (n = 59; 16.2%) | PIP/TAZO (n = 40; 11.0%) | MOX (n = 20; 5.5%) |
| >60 years (n = 244) | CRO (n = 72; 29.5%) | PIP/TAZO (n = 46; 18.9%) | MET (n = 28; 11.5%) | MER (n = 26; 10.7%) | CIP (n = 24; 9.8%) |
| Type of hospital | |||||
| Public (n = 689) | CRO (n = 255; 37.0%) | MET (n = 118; 17.1%) | CIP (n = 95; 13.8%) | PIP/TAZO (n = 72; 10.4%) | MOX (n = 32; 4.6%) |
| Private (n = 459) | CRO (n = 167; 36.4%) | CIP (n = 72; 15.7%) | MET (n = 67; 14.6%) | AMK (n = 35; 7.6%) | PIP/TAZO (n = 60; 13.1%) |
| Species | CRO (%) | CEF (%) | CXM (%) | CAZ (%) | MER (%) | AZI (%) | AMK (%) | LZD (%) | CIP (%) | MOX (%) | VAN (%) |
|---|---|---|---|---|---|---|---|---|---|---|---|
| S. aureus | 75 | 75 | 75 | 75 | 75 | 70 | 80 | 95 | 65 | 75 | 95 |
| S. pyogenes | 90 | 92 | 90 | 82 | 95 | 88 | 85 | 94 | 60 | 70 | 100 |
| S. pneumoniae | 85 | 88 | 85 | 78 | 91 | 80 | 75 | 92 | 70 | 80 | 90 |
| E. faecalis | 60 | 62 | 58 | 52 | 87 | 55 | 50 | 68 | 40 | 30 | 70 |
| B. cereus | 55 | 50 | 48 | 45 | 80 | 40 | 45 | 32 | 50 | 40 | 30 |
| B. subtilis | 40 | 38 | 35 | 32 | 91 | 30 | 35 | 30 | 30 | 25 | 20 |
| C. diphtheriae | 65 | 58 | 63 | 65 | 89 | 60 | 60 | 58 | 55 | 50 | 55 |
| L. monocytogenes | 80 | 78 | 72 | 74 | 90 | 77 | 70 | 82 | 75 | 65 | 85 |
| C. perfringens | 50 | 45 | 42 | 40 | 95 | 35 | n.r. | 20 | 30 | 25 | 20 |
| Actinomyces spp. | 45 | 42 | 38 | 37 | 85 | 33 | n.r. | 40 | 35 | 30 | 35 |
| Species | CRO (%) | CEF (%) | CXM (%) | CAZ (%) | PIP/TAZO (%) | MER (%) | AZI (%) | AMK (%) | CIP (%) | MOX (%) |
|---|---|---|---|---|---|---|---|---|---|---|
| E. coli | 70 | 65 | 70 | 75 | 90 | 90 | n.r. | 80 | 60 | 75 |
| K. pneumoniae | 60 | 55 | 65 | 65 | 70 | 90 | n.r. | 55 | 45 | 50 |
| P. mirabilis | 70 | 60 | 70 | 75 | 80 | 89 | n.r. | 65 | 50 | 60 |
| S. Enterica | 65 | 60 | 65 | 70 | 80 | 91 | 55 | 60 | 55 | 50 |
| Shigella spp. | 85 | 80 | 85 | 80 | 90 | 85 | 75 | 75 | 65 | 70 |
| C. jejuni | 80 | 40 | 50 | 55 | 30 | 91 | 45 | n.r. | 40 | 35 |
| V. cholerae | 60 | 65 | 60 | 65 | 70 | 95 | 55 | 55 | 50 | 40 |
| A. baumannii | n.r. | n.r. | n.r. | n.r. | n.r. | 92 | n.r. | 40 | 35 | 30 |
| P. aeruginosa | n.r. | n.r. | n.r. | 60 | 45 | 95 | n.r. | 50 | 65 | 60 |
| H. influenzae | 75 | 80 | 75 | 85 | 85 | 85 | n.r. | n.r. | 65 | 60 |
| N. meningitidis | 80 | 75 | 80 | 70 | 85 | 80 | 75 | 75 | 70 | 65 |
| N. gonorrhoeae | 60 | 70 | 80 | 65 | 75 | 87 | 70 | 70 | 65 | 55 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Noreen, N.; Aslam, A.; Abbas, M.; Ghulam Mustafa, A.; Jamshed, S.; Gajdács, M.; Iqbal, A.; Syed, W.; Bashatah, A.; Alqahtani, N. Multicentric Surveillance of Antimicrobial Resistance to Generate Data-Driven Regional Antibiograms: A Laboratory-Based Cross-Sectional Study in Pakistan. Antibiotics 2025, 14, 1154. https://doi.org/10.3390/antibiotics14111154
Noreen N, Aslam A, Abbas M, Ghulam Mustafa A, Jamshed S, Gajdács M, Iqbal A, Syed W, Bashatah A, Alqahtani N. Multicentric Surveillance of Antimicrobial Resistance to Generate Data-Driven Regional Antibiograms: A Laboratory-Based Cross-Sectional Study in Pakistan. Antibiotics. 2025; 14(11):1154. https://doi.org/10.3390/antibiotics14111154
Chicago/Turabian StyleNoreen, Nadia, Adeel Aslam, Mateen Abbas, Asma Ghulam Mustafa, Shazia Jamshed, Márió Gajdács, Ayesha Iqbal, Wajid Syed, Adel Bashatah, and Naji Alqahtani. 2025. "Multicentric Surveillance of Antimicrobial Resistance to Generate Data-Driven Regional Antibiograms: A Laboratory-Based Cross-Sectional Study in Pakistan" Antibiotics 14, no. 11: 1154. https://doi.org/10.3390/antibiotics14111154
APA StyleNoreen, N., Aslam, A., Abbas, M., Ghulam Mustafa, A., Jamshed, S., Gajdács, M., Iqbal, A., Syed, W., Bashatah, A., & Alqahtani, N. (2025). Multicentric Surveillance of Antimicrobial Resistance to Generate Data-Driven Regional Antibiograms: A Laboratory-Based Cross-Sectional Study in Pakistan. Antibiotics, 14(11), 1154. https://doi.org/10.3390/antibiotics14111154

