Chemical Diversity and Ecological Origins of Anti-MRSA Metabolites from Actinomycetota
Abstract
1. Introduction
2. MRSA Treatment and the Antibiotic Discovery Crisis
3. Actinomycetota: A Prolific Source of Bioactive Natural Products
4. Methodology: Literature Review and Data Extraction
5. Bibliometric Analysis and Source of Actinomycetota-Producing Anti-MRSA Compounds
6. Anti-MRSA Secondary Metabolites from Actinomycetota: A Chemical Overview
6.1. Non-Ribosomal Peptides
6.2. Polyketides and Other Metabolites
6.3. Promising Anti-MRSA Activity in Crude Extracts and Partially Purified Fractions
7. Concluding Remarks
8. Future Prospects
- I.
- Genomics-Guided Discovery and Activation of Silent BGCs
- II.
- Exploring Unexplored Ecological Niches and the Microbiome
- III.
- Leveraging Artificial Intelligence and Machine Learning
- IV.
- Combinatorial Biosynthesis and Synthetic Biology
- V.
- Integrating Metabolomics and Advanced Analytics
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 10325, 629–655. [Google Scholar] [CrossRef]
- Murugaiyan, J.; Kumar, P.A.; Rao, G.S.; Ikandar, K.; Stephen, H.; John, P.H.; Mohsen, Y.; Adukkadukkam, S.; Awuah, W.A.; Jose, R.A.M.; et al. Progress in alternative strategies to combat antimicrobial resistance: Focus on antibiotics. Antibiotics 2022, 2, 200. [Google Scholar] [CrossRef] [PubMed]
- OECD. Stemming the Tide of Superbugs; OECD Publishing: Paris, France, 2018. [Google Scholar] [CrossRef]
- Ferrara, F.; Zovi, A.; Nava, E.; Trama, U.; Vitiello, A. SARS-CoV-2 caused a surge in antibiotic consumption, causing a silent pandemic within the pandemic. A retrospective analysis of Italian data in the first half of 2022. Ann. Pharm. Fr. 2023, 4, 627–635. [Google Scholar] [CrossRef]
- World Health Organization (WHO). WHO Bacterial Priority Pathogens List for R&D of New Antibiotics (BPPL 2024); WHO: Geneva, Switzerland, 2024; Available online: https://www.who.int/publications/i/item/9789240093461 (accessed on 29 March 2025).
- Haag, U.M.F.; Fitzgerald, J.R.; Penadés, J.R. Staphylococcus aureus in animals. Microbiol. Spectr. 2019, 7, 10–1128. [Google Scholar] [CrossRef]
- Shoaib, M.; Aqib, A.I.; Muzammil, I.; Majeed, N.; Bhutta, Z.A.; Kulyar, M.F.A.; Fatima, M.; Zaheer, C.N.F.; Muneer, A.; Murtaza, M.; et al. MRSA compendium of epidemiology, transmission, pathophysiology, treatment, and prevention within one health framework. Front. Microbiol. 2023, 13, 1067284. [Google Scholar] [CrossRef]
- Santana, M.T.P.; Gomes, L.L.; Santos, T.A.; Lima, F.O.; Morais, S.R.; Sousa, A.P.; Alves, M.A.S.G.; Guênes, G.M.T.; Oliveira, H.M.B.F.; Oliveira Filho, A.A. Antibacterial activity of the essential oil of Lavandula Hybridis Grosso associated with gentamicin against strains of Staphylococcus aureus. Arch. Health Invest. 2020, 4, 362–366. [Google Scholar] [CrossRef]
- Pendleton, J.N.; Gorman, S.P.; Gilmore, B.F. Clinical relevance of the ESKAPE pathogens. Expert Rev. Anti-Infect. Ther. 2014, 11, 297–308. [Google Scholar] [CrossRef] [PubMed]
- Capa, N. Alexander Fleming and the discovery of penicillin. J. Bras. Patol. Med. Lab. 2009, 5, 345–346. [Google Scholar]
- Lee, A.S.; Lencastre, H.; Garau, J.; Kluytmans, J.; Kumar-Malhotra, S.; Peschel, A.; Harbarth, S. Methicillin-resistant Staphylococcus aureus. Nat. Rev. Dis. Primers. 2018, 1, 5. [Google Scholar] [CrossRef]
- Lakhundi, S.; Zhang, K. Methicillin-resistant Staphylococcus aureus: Molecular characterization, evolution, and epidemiology. Clin. Microbiol. Rev. 2018, 31, 4. [Google Scholar] [CrossRef]
- Grema, H.A.; Geidam, Y.A.; Gadzama, G.B.; Ameh, J.A.; Suleiman, A. Methicillin-resistant Staphylococcus aureus (MRSA): A review. Adv. Anim. Vet. Sci. 2015, 2, 79–98. [Google Scholar] [CrossRef]
- Tavares, W. Antibiotics and Chemotherapy for the Clinician, 3rd ed.; Atheneu Publishing: São Paulo, Brazil, 2014. [Google Scholar]
- Lim, D.; Strynadka, N.C.J. Structural basis for the β lactam resistance of PBP2a from methicillin-resistant Staphylococcus aureus. Nat. Struct. Mol. Biol. 2002, 9, 870–876. [Google Scholar] [CrossRef]
- Sinha, S.; Aggarwal, S.; Singh, D.V. Efflux pumps: Gatekeepers of antibiotic resistance in Staphylococcus aureus biofilms. Microb. Cell 2024, 11, 368–377. [Google Scholar] [CrossRef]
- Shao, K.; Yang, Y.; Gong, X.; Chen, K.; Liao, Z.; Ojha, S.C. Staphylococcal Drug Resistance: Mechanisms, Therapies, and Nanoparticle Interventions. Infect. Drug Resist. 2025, 19, 1007–1033. [Google Scholar] [CrossRef]
- Hasanpour, A.H.; Shariati, A.; Asgari-Tarazoj, A.; Maleki, M.H.; Mohebbi, A.; Jafarpour, A.; Mahmoudi, M.; Didehdar, M.; Abiri, R. The global prevalence of methicillin-resistant Staphylococcus aureus colonization in residents of elderly care centers: A systematic review and meta-analysis. Antimicrob. Resist. Infect. Control 2023, 1, 4. [Google Scholar] [CrossRef]
- Ferri, M.; Ranucci, E.; Romagnoli, P.; Giaccone, V. Antimicrobial resistance: A global emerging threat to public health systems. Crit. Rev. Food Sci. Nutr. 2017, 13, 2857–2876. [Google Scholar] [CrossRef]
- Centers for Disease Control Prevention (CDC). Antibiotic Resistance Threats in the United States 2019; U.S. Department of Health and Human Services, CDC: Atlanta GA, USA, 2019.
- World Health Organization (WHO). Global Priority List of Antibiotic-Resistant Bacteria to Guide Research, Discovery, and Development of New Antibiotics; WHO: Geneva, Switzerland, 2017; Available online: https://www.who.int/publications/i/item/WHO-EMP-IAU-2017.12 (accessed on 11 April 2025).
- Aminov, R.I. A brief history of the antibiotic era: Lessons learned and challenges for the future. Front. Microbiol. 2010, 1, 134. [Google Scholar] [CrossRef]
- Lewis, K. Platforms for antibiotic discovery. Nat. Rev. Drug Discov. 2013, 12, 371–387. [Google Scholar] [CrossRef] [PubMed]
- Baltz, R.H. Renaissance in antibacterial discovery from actinomycetes. Curr. Opin. Pharmacol. 2008, 5, 557–563. [Google Scholar] [CrossRef] [PubMed]
- Theuretzbacher, U.; Outterson, K.; Engel, A.; Karlén, A. The global preclinical antibacterial pipeline. Nat. Rev. Microbiol. 2020, 18, 275–285. [Google Scholar] [CrossRef]
- Hover, B.M.; Kim, S.H.; Katz, M.; Charlop-Powers, Z.; Owen, J.G.; Ternei, M.A.; Maniko, J.; Estrela, A.B.; Molina, H.; Park, S.; et al. Culture-independent discovery of the malacidins as calcium-dependent antibiotics with activity against multidrug-resistant Gram-positive pathogens. Nat. Microbiol. 2018, 3, 415–422. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Bayer, A.; Cosgrove, S.E.; Daum, R.S.; Fridkin, S.K.; Gorwitz, R.J.; Kaplan, S.L.; Karchmer, A.W.; Levine, D.P.; Murray, B.E.; et al. Infectious Diseases Society of America. Clinical practice guidelines by the Infectious Diseases Society of America for the treatment of methicillin-resistant Staphylococcus aureus infections in adults and children. Clin. Infect. Dis. 2011, 3, 18–55. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, M.; Tan, G.; Song, C.; Shen, Y.; Li, Y. Activation of cryptic biosynthetic gene clusters in Streptomyces by synthetic biology approaches. Front. Microbiol. 2024, 15, 13–41. [Google Scholar]
- Yadav, A.N.; Verma, P.; Kumar, S.; Kumar, V.; Kumar, M.; Yadav, C.; Yadav, S. Rhizospheric actinobacteria: Molecular diversity, distributions and potential biotechnological applications. In New and Future Developments in Microbial Biotechnology and Bioengineering; Elsevier: Amsterdam, The Netherlands, 2018; pp. 13–41. [Google Scholar]
- Barka, E.A.; Vatsa, P.; Sanchez, L.; Gaveau-Vaillant, N.; Jacquard, C.; Klenk, H.P.; Clément, C.; Ouhdouch, Y.; van Wezel, G.P. Taxonomy, physiology and natural products of Actinobacteria. Microbiol. Mol. Biol. Rev. 2016, 1, 1–43. [Google Scholar] [CrossRef]
- Hui, M.L.Y.; Tan, L.T.H.; Letchumanan, V.; Ele, Y.W.; Presa, C.M.; Chan, K.G.; Lei, J.W.F.; Lee, A.H. The extremophilic actinobacteria: From microbes to medicine. Antibiotics 2021, 6, 682. [Google Scholar] [CrossRef]
- Macagnan, D.; Romeiro, R.D.S.; de Souza, J.T.; Pomella, A.W. Isolation of actinomycetes and endospore-forming bacteria from the cacao pod surface and their antagonistic activity against the witches’ broom and black pod pathogens. Phytoparasitica 2006, 34, 122–132. [Google Scholar] [CrossRef]
- Arifuzzaman, M.; Khatun, M.R.; Rahman, H. Isolation and screening of actinomycetes from Sundarbans soil for antibacterial activity. Afr. J. Biotechnol. 2010, 29, 4615–4619. [Google Scholar]
- Ranjani, A.; Dhanasekaran, D.; Gopinath, M. An introduction to Actinobacteria. In An Introduction to Actinobacteria: Basics and Biotechnological Applications; InTechOpen: London, UK, 2016; pp. 3–37. [Google Scholar]
- Zhao, K.; Penttinen, P.; Tongwei, G.; Xiao, J.; Chen, Q.; Xu, J.; Lindstrom, K.; Zhang, L.; Zhang, X.; Strobel, G.A. The diversity and antimicrobial activity of endophytic actinomycetes isolated from medicinal plants in Panxi plateau, China. Curr. Microbiol. 2011, 62, 182–190. [Google Scholar] [CrossRef] [PubMed]
- Javed, Z.; Tripathi, G.D.; Mishra, M.; Dashora, K. Actinomycetes—The microbial machinery for the organic-cycling, plant growth, and sustainable soil health. Biocatal. Agric. Biotechnol. 2021, 31, 101893. [Google Scholar] [CrossRef]
- Abdel-Razek, A.S.; El-Naggar, M.E.; Allam, A.; Morsy, O.M.; Othman, S.I. Microbial natural products in drug discovery. Processes 2020, 4, 470. [Google Scholar] [CrossRef]
- Alam, K.; Mazumber, A.; Sikdar, S.; Zhao, Y.M.; Hao, J.; Song, C.; Wang, Y.; Sarkar, R.; Islam, S.; Zhang, Y.; et al. Streptomyces: The biofactory of secondary metabolites. Front. Microbiol. 2022, 13, 968053. [Google Scholar] [CrossRef]
- Yani, Z.; Fang, W.; Wang, K.; Zhang, Z.; Wu, Z.; Shi, L.; Liu, F.; Wan, Z.; Liu, M. Napyradiomycin A4 and its related compounds, a novel anti-PRV agent and their antibacterial activities, from Streptomyces kebangsaanensis WS-68302. Molecules 2023, 2, 640. [Google Scholar] [CrossRef]
- Saad, E.D.; Facina, G.; Gebrim, L.H. Epirubicin in the treatment of breast cancer. Braz. J. Oncol. 2007, 1, 47–53. [Google Scholar]
- Saleem, M.; Hassan, A.; Li, F.; Lu, Q.P.; Ponomareva, L.V.; Parkin, S.; Chenghang, S.; Thorson, A.; Shaaban, K.A.; Sajid, I. Bioprospecting of desert actinobacteria with special emphasis on griseoviridin, mitomycin C and a novel bacterial metabolite producing Streptomyces sp. PU-KB10–4. BMC Microbiol. 2023, 1, 149. [Google Scholar] [CrossRef]
- Barreiro, C.; Martínez-Castro, M. Trends in the biosynthesis and production of the immunosuppressant tacrolimus (FK506). Appl. Microbiol. Biotechnol. 2014, 2, 497–507. [Google Scholar] [CrossRef] [PubMed]
- Sharma, V.; Kaur, R.; Salwan, R. Streptomyces: Host for refactoring of diverse bioactive secondary metabolites. 3 Biotech 2021, 7, 340. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, R. Chinese Dominance in 37 of 44 Critical Technologies: Scientific Diplomacy and Industrial Policy. Foreign Affairs, 15 March 2024. Available online: https://relacoesexteriores.com.br/dominio-chines-em-37-das-44-tecnologias-criticas-diplomacia-cientifica-e-politica-industrial/ (accessed on 13 March 2025).
- Leite, R.L.P.; Pereira, N.G.; Souza, G.A.A.D.; Versiani, M.S.; Xavier, M.A.S.; Cardoso, L.; Galdino, A.S.; Xavier, A.R.E.O. Patents prospective study related to the use of Streptomyces spp. in bioprocesses for the production of antimicrobials, antineoplastic and antiparasitic agents. Braz. J. Dev. 2020, 11, 88042–88056. [Google Scholar] [CrossRef]
- Brazilian Society of Tropical Medicine. Limited Funding for Research in Developing Countries: A Problem that Requires Change. 2019. Available online: https://sbmt.org.br/serie-ciencia-nos-tropicos-parte-3-financiamento-limitado-em-paises-em-desenvolvimento-um-problema-que-requer-mudanca/ (accessed on 31 March 2025).
- Lo Grasso, L.; Martino, D.L.; Alduina, R. Production of antibacterial compounds from actinomycetes. In Actinobacteria–Basics, Biotechnology, and Applications; IntechOpen: London, UK, 2016; pp. 177–198. [Google Scholar]
- Donald, L.; Pipite, A.; Subramani, R.; Owen, J.; Keyzers, R.A.; Taufa, T. Streptomyces: Still the biggest producer of new natural secondary metabolites, a current perspective. Microbiol. Res. 2022, 3, 418–465. [Google Scholar] [CrossRef]
- Subramani, R.; Sipkema, D. Marine rare actinomycetes: A promising source of structurally diverse and unique novel natural products. Mar. Drugs 2019, 5, 249. [Google Scholar] [CrossRef]
- Bérdy, J. Thoughts and facts about antibiotics: Where we are now and where we are heading. J. Antibiot. 2012, 8, 385–395. [Google Scholar] [CrossRef]
- Khalid, H.; Tariq, A.; Jurrat, H.; Musaddaq, R.; Liaqat, I.; Muhammad, N. Actinomycetes: The last potential source for bioactive compounds production. Biotecnol. Futur. 2024, 4, 2–11. [Google Scholar] [CrossRef]
- Meenakshi, S.; Hiremath, J.; Meenakshi, M.H.; Shivaveerakumar, S. Actinomycetes: Isolation, cultivation and their active biomolecules. J. Pure Appl. Microbiol. 2024, 1, 126–133. [Google Scholar] [CrossRef]
- Tiwari, K.; Gupta, R.K. Diversity and isolation of rare actinomycetes: An overview. Crit. Rev. Microbiol. 2013, 3, 256–294. [Google Scholar] [CrossRef] [PubMed]
- Dharmaraj, S. Marine Streptomyces as a novel source of bioactive substances. World J. Microbiol. Biotechnol. 2010, 26, 2123–2139. [Google Scholar] [CrossRef]
- Nair, S.; Abraham, J. Natural products from Actinobacteria for drug discovery. In Advances in Pharmaceutical Biotechnology; Springer: Berlin/Heidelberg, Germany, 2020; pp. 333–363. [Google Scholar]
- Voser, T.M.; Campell, M.D.; Carroll, A.R. How different are rare marine microbial natural products compared to their terrestrial counterparts. Nat. Prod. Rep. 2022, 1, 7–19. [Google Scholar] [CrossRef] [PubMed]
- Zenova, G.M.; Manucharova, N.A.; Zvyagintsev, D.G. Extremophilic and extremotolerant actinomycetes in different soil types. Eurasian Soil. Sci. 2011, 44, 417–436. [Google Scholar] [CrossRef]
- Shivlata, L.; Satyanarayana, T. Thermophilic and alkaliphilic Actinobacteria: Biology and potential applications. Front. Microbiol. 2015, 6, 1014. [Google Scholar] [CrossRef]
- Sivalingam, P.; Hong, K.; Pote, J.; Prabakar, K. Extreme environment Streptomyces: Potential sources for new antibacterial and anticancer drug leads. Int. J. Microbiol. 2019, 1, 5283948. [Google Scholar] [CrossRef]
- Seipke, R.F.; Barke, J.; Brearley, C.; Hill, L.; Yu, D.W.; Goss, R.J.; Hutchings, M.I. A single Streptomyces symbiont makes multiple antifungals to support the fungus-farming ant Acromyrmex octospinosus. PLoS ONE 2011, 8, e22028. [Google Scholar] [CrossRef]
- Constant, P.; Poissant, L.; Villemur, R. Isolation of Streptomyces sp. PCB7, the first microorganism demonstrating high-affinity uptake of tropospheric H2. ISME J. 2008, 10, 1066–1076. [Google Scholar] [CrossRef]
- Zhang, X.; Ye, X.; Chai, W.; Lian, X.Y.; Zhang, Z. Novel metabolites and bioactive actinomycins from Streptomyces sp. ZZ338 of marine origin. Mar. Drugs 2016, 10, 181. [Google Scholar] [CrossRef]
- Chen, Z.; Ou, P.; Lingyan, L.; Jin, X. Anti-MRSA activity of actinomycin X2 and colismycin A produced by Streptomyces globisporus WA5-2-37 from the intestinal tract of the American cockroach (Periplaneta americana). Front. Microbiol. 2020, 11, 587. [Google Scholar] [CrossRef]
- Qureshi, K.A.; Bholay, A.D.; Rai, P.K.; Mohammed, H.A.; Khan, R.A.; Azam, F.; Jaremko, M.; Emwas, A.H.; Stefanowicz, P.; Waliczek, M.; et al. Isolation, characterization, anti-MRSA evaluation, and in-silico multi-target antimicrobial validations of actinomycin X2 and actinomycin D produced by novel Streptomyces smyrnaeus UKAQ_23. Sci. Rep. 2021, 1, 14539. [Google Scholar] [CrossRef]
- Sharma, M.; Manhas, R.K. Purification and characterization of actinomycins from Streptomyces strain M7 active against methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus. BMC Microbiol. 2019, 19, 44. [Google Scholar] [CrossRef] [PubMed]
- Sun, P.; Maloney, K.N.; Nam, S.J.; Pressa, N.M.; Raju, R.; Aalbersberg, W.; Jensen, P.R.; Nizet, V.; Hensler, M.E.; Fenical, W. Fijimycins A–C, three antibacterial depsipeptides of the etamycin class from a marine-derived Streptomyces sp. Bioorg. Med. Chem. 2011, 19, 6557–6562. [Google Scholar] [CrossRef]
- Matsumoto, N.; Momose, I.; Umekita, M.; Kinoshita, N.; Chino, M.; Iinuma, H.; Sawa, T.; Hamada, M.; Takeuchi, T. Diperamycin, a new antimicrobial antibiotic produced by Streptomyces griseoaurantiacus MK393-AF2. I. Taxonomy, fermentation, isolation, physico-chemical properties and biological activities. J. Antibiot. 1998, 12, 1087–1092. [Google Scholar] [CrossRef]
- Igarashi, M.; Shida, T.; Sasaki, Y.; Kinoshita, N.; Naganawa, H.; Hamada, M.; Takeuchi, T. Vinylamycin, a new depsipeptide antibiotic, from Streptomyces sp. J. Antibiot. 1999, 10, 873–879. [Google Scholar] [CrossRef] [PubMed]
- Martinet, L.; Naômé, A.; Rezende, L.C.D.; Tellatin, D.; Pignon, B.; Docquier, J.D.; Sannio, F.; Baiwir, D.; Mazzucchelli, G.; Fréderich, M.; et al. Lunaemycins, new cyclic hexapeptide antibiotics from the cave moonmilk-dweller Streptomyces lunaelactis MM109T. Int. J. Mol. Sci. 2023, 2, 1114. [Google Scholar] [CrossRef]
- Guo, Z.; Shen, L.; Zhiqin, J.; Zhang, J.; Huang, L.; Wu, W. NW-G01, a novel cyclic hexadepsipeptide antibiotic produced by Streptomyces alboflavus 313: I. Taxonomy, fermentation, isolation, physicochemical properties and antibacterial activities. J. Antibiot. 2009, 62, 201–205. [Google Scholar] [CrossRef]
- Ji, Z.; Qiao, G.; Wei, S.; Fan, L.; Wu, W. Isolation and characterization of two novel antibacterial cyclic hexapeptides from Streptomyces alboflavus 313. Chem. Biodivers. 2012, 9, 1567–1578. [Google Scholar] [CrossRef]
- Lu, Y.; Shao, M.; Wang, Y.; Qian, S.; Wang, M.; Wang, Y.; Xiaoquian, L.; Bao, Y.; Deng, C.; Yue, C.; et al. Zunyimycins B and C, new chloroanthrabenzoxocinones antibiotics against methicillin-resistant Staphylococcus aureus and Enterococcus, from Streptomyces sp. FJS31-2. Molecules 2017, 2, 251. [Google Scholar] [CrossRef]
- Lacret, R.; Oves-Costales, D.; Pérez-Victoria, I.; De La Cruz, M.; Díaz, C.; Vicente, F.; Genilloud, O.; Reyes, F. MDN-0171, a new medermycin analogue from Streptomyces albolongus CA-186053. Nat. Prod. Res. 2019, 1, 66–73. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.J.; Zhang, D.S.; Zhang, H.J.; Li, J.Q.; Ding, W.J.; Xu, X.D.; Ma, J.J. Medermycin-type naphthoquinones from the marine-derived Streptomyces sp. XMA39. J. Nat. Prod. 2018, 81, 1380–1387. [Google Scholar] [CrossRef]
- Yang, L.; Li, X.; Wei, X.; Xue, J.; Xu, L.; Li, H. Streptovertimycins A–H, new fasamycin-type polyketides produced by a soil-derived Streptomyces morookaense SC1169. J. Antibiot. 2020, 4, 283–289. [Google Scholar] [CrossRef]
- Li, X.; Wu, P.; Wang, W.; Xue, J.; Li, H.; Tan, H.; Wei, X. Anti-MRSA dimeric and brominated phenyltetracenoids produced by Streptomyces morookaense SC1169. J. Nat. Prod. 2023, 11, 2571–2579. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, N.; Ohtaguro, N.; Yoshida, Y.; Hirai, M.; Matsuo, H.; Yamada, Y.; Imamura, N.; Tsuciya, T. A compound inhibits biofilm formation of Staphylococcus aureus from Streptomyces. Biol. Pharm. Bull. 2015, 6, 889–892. [Google Scholar] [CrossRef]
- Mary, R.O.; Kannan, R.R.; Iniyan, A.M.; Ramachandran, D.; Vincent, S.G.P. Cell wall distraction and biofilm inhibition of marine Streptomyces-derived angucyclin on methicillin-resistant Staphylococcus aureus. Microb. Pathog. 2021, 150, 104709. [Google Scholar] [CrossRef]
- Chung, B.; Kwon, O.S.; Shin, J.; Oh, K.B. Antibacterial activity and mode of action of lactoquinomycin A from Streptomyces bacillaris. Mar. Drugs 2021, 1, 7. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Chen, Y.; Li, X.; Wang, X.; Ling, C.; Qin, X.; Zhou, Z.; Li, Q.; Wei, X.; Ju, J. Abissomycin monomers and dimers from Streptomyces koyangensis SCSIO 5802 derived from marine organisms. J. Nat. Prod. 2018, 2, 375–380. [Google Scholar] [CrossRef]
- Chen, L.; Liu, K.; Hong, J.; Cui, Z.; Ele, W.; Wang, Y.; Deng, Z.; Tao, M. The discovery of Weddellamycin, a tricyclic polyene macrolactam antibiotic from an Antarctic deep-sea-derived Streptomyces sp. DSS69, by heterologous expression. Mar. Drugs 2024, 4, 189. [Google Scholar] [CrossRef]
- Momose, I.; Chen, W.; Kinoshita, N.; Linuma, H.; Hamada, M.; Takeuchi, T. Polytomycin, a novel antibiotic from Streptomyces sp. MK277-AF1. I. Taxonomy, production, isolation, physicochemical properties and biological activities. J. Antibiot. 1998, 1, 21–25. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.L.; Xu, Y.; Han, Z.; Li, Y.X.; Lu, L.; Lai, P.Y.; Zhong, J.L.; Guo, X.R.; Zhang, X.X.; Qian, P.Y. Four new antibacterial xanthones from the marine actinomycetes Streptomyces caelestis. Mar. Drugs 2012, 11, 2571–2583. [Google Scholar] [CrossRef]
- Matsumoto, N.; Tsuchida, T.; Maruyama, M.; Kinoshita, N.; Homma, Y.; Linuma, H.; Sawa, T.; Hamada, M.; Takeuchi, T.; Heida, N.; et al. Lactonamycin, a new antimicrobial antibiotic produced by Streptomyces rishiriensis MJ773-88K4. I. Taxonomy, fermentation, isolation, physicochemical properties and biological activities. J. Antibiot. 1999, 3, 269–275. [Google Scholar] [CrossRef]
- Liang, Y.; Xie, X.; Chen, L.; Yan, S.; Ye, X.; Anjum, K.; Huang, H.; Liu, X.; Zhang, Z. Bioactive polycyclic quinones from marine Streptomyces sp. 182SMLY. Mar. Drugs 2016, 1, 10. [Google Scholar] [CrossRef]
- Igarashi, M.; Watanabe, T.; Hashida, T.; Umekita, M.; Hatano, M.; Yanagida, Y.; Kino, H.; Kimura, T.; Kinoshita, N.; Inoue, K.; et al. Waldiomycin, a novel WalK-histidine kinase inhibitor from Streptomyces sp. MK844-mF10. J. Antibiot. 2013, 8, 459–464. [Google Scholar] [CrossRef]
- Lacret, R.; Oves-Costales, D.; Gomez, C.; Díaz, C.; De La Cruz, M.; Pérez-Victoria, I.; Vicente, F.; Genilloud, O.; Reyes, F. Novel ikarugamycin derivatives with antifungal and antibacterial properties from Streptomyces zhaozhouensis. Mar. Drugs 2015, 1, 128–140. [Google Scholar] [CrossRef]
- Koyama, N.; Yotsumoto, M.; Onaka, H.; Tomoda, H. New structural scaffold 14-membered macrocyclic lactone ring for selective inhibitors of cell wall peptidoglycan biosynthesis in Staphylococcus aureus. J. Antibiot. 2013, 5, 303–304. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Tan, Y.; Gan, M.; Wang, Y.; Guan, Y.; Hu, X.; Zhou, H.; Shang, X.; You, X.; Yang, Z.; et al. Identification of elaiophylin derivatives from the marine-derived actinomycete Streptomyces sp. 7-145 using PCR-based screening. J. Nat. Prod. 2013, 3, 387–393. [Google Scholar] [CrossRef]
- Sawa, R.; Kubota, Y.; Umekita, M.; Hatano, M.; Hayashi, C.; Igarashi, M. Quadoctomycin, a 48-membered macrolide antibiotic from Streptomyces sp. MM168-141F8. J. Antibiot. 2018, 1, 91–96. [Google Scholar] [CrossRef]
- Furumai, T.; Eto, K.; Sasaki, T.; Higuchi, H.; Onaka, H.; Saito, N.; Fujita, T.; Naoki, H.; Igarashi, Y. TPU-0037-A, B, C and D, novel lidicamycin congeners with anti-MRSA activity from Streptomyces platensis TP-A0598. J. Antibiot. 2002, 10, 873–880. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, L.; Chen, W.; Lian, X.Y.; Zhang, Z. A unique indolizinium alkaloid, streptopertusacin A, and bioactive bafilomycins from marine-derived Streptomyces sp. HZP-2216E. Phytochemistry 2017, 144, 119–126. [Google Scholar] [CrossRef]
- Yi, W.; Newas, A.W.; Yong, K.; Ma, M.; Lian, X.Y.; Zhang, Z. Novel hygrocins KU and streptophenylpropanamide A and bioactive compounds from Streptomyces sp. ZZ1956 associated with the marine environment. Antibiotics 2022, 11, 1455. [Google Scholar] [CrossRef] [PubMed]
- Kwon, Y.J.; Sohn, M.J.; Koshino, H.; Kim, C.J. AN483, a novel anti-MRSA compound from Streptomyces sp. J. Antibiot. 2016, 10, 762–764. [Google Scholar] [CrossRef]
- Balachandran, C.; Arun, Y.; Duraipandiyan, V.; Ignacimuthu, S.; Balakrishna, K.; Al-Dhabi, N.A. Antimicrobial and cytotoxic properties of 2,3-dihydroxy-9,10-anthraquinone isolated from Streptomyces galbus (ERINLG-127). Appl. Biochem. Biotechnol. 2014, 7, 3513–3528. [Google Scholar] [CrossRef] [PubMed]
- Carretero-Molina, D.; Ortiz-López, F.J.; Martín, J.; Oves-Costales, D.; Díaz, C.; De La Cruz, M.; Cautain, B.; Vicente, F.; Genilloud, O.; Reyes, F. Novel napyradiomycin analogues from Streptomyces sp. strain CA-271078. Mar. Drugs 2020, 1, 22. [Google Scholar] [CrossRef]
- Cheng, Y.B.; Jensen, P.R.; Fenical, W. Cytotoxic and antimicrobial napyradiomycins from two Streptomyces MAR4 strains derived from marine organisms. Eur. J. Org. Chem. 2013, 19, 3751–3757. [Google Scholar] [CrossRef]
- Lacret, R.; Pérez-Victoria, I.; Oves-Costales, D.; De La Cruz, M.; Domingo, E.; Martín, J.; Díaz, C.; Vicente, F.; Genilloud, O.; Reyes, F. MDN-0170, a new napyradiomycin from Streptomyces sp. strain CA-271078. Mar. Drugs 2016, 10, 188. [Google Scholar] [CrossRef]
- Zhang, D.; Yi, W.; Ge, H.; Zhang, Z.; Wu, B. Bioactive AJ streptoglutarimides from Streptomyces sp. ZZ741 derived from marine organisms. J. Nat. Prod. 2019, 2, 280–285. [Google Scholar] [CrossRef]
- Driche, E.H.; Sabaou, N.; Bijani, C.; Zitouni, A.; Pont, F.; Mathieu, F.; Badji, B. Streptomyces sp. AT37 isolated from a Saharan soil produces a furanone derivative active against multidrug-resistant Staphylococcus aureus. World J. Microbiol. Biotechnol. 2017, 33, 105. [Google Scholar] [CrossRef]
- Igarashi, M.; Tsuchida, T.; Kinoshita, N.; Kamijima, M.; Sawa, R.; Sawa, T.; Naganawa, H.; Hamada, M.; Takeuchi, T.; Yamazaki, K.; et al. Cremimycin, a novel 19-membered macrocyclic lactam antibiotic from Streptomyces sp. J. Antibiot. 1998, 2, 123–129. [Google Scholar] [CrossRef]
- Cho, E.; Kwon, O.S.; Chung, B.; Lee, J.; Seo, J.; Shin, J.; Oh, K.B. Antibacterial activity of chromomycins from a marine-derived Streptomyces microflavus. Mar. Drugs 2020, 10, 505. [Google Scholar] [CrossRef] [PubMed]
- Vu, H.N.T.; Nguyen, D.T.; Nguyen, H.Q.; Chu, H.H.; Chu, F.K.; Chau, M.V.; Phi, Q.T. Antimicrobial and cytotoxic properties of bioactive metabolites produced by Streptomyces cavourensis YBQ59 isolated from Cinnamomum cassia Prels in Yen Bai Province, Vietnam. Curr. Microbiol. 2018, 9, 1247–1255. [Google Scholar] [CrossRef]
- Uchida, R.; Iwatsuki, M.; Kim, Y.P.; Ohte, S.; Omura, S.; Tomoda, H. Nosokomycins, new antibiotics discovered in an in vivo-mimic infection model using silkworm larvae. I: Fermentation, isolation and biological properties. J. Antibiot 2010, 4, 151–155. [Google Scholar] [CrossRef] [PubMed]
- Devi, S.; Sharma, M.; Manhas, R.K. Purification and biological analysis of antimicrobial compound produced by an endophytic Streptomyces sp. Sci. Rep. 2023, 13, 2499. [Google Scholar] [CrossRef]
- ISO 3166-1; Codes for the Representation of Names of Countries and Their Subdivisions—Part 1: Country Code. ISO: Geneva, Switzerland, 2020.
- Rajan, B.M.; Kannabiran, K. Extraction and identification of antibacterial secondary metabolites from marine Streptomyces sp. VITBRK2. Int. J. Mol. Cell. Med. 2014, 3, 130–137. [Google Scholar]
- León, J.; Aponte, J.J.; Rojas, R.; Cuadra, D.L.; Ayala, N.; Tomás, G.; Guerrero, M. Study of marine actinomycetes isolated from the central coast of Peru and their antibacterial activity against methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus faecalis. Rev. Peru. Med. Exp. Salud Publica 2011, 2, 237–246. [Google Scholar]
- Chanama, M.; Suriyachadkum, C.; Chanama, S. Streptomyces antimicrobicus sp. nov., a novel clay soil-derived actinobacterium that produces antimicrobials against drug-resistant bacteria. PLoS ONE 2023, 5, e0284712. [Google Scholar] [CrossRef]
- Goel, N.; Singh, R.; Sood, S.; Khare, S.K. Investigation of the secondary metabolite profile of Streptomyces sp. strain EMB24 revealed its extraordinary antibacterial potency against drug-resistant bacteria. Sea Biotechnol. 2022, 6, 1168–1175. [Google Scholar] [CrossRef]
- Lee, A.H.; Zainal, N.; Azman, A.S.; Eng, S.K.; Mutalib, N.S.A.B.; Yin, W.F.; Chan, K.G. Streptomyces pluripotens sp. nov., a bacteriocin-producing streptomycete that inhibits methicillin-resistant Staphylococcus aureus. Int. J. Syst. Evol. Microbiol. 2014, 9, 3297–3303. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Dubey, A.K. Isolation and characterization of a novel endophytic Actinobacterium strain Streptomyces californicus ADR1 as a promising source of antibacterial, antibiofilm and antioxidant metabolites. Microorganisms 2020, 6, 929. [Google Scholar] [CrossRef]
- Padmanaban, V.P.; Verma, P.; Venkatabaskaran, S.; Keppayan, T.; Gopal, D.; Sekar, A.K.; Ramaingam, I. Antimicrobial potential and taxonomic investigation of piezotolerant Streptomyces sp. NIOT-Ch-40 isolated from deep-sea sediment. World J. Microbiol. Biotechnol. 2017, 2, 27. [Google Scholar] [CrossRef]
- Ahmed, R.N.; Daniel, F.; Gbalá, I.D.; Sanni, A. Potentials of actinomycetes from reserved environments as antibacterial agents against drug-resistant clinical bacterial strains. Ethiop. J. Health Sci. 2020, 2, 251–258. [Google Scholar] [CrossRef]
- Mondal, S.; Rai, V.R. Molecular profiling of endophytic Streptomyces cavourensis MH16 inhabiting Millingtonia hortensis Linn. and influence of different culture media on biosynthesis of antimicrobial metabolites. Sci. Nat. 2019, 106, 51. [Google Scholar] [CrossRef] [PubMed]
- Junaidah, A.S.; Suhaini, S.; Sidek, H.M.; Basri, D.F.; Zin, N.M. Anti-methicillin-resistant Staphylococcus aureus activity and optimal culture condition of Streptomyces sp. SUK 25. Jundishapur J. Microbiol. 2015, 5, e16791. [Google Scholar] [CrossRef]
- Joseph, F.J.R.S.; Iniyan, A.M.; Vincent, S.G.P. HR-LC-MS based analysis of two antibacterial metabolites from a marine sponge symbiont Streptomyces pharmamarensis ICN40. Microb. Pathog. 2017, 111, 450–457. [Google Scholar] [CrossRef]
- Cho, S.S.; Choy, Y.H.; Simkhada, J.R.; Mander, P.; Da Jeong, P.; Yoo, J.C. A newly isolated Streptomyces sp. CS392 producing three antimicrobial compounds. Bioproc Biosyst. Eng. 2012, 35, 247–254. [Google Scholar] [CrossRef] [PubMed]
- Kannan, R.R.; Iniyan, A.M.; Prakash, V.S.G. Isolation of a small molecule with anti-MRSA activity from a mangrove symbiont Streptomyces sp. PVRK-1 and its biomedical studies in zebrafish embryos. Asian Pac. J. Trop. Biomed. 2011, 5, 341–347. [Google Scholar] [CrossRef]
- Konwar, A.N.; Basak, S.; Devi, S.G.; Borah, J.C.; Thakur, D. Streptomyces sp. MNP32, a forest-dwelling Actinomycetia endowed with potent antibacterial metabolites. 3 Biotech 2023, 7, 325. [Google Scholar] [CrossRef]
- Oliveira, J.A.M.; Williams, D.E.; Andersen, R.J.; Sarragiotto, M.H.; Baldoqui, D.C. Mycenolide A, a novel butenolide from a marine sediment-derived bacterium Streptomyces sp. 4054. Nat. Prod. Res. 2019, 11, 1532–1539. [Google Scholar] [CrossRef]
- Norouzi, H.; Khorasgani, M.R.; Danesh, A. Anti-MRSA activity of a bioactive compound produced by a marine Streptomyces and its optimization using statistical experimental design. Iran. J. Basic. Med. Sci. 2019, 9, 1073–1084. [Google Scholar] [CrossRef]
- Govindarajan, G.; Mullick, P.; Raj, B.A.S.; Kumar, P.S.; Al-Ansari, M.M.; Ilavenil, S.; Salomon, R.D.J. Susceptibility pattern of methicillin-resistant Staphylococcus aureus (MRSA) by flow cytometry analysis and characterization of novel lead drug molecule from Streptomyces species. J. Infect. Public Health 2021, 14, 1831–1841. [Google Scholar] [CrossRef] [PubMed]
- Kannan, R.R.; Iniyan, A.M.; Vincent, S.G.P. Production of a compound against methicillin-resistant Staphylococcus aureus (MRSA) from Streptomyces rubrolavendulae ICN3 and its evaluation in zebrafish embryos. Indian J. Med. Res. 2014, 6, 913–920. [Google Scholar]
- Sujatha, P.; Raju, K.B.; Ramana, T. Studies on a new marine streptomycete BT-408 producing polyketide antibiotic SBR-22 effective against methicillin-resistant Staphylococcus aureus. Microbiol. Res. 2005, 160, 119–126. [Google Scholar] [CrossRef]
- Fernandes, S.P.; De Almeida, L.L.C.; De Andrade, A.S.A.; Abreu, L.S.; Nascimento, Y.M.; De Souza, T.A.; Da Silva, E.F.; Volpato, F.C.Z.; Barth, A.F.; Tavares, J.F.; et al. The Brazilian Caatinga Biome as a Hotspot for the Isolation of Antibiotic-Producing Actinomycetota. Life 2025, 15, 1494. [Google Scholar] [CrossRef]
- Labeda, D.P.; Goodfellow, M.; Brown, R.; Ward, A.C.; Lanoot, B.; Vanncanneyt, M.; Swings, J.; Kim, S.B.; Liu, Z.; Chun, J.; et al. Phylogenetic study of the species within the family Streptomycetaceae. Antonie Van Leeuwenhoek 2012, 101, 73–104. [Google Scholar] [CrossRef]
- Komaki, H.; Tamura, T. Revised phylogeny of the genus Streptomyces based on 16S rRNA gene sequences and application of the genome-based species definition standards. Int. J. Syst. Evol. Microbiol. 2019, 69, 1829–1837. [Google Scholar]
- Nouioui, I.; Carro, L.; García-López, M.; Meier-Kolthoff, J.P.; Woyke, T.; Kyrpides, N.C.; Pukall, R.; Klenk, H.P.; Goodfellow, M.; Göker, M. Genome-based taxonomic classification of the phylum Actinobacteria. Front. Microbiol. 2018, 9, 2007. [Google Scholar] [CrossRef]
- Doroghazi, J.R.; Albright, J.C.; Goering, A.W.; Ju, K.S.; Haines, R.R.; Tchalukov, K.A.; Labeda, D.P.; Kelleher, N.L.; Metcalf, W.W. A roadmap for natural product discovery based on large-scale genomic and metabolomic. Nat. Chem. Biol. 2014, 11, 963–968. [Google Scholar] [CrossRef]
- Alanjary, M.; Kronmiller, B.; Hurst, T. Mining microbial genomes to discover and engineer new antibiotics. Nat. Rev. Microbiol. 2021, 9, 579–594. [Google Scholar]
- Zhang, Y.; Wang, D.; Chen, H.; Hu, X.; Sun, H. Unveiling silent gene clusters in Streptomyces: Emerging strategies in natural product discovery. Biotechnol. Adv. 2024, 67, 108347. [Google Scholar]
- Li, Y.; Weissman, K.J.; Muller, R. Insights into multienzyme docking in hybrid PKS-NRPS megasynthetases revealed by heterologous expression and genetic engineering. ChemBioChem 2010, 11, 1069–1075. [Google Scholar] [CrossRef] [PubMed]
- Süssmuth, R.D.; Mainz, A. Nonribosomal peptide synthesis—Principles and prospects. Angew. Chem. Int. Ed. Engl. 2017, 14, 3770–3821. [Google Scholar] [CrossRef] [PubMed]
- Heard, S.C.; Diehl, K.L.; Winter, J.M. Biosynthesis of the fungal nonribosomal peptide penilumamide A and biochemical characterization of a pterin-specific adenylation domain. RSC Chem. Biol. 2023, 10, 748–753. [Google Scholar] [CrossRef]
- Lemmens-Gruber, R.; Kamyar, M.R.; Dornetshuber, R. Cyclodepsipeptides: Potential drugs and lead compounds in the drug development process. Curr. Med. Chem. 2009, 9, 1122–1137. [Google Scholar] [CrossRef]
- Buckton, L.K.; Rahimi, M.N.; McAlpine, S.R. Cyclic peptides as drugs for intracellular targets: The next frontier in peptide therapeutic development. Chem. Eur. J. 2021, 5, 1487–1513. [Google Scholar] [CrossRef]
- Zhu, Q.; He, L.; Yang, S. Cyclic peptides from Streptomyces with potent MRSA activity: New perspectives for drug discovery. J. Antibiot. 2024, 77, 25–36. [Google Scholar]
- Wen, J.; Liu, X.; Chen, Z. Advances in NRPS engineering for non-ribosomal peptide therapeutics. Biotechnol. Adv. 2023, 61, 108190. [Google Scholar]
- Fatahi-Bafghi, M.; Rashidi, N.; Mahdavi, M. Non-ribosomal peptides and their antimicrobial potential against resistant pathogens. Iran. J. Microbiol. 2023, 1, 12–22. [Google Scholar]
- Sivanathan, S.; Scherkenbeck, J. Cyclodepsipeptides: A rich source of biologically active compounds for drug research. Molecules 2014, 8, 12368–12420. [Google Scholar] [CrossRef]
- Waksman, S.A.; Woodruff, H.B. Bacteriostatic and Bactericidal Substances Produced by a Soil Actinomyces. Proc. Soc. Exp. Biol. Med. 1940, 45, 609–611. [Google Scholar] [CrossRef]
- Chen, Y.Q.; Liu, J.; Yuan, B.; Cao, C.L.; Qin, S.; Cao, X.Y.; Bian, G.K.; Wang, Z.; Jiang, J.H. Methylated actinomycin D, a novel actinomycin D analog, induces apoptosis in HepG2 cells through Fas- and mitochondria-mediated pathways. Mol. Carcinog. 2013, 12, 983–996. [Google Scholar] [CrossRef]
- Crnovčić, I.; Rückert, C.; Siamak, S.; Lang, M.; Kalinowski, J.; Keller, U. Genetic interrelationships in the actinomycin biosynthetic gene clusters of Streptomyces antibioticus IMRU 3720 and Streptomyces chrysomallus ATCC11523, producers of actinomycin X and actinomycin C. Adv. Appl. Bioinform. Chem. 2017, 10, 29–46. [Google Scholar] [CrossRef]
- Lin, Y.; Huang, L.; Zhang, X.; Yang, J.; Chen, X.; Li, F.; Liu, J.; Huang, R. Multi-omics analysis reveals anti-Staphylococcus aureus activity of actinomycin D from Streptomyces parvulus. Int. J. Mol. Sci. 2021, 22, 12231. [Google Scholar] [CrossRef] [PubMed]
- Cortés, C.L.; Veiga, S.R.; Almacellas, E.; Hernández-Losa, J.; Ferreses, J.C.; Kozma, S.C.; Ambrósio, S.; Thomas, G.; Tauler, A. Effect of low doses of actinomycin D on neuroblastoma cell lines. Mol. Cancer 2016, 15, 39. [Google Scholar] [CrossRef] [PubMed]
- Ziemert, N.; Alanjary, M.; Weber, T. The evolution of genome mining in microbes—A review. Nat. Prod. Rep. 2016, 8, 988–1005. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Xu, L.; Zhou, Y.; Han, B. Natural products from actinomycetes associated with marine organisms. Mar. Drugs 2021, 11, 629. [Google Scholar] [CrossRef]
- Harir, M.; Bendif, H.; Bellacene, M.; Fortas, Z.; Pogni, R. Secondary metabolites of Streptomyces. In Basic Biology and Applications of Actinobacteria; Enany, S., Ed.; IntechOpen: London, UK, 2018. [Google Scholar] [CrossRef]
- Risdian, C.; Mozef, T.; Wink, J. Polyketide biosynthesis in Streptomyces. Microorganisms 2019, 5, 124. [Google Scholar] [CrossRef]
- Nomoto, K.; Okabe, T.; Suzuki, H.; Tanaka, N. Mechanism of action of lactoquinomycin A with special reference to the radical formation. J. Antibiot. 1988, 41, 1124–1129. [Google Scholar] [CrossRef]
- Bister, B.; Bischoff, D.; Ströbele, M.; Riedlinger, J.; Reicke, A.; Wolter, F.; Bull, A.T.; Zähner, H.; Fiedler, H.P.; Süssmuth, R.D. Abyssomicin C–A polycyclic antibiotic from a marine Verrucosispora strain as an inhibitor of the p-aminobenzoic acid/tetrahydrofolate biosynthesis pathway. Angew. Chem. Int. Ed. Engl. 2004, 43, 2574–2576. [Google Scholar] [CrossRef]
- Zhao, W.; Jiang, H.; Liu, X.W.; Zhou, J.; Wu, B. Polyene macrolactams from marine and terrestrial sources: Structure, production strategies, biosynthesis and bioactivities. Mar. Drugs 2023, 6, 360. [Google Scholar] [CrossRef]
- Alvarez, R.; de Lera, A.R. Natural polyenic macrolactams and polycyclic derivatives generated by transannular pericyclic reactions: Optimized biogenesis challenging chemical synthesis. Nat. Prod. Rep. 2021, 6, 1136–1220. [Google Scholar] [CrossRef]
- Kojiri, K.; Nakajima, S.; Suzuki, H.; Kondo, H.; Suda, H. A new macrocyclic lactam antibiotic, BE-14106 I. Taxonomy, isolation, biological activity and structural elucidation. J. Antibiot. 1992, 6, 868–874. [Google Scholar] [CrossRef]
- Yeo, W.L.; Heng, E.; Tan, L.T.; Lim, Y.W.; Ching, K.C.; Tsai, D.J.; Jhang, Y.W.; Lauderdale, T.L.; Shia, K.S.; Zhao, H.; et al. Biosynthetic engineering of the antifungal, anti-MRSA auroramycin. Microb. Cell Fact. 2020, 19, 3. [Google Scholar] [CrossRef]
- Wang, P.; Wang, D.; Zhang, R.; Wang, Y.; Kong, F.; Fu, P.; Zhu, W. Novel macrolactams from a deep-sea-derived Streptomyces species. Mar. Drugs 2020, 1, 13. [Google Scholar] [CrossRef]
- Shen, J.; Wang, J.; Chen, H.; Wang, Y.; Zhu, W.; Fu, P. Cyclamenols E and F, two diastereoisomeric bicyclic macrolactams with a cyclopentane moiety from an Antarctic Streptomyces species. Org. Chem. Front. 2020, 2, 310–317. [Google Scholar] [CrossRef]
- Nie, Y.L.; Wu, Y.D.; Wang, C.X.; Lin, R.; Xie, Y.; Fang, D.; Jiang, H.; Lian, Y.Y. Elucidation of the structure and antitumor activity of a novel macrolactam produced by the marine actinomycete Micromonospora sp. FIM05328. Nat. Prod. Res. 2018, 18, 2133–2138. [Google Scholar] [CrossRef]
- Messaoudi, O.; Sudarman, E.; Bendahou, M.; Jansen, R.; Stadler, M.; Wink, J. Kenalactams A–E, polyene macrolactams isolated from Nocardiopsis CG3. J. Nat. Prod. 2019, 5, 1081–1088. [Google Scholar] [CrossRef] [PubMed]
- Wright, G.D. Opportunities for natural products in 21st century antibiotic discovery. Nat. Prod. Rep. 2017, 7, 694–701. [Google Scholar] [CrossRef]
- Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J. Nat. Prod. 2020, 3, 770–803. [Google Scholar] [CrossRef]
- Liang, H.; Zhou, G.; Ge, Y.; D’Ambrosio, E.A.; Eidem, T.M.; Blanchard, C.; Shehatou, C.; Chatare, V.K.; Dunman, P.M.; Valentine, A.M.; et al. Elucidating the inhibition of peptidoglycan biosynthesis in Staphylococcus aureus by albocycline, a macrolactone isolated from Streptomyces maizeus. Bioorg. Med. Chem. 2018, 12, 3453–3460. [Google Scholar] [CrossRef] [PubMed]
- Lombo, F.; Menéndez, N.; Salas, J.Á.; Méndez, C. The aureolic acid family of antitumor compounds: Structure, mode of action, biosynthesis, and novel derivatives. Nat. Prod. Rep. 2009, 5, 628–660. [Google Scholar] [CrossRef]
- Kaziro, Y.; Kamiyama, M. Mechanism of Action of Chromomycin A3. J. Biochem. 1967, 62, 424–429. Available online: https://www.jstage.jst.go.jp/article/biochemistry1922/62/4/62_4_424/_article (accessed on 13 March 2025).
- Fuse, S.; Tsukamoto, H.; Yuan, Y.; Wang, T.S.A.; Zhang, Y.; Bolla, M.; Walker, S.; Sliz, P.; Kahne, D. Functional and structural analysis of a key region of the cell wall inhibitor moenomycin. ACS Chem. Biol. 2010, 7, 701–711. [Google Scholar] [CrossRef]
- Galley, N.F.; O’Reilly, A.M.; Roper, D.I. Prospects for novel inhibitors of peptidoglycan transglycosylases. Bioorg. Chem. 2014, 55, 16–26. [Google Scholar] [CrossRef]
- Rutledge, P.; Challis, G. Discovery of microbial natural products by activation of silent biosynthetic gene clusters. Nat. Rev. Microbiol. 2015, 13, 509–523. [Google Scholar] [CrossRef]
- Blin, K.; Shaw, S.; Vader, L.; Szenei, J.; Reitz, Z.L.; Augustijn, H.E.; Cediel-Becerra, J.D.D.; de Crécy-Lagard, V.; Koetsier, R.A.; Williams, S.E.; et al. antiSMASH 8.0: Extended gene cluster detection capabilities and analyses of chemistry, enzymology, and regulation. Nucleic Acids Res. 2025, 53, W32–W38. [Google Scholar] [CrossRef]
- Zhang, M.M.; Wang, Y.; Ang, E.L.; Zhao, H. Engineering microbial hosts for production of bacterial natural products. Nat. Prod. Rep. 2016, 8, 963–987. [Google Scholar] [CrossRef]
- Ochi, K.; Hosaka, T. New strategies for drug discovery: Activation of silent or weakly expressed microbial gene clusters. Appl. Microbiol. Biotechnol. 2013, 97, 87–98. [Google Scholar] [CrossRef] [PubMed]
- Bull, A.T.; Goodfellow, M. Dark, rare and inspirational microbial matter in the extremobiosphere: 16,000 m of bioprospecting campaigns. Microbiology 2019, 12, 1252–1264. [Google Scholar] [CrossRef] [PubMed]
- Donia, M.S.; Fischbach, M.A. Small molecules from the human microbiota. Science 2015, 349, 1254766. [Google Scholar] [CrossRef] [PubMed]
- Chevrette, M.G.; Gavrilidou, A.; Mantri, S.; Selem-Molica, N.; Ziemert, N.; Barona-Gómez, F. The confluence of big data and evolutionary genome mining for the discovery of natural products. Nat. Prod. Rep. 2021, 38, 2024–2040. [Google Scholar] [CrossRef]
- Gangwal, A.; Lavecchia, A. Artificial Intelligence in Natural Product Drug Discovery: Current Applications and Future Perspectives. J. Med. Chem. 2025, 68, 3948–3969. [Google Scholar] [CrossRef] [PubMed]
- Fu, C.; Chen, Q. The future of pharmaceuticals: Artificial intelligence in drug discovery and development. J. Pharm. Anal. 2025, 15, 101248. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, K.T.; Ritz, D.; Gu, J.-Q.; Alexander, D.; Chu, M.; Miao, V.; Brian, P.; Baltz, R.H. Combinatorial biosynthesis of novel antibiotics related to daptomycin. Proc. Natl. Acad. Sci. USA 2006, 103, 17462–17467. [Google Scholar] [CrossRef]
- Javorova, R.; Rezuchova, B.; Feckova, L.; Novakova, R.; Csolleiova, D.; Kopacova, M.; Patoprsty, V.; Opaterny, F.; Sevcikova, B.; Kormanec, J. A new synthetic biology system for investigating the biosynthesis of antibiotics and other secondary metabolites in streptomycetes. J. Biotechnol. 2024, 392, 128–138. [Google Scholar] [CrossRef]
- Wang, M.; Carver, J.J.; Phelan, V.V.; Sanchez, L.M.; Garg, N.; Peng, Y.; Nguyen, D.D.; Watrous, J.; Kapono, C.A.; Luzzatto-Knaan, T.; et al. Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. Nat. Biotechnol. 2016, 34, 828–837. [Google Scholar] [CrossRef] [PubMed]
- Cho, H.M.; Boccia, E.; Rajwani, R.; O’Connor, R.D.; Boshoff, H.; Barry III, C.; Bifulco, G.; Bewley, C.A. A Systematic Approach to Discover New Natural Product Scaffolds Using Database-Derived Relative Mass Spectral Defects and Molecular Networking. JACS Au 2025, 5, 653–665. [Google Scholar] [CrossRef]
- Almeida, L.L.C.; Fernandes, S.P.; Oliveira, G.D.; Silva, M.S.; de Souza, T.A.; Rodrigues-Junior, V.S.; Cibulski, S.P. Harnessing Actinobacteria Secondary Metabolites for Tuberculosis Drug Discovery: Historical Trends, Current Status and Future Outlooks. Nat. Prod. Bioprospecting 2025, 15, 52. [Google Scholar] [CrossRef]
- Kabilan, M.; Duraipandiyan, V.; Paul, P.; Jakson, A. Actinomycetes: A Source of Anticancer Metabolites. Curr. Med. Chem. 2024, 32, 6517–6546. [Google Scholar] [CrossRef]
- Pongen, Y.L.; Thirumurugan, D.; Ramasubburayan, R.; Prakash, S. Harnessing actinobacteria potential for cancer prevention and treatment. Microb. Pathog. 2023, 183, 106324. [Google Scholar] [CrossRef] [PubMed]











| Compound | Actinomycetota Species | Isolation Source | MIC (μg/mL) | MIC (μM) | MRSA Strain | Country | Reference |
|---|---|---|---|---|---|---|---|
| Actinomycin D | Streptomyces sp. ZZ338 | Rocks | 0.08 | 0.06 | ATCC 43300 | CN | [62] |
| Actinomycin V | 0.08 | 0.06 | |||||
| Actinomycin X0β | 0.61 | 0.48 | |||||
| Actinomycin X2 | Streptomyces globisporus WA5-2-37 | Animal-associated (Periplaneta americana) | 0.25 | 0.20 | ATCC 43300 | CN | [63] |
| Actinomycin X2 | Streptomyces smyrnaeus UKAQ_23 | Mangrove | 3.13–12.5 | 2.46 | Clinical isolate | AS | [64] |
| Actinomycin D | 12.5–25 | 9.96 | |||||
| Actinomycin V | Streptomyces sp. M7 | Soil | 3.95 | 3.11 | Clinical isolate | IN | [65] |
| Actinomycin X2 | 3.50 | 2.76 | |||||
| Actinomycin D | 4.0 | 3.19 | |||||
| Fijimycin A | Streptomyces sp. CNS-575 | Marine sediments | 4–32 | 4.55 | Clinical isolate | FJ | [66] |
| Fijimycin B | >32 | 37.25 | |||||
| Fijimycin C | 8–32 | 8.94 | |||||
| Etamycin A | 4–16 | 4.55 | |||||
| Diperamycin | Streptomyces griseoaurantiacus MK393-AF2 | Soil | 0.10 | 0.12 | Clinical isolate | JP | [67] |
| Vinylamycin | Streptomyces sp. MI982-63F1 | Soil | 3.13 | 6.34 | Clinical isolate | JP | [68] |
| Lunaemycin A | Streptomyces lunaelactis MM109 T | Moonmilk deposits | 0.12 | 0.17 | ATCC 43300 | BE | [69] |
| NW-G01 | Streptomyces alboflavus 313 | Soil | 7.82 | 10.33 | Clinical isolate | CN | [70] |
| NW-G08 | Streptomyces alboflavus 313 | Soil | 1.56 | 2.02 | Clinical isolate | CN | [71] |
| NW-G09 | 12.5 | 16.16 | |||||
| Zunyimycin A | Streptomyces sp. FJS31-2 | Soil | 6.9–16.7 | 13.02 | Clinical isolates | CN | [72] |
| Zunyimycin B | 7.9–25.6 | 14.92 | |||||
| Zunyimycin C | 3.8–8.1 | 6.68 | |||||
| Medermycin | Streptomyces albolongus CA-186053 | Animal-associated (marine sponge) | 2.0 | 4.37 | Clinical isolate | GQ | [73] |
| G-15F | 4.0 | 8.42 | |||||
| Strepoxepinmycin A | Streptomyces sp. XMA39 | Marine sediments | 12 | 25.3 | ATCC 43300 | CN | [74] |
| Strepoxepinmycin B | 15 | 29.7 | |||||
| Strepoxepinmycin C | 6 | 11.8 | |||||
| Strepoxepinmycin D | 3 | 6.36 | |||||
| Medermycin | 0.25 | 0.55 | |||||
| Streptovertimycin A | Streptomyces morookaense SC1169 | Soil | 2.50 | 4.80 | Clinical isolate | CN | [75] |
| Streptovertimycin B | 2.50 | 4.50 | |||||
| Streptovertimycin C | 2.50 | 4.50 | |||||
| Streptovertimycin D | 1.25 | 2.31 | |||||
| Streptovertimycin E | 2.50 | 4.34 | |||||
| Streptovertimycin F | 2.50 | 4.34 | |||||
| Streptovertimycin G | 0.63 | 1.07 | |||||
| Streptovertimycin H | 5 | 8.19 | |||||
| Streptovertimycin U | Streptomyces morookaense SC1169 | Soil | 2.50 | Clinical isolate | CN | [76] | |
| Streptovertimycin V | >10 | ||||||
| 14-Bromo-streptovertidione | >10 | ||||||
| Streptovertimycin W | >10 | ||||||
| Streptovertimycin X | 5 | ||||||
| Streptovertimycin Y | >10 | ||||||
| Streptovertimycin Z1 | >10 | ||||||
| Streptovertimycin Z2 | 5 | ||||||
| Streptovertimycin Z3 | 1.3 | ||||||
| Streptovertimycin Z4 | 1.3 | ||||||
| Streptovertimycin Z5 | 1.3 | ||||||
| Fasamycin R | 2.50 | ||||||
| Fasamycin S | 0.6 | ||||||
| Accramycin A | 1.3 | ||||||
| Accramycin B | >10 | ||||||
| Streptorubin B | Streptomyces sp. MC11024 | Soil | 32 | 81.7 | Clinical isolate | JP | [77] |
| 8-O-methyltetrangomycin | Streptomyces sp. SBRK2 | Animal-associated (Spirostella sp.) | 2 | 5.95 | Clinical isolate | IN | [78] |
| Lactoquinomycin A | Streptomyces bacillaris MBTC38 | Marine sediments | 0.06–0.25 | 0.13 | ATCC 43300 and clinical isolates | KR | [79] |
| Lactoquinomycin B | 1–8 | 2.11 | |||||
| N-methyl actoquinomycin A | 0.25–1 | 0.56 | |||||
| Menoxymycin A | 0.5–2 | 1.06 | |||||
| Neoabyssomycin F | Streptomyces koyangensis SCSIO 5802 | Marine sediments | 16 | 22.0 | Clinical isolate | CN | [80] |
| Neoabyssomycin G | 16 | 22.0 | |||||
| Weddellamycin | Streptomyces sp. DSS69 | Animal-associated (marine sponge) | 0.10 | 0.23 | Clinical isolate | AQ | [81] |
| Polyketomycin | Streptomyces sp. MK277-AF1 | Soil | 0.2 | 0.23 | Clinical isolate | JP | [82] |
| Citreamicin θA | Streptomyces caelestis | Sea water | 0.25 | 0.43 | ATCC 43300 | AS | [83] |
| Citreamicin θB | 0.25 | 0.43 | |||||
| Citreaglycon A | 8 | 15.4 | |||||
| Dehydrocitreaglycon A | 0.25 | 0.50 | |||||
| Lactonamycin | Streptomyces rishiriensis MJ773-88K4 | Soil | 0.39–0.78 | 0.68 | Clinical isolate | JP | [84] |
| N-acetyl-N-demethylmayamycin | Streptomyces sp. 182SMLY | Marine sediments | 10 | 20.35 | ATCC 43300 | CN | [85] |
| Waldiomycin | Streptomyces sp. MK844-mF10 | Soil | 16 | 22.8 | Clinical isolate | JP | [86] |
| Isoikarugamycin | Streptomyces zhaozhouensis CA-185989 | Marine sediments | 2–4 | 4.18 | Clinical isolate | GQ | [87] |
| 28-N-methylikarugamycin | 1–2 | 2.03 | |||||
| Ikarugamycin | 2–4 | 4.18 | |||||
| Albocycline | Streptomyces sp. 6–31 | Soil | 0.5–1 | 1.62 | Clinical isolate | JP | [88] |
| 11′,12′-dehydroelaiophylin | Streptomyces sp. 7–145 | Marine sediments | 2 | 1.99 | ATCC 33591 | CN | [89] |
| 11,11′-O-dimethyl-14′-deethyl-14′-methylelaiophylin | 32 | 30.8 | |||||
| Elaiophylin | 1 | 0.98 | |||||
| 11-O-methylelaiophylin | 2 | 1.92 | |||||
| 11,11′-O-dimethylelaiophylin | 16 | 15.19 | |||||
| Efomycin G | 2 | 1.98 | |||||
| Quadoctomycin | Streptomyces sp. MM168-141F8 | Soil | 1–2 | 0.70 | Clinical isolate | JP | [90] |
| 30-demethyllydicamycin | Streptomyces platensis TP-A0598 | Sea water | 3.13 | 3.72 | Clinical isolate | JP | [91] |
| 14,15-dehydro-8-deoxylydicamycin | 6.25 | 7.47 | |||||
| 30-demethyl-8-deoxylydicamycin | 1.56 | 1.89 | |||||
| 8-deoxylydicamycin | 3.13 | 3.73 | |||||
| Bafilomycin D | Streptomyces sp. HZP-2216E | Plant-associated (Ulva pertusa) | 33.1 | 54.7 | ATCC 43300 | HT | [92] |
| 9-hydroxybafilomycin D | 33.2 | 53.5 | |||||
| Bafilomycin A1 | 16.8 | 27.0 | |||||
| 23-O-butyrylbafilomycin D | 7.4 | 11.0 | |||||
| Hygrocin N | Streptomyces sp. ZZ1956 | Mangrove | 15 | 30.5 | Clinical isolate | IR | [93] |
| Hygrocin O | 24 | 47.2 | |||||
| Hygrocin R | 9 | 17.2 | |||||
| Hygrocin T | 44 | 91.6 | |||||
| Hygrocin U | 3 | 10.6 | |||||
| 2-amino-6-hydroxy-7-methyl-1,4-naphthoquinone | 10 | 49.3 | |||||
| 2-acetamide-6-hydroxy-7-methyl-1,4-naphthoquinone | 3 | 12.3 | |||||
| 3′-methoxy(1,1′,4′,1″-terphenyl)-2′,6′-diol | 5 | 17.1 | |||||
| Echoside C | 6 | 13.2 | |||||
| Echoside A | 8 | 17.1 | |||||
| AN483 | Streptomyces sp. AN100483 | Soil | 32 | 100.41 | Clinical isolate | KR | [94] |
| 2,3-dihydroxy-9,10-anthraquinone | Streptomyces galbus ERINLG-127 | Soil | 12.5 | 52.07 | Clinical isolate | IN | [95] |
| Napyradiomycin A3 | Streptomyces sp. CA-271078 | Soil | >96 | >217.0 | Clinical isolate | TN | [96] |
| Napyradiomycin B7a | 48 | 96.5 | |||||
| Napyradiomycin B7b | >64 | >128.7 | |||||
| Napyradiomycin SC | >96 | >186.3 | |||||
| Napyradiomycin D1 | 12–24 | 25.0 | |||||
| MDN-0170 | >96 | >200.4 | |||||
| 3-chloro-6, 8-dihydroxy-8-α-lapachone | 48–96 | 155.5 | |||||
| 3-chloro-6-hydroxy-8-methoxy-α-lapachone | >64 | >198.7 | |||||
| Napyradiomycin B6 | 48–96 | 96.4 | |||||
| 18-hydroxynapyradiomycin A1 | 48–96 | 96.5 | |||||
| Napyradiomycin A2a | 12–24 | 24.2 | |||||
| Napyradiomycin A2b | 12–24 | 24.2 | |||||
| Napyradiomycin B4 | 12–24 | 22.5 | |||||
| Napyradiomycin B2 | 3–6 | 6.29 | |||||
| Napyradiomycin B5 | 12–24 | 23.0 | |||||
| Napiradiomycin 1 | Streptomyces sp. CNH-070 | Marine sediments | 16 | 34.9 | Clinical isolate | US | [97] |
| Napiradiomycin 2 | 64 | 145.4 | |||||
| Napiradiomycin 3 | >64 | >139.7 | |||||
| Napiradiomycin 4 | >64 | >134.4 | |||||
| Napiradiomycin 5 | >64 | >122.6 | |||||
| Napiradiomycin 6 | >64 | >128.5 | |||||
| Napiradiomycin B2 | 32 | 67.1 | |||||
| Napiradiomycin B3 | 2 | 3.58 | |||||
| Napiradiomycin B4 | 32 | 59.9 | |||||
| MDN-0170 | Streptomyces CA-271078 | Marine sediments | >64 | 133.6 | Clinical isolate | ST | [98] |
| 4-dehydro-4a-dechloronapyradiomycin A1 | 4–8 | 8.99 | |||||
| Napiradiomycin A1 | 0.5–1 | 1.03 | |||||
| 3-chloro-6,8-dihydroxy-8-α-lapachone | >64 | >200 | |||||
| Streptoglutarimide A | Streptomyces sp. ZZ741 | Marine sediments | 9 | 30.5 | Clinical isolate | CN | [99] |
| Streptoglutarimide B | 11 | 37.3 | |||||
| Streptoglutarimide C | 10 | 34.1 | |||||
| Streptoglutarimide D | 10 | 33.9 | |||||
| Streptoglutarimide E | 9 | 28.9 | |||||
| Streptoglutarimide F | 10 | 32.1 | |||||
| Streptoglutarimide G | 10 | 33.9 | |||||
| Streptoglutarimide H | 9 | 30.3 | |||||
| Streptoglutarimide I | 11 | 37.0 | |||||
| Streptoglutarimide J | 10 | 35.8 | |||||
| Streptovitacin A | 10 | 33.6 | |||||
| Collismycin A | Streptomyces globisporus WA5-2-37 | Animal-associated (Periplaneta americana) | 8 | 29.1 | ATCC 43300 | CN | [63] |
| Antibiotic E-975 | Streptomyces sp. AT37 | Soil | 20 | 49.0 | Clinical isolate | DZ | [100] |
| Cremimycin | Streptomyces sp. MJ635-86F5 | Soil | 0.39–0.78 | 0.62 | Clinical isolate | JP | [101] |
| Chromomycin A9 | Streptomyces microflavus MBTI36 | Marine sediments | 0.13 | 0.11 | ATCC 43300, ATCC 700787, ATCC 700788 and clinical isolate | KR | [102] |
| Chromomycin Ap | 0.06–0.25 | 0.05 | |||||
| Chromomycin A2 | 0.06–0.25 | 0.05 | |||||
| Chromomycin A3 | 0.13 | 0.11 | |||||
| 1-Monolinolein | Streptomyces sp. YBQ59 | Plant-associated (Cinnamomum cassia) | 8.5 | 24.0 | ATCC 35984 | VN | [103] |
| Bafilomycin D | 11.1 | 18.4 | |||||
| Nonactic acid | 18.6 | 92.0 | |||||
| Daidzein | 24.8 | 97.6 | |||||
| 3′-Hydroxydaidzein | 36.1 | 133.6 | |||||
| Nosokomycin A | Streptomyces sp. K04-0144 | Soil | 0.125 | 84.0 | Clinical isolate | JP | [104] |
| Nosokomycin B | 0.125 | 84.1 | |||||
| Nosokomycin C | 0.125 | 94.3 | |||||
| Nosokomycin D | 0.125 | 94.2 | |||||
| Plicacetin | Streptomyces sp. SP5 | Soil | 3.8 | 7.3 | Clinical isolate | JP | [105] |
| Crude Extracts/Unidentified Compounds | Actinomycetota Species | Isolation Source | MIC/Disk Diffusion | MRSA Strain | Country | Reference |
|---|---|---|---|---|---|---|
| Ethyl acetate fraction | Streptomyces sp. VITBRK2 | Marine sediments | 17 mm | ATCC 29213 | IN | [107] |
| Dichloromethane fraction | Streptomyces sp. M10-77 | Marine sediments | 40 mm | ATCC 43300 | PE | [108] |
| Methanolic fraction | Streptomyces SMC 277 T | Soil | 9.3 mm | Clinical isolate | TH | [109] |
| Antibiosis test (agar-plug test) | Streptomyces sp. EMB24 | Soil | 22 mm | ATCC 43300 | IN | [110] |
| Antibiosis test (agar-plug test) | Streptomyces sp. MUSC 135 T e MUSC 137T | Soil | 10.5 mm | ATCC BAA-44 | MY | [111] |
| Ethyl acetate fraction | Streptomyces californicus | Plant-associated (Datura metel) | 21.3 mm | ATCC 43300 | IN | [112] |
| Ethyl acetate fraction | Streptomyces NIOT-Ch-40 | Marine sediments | 1.56 μg/mL | Clinical isolate | BD | [113] |
| Ethyl acetate fraction | Streptomyces griseoplanus NRRL-ISP 5009 | Soil | 2.5 µg/mL | Clinical isolate | NG | [114] |
| Ethyl acetate fraction | Streptomyces cavourensis MH16 | Plant-associated (Millingtonia hortensis) | 25 μg/mL | ATCC 33915 | IN | [115] |
| Ethyl acetate fraction | Streptomyces sp. SUK 25 | Plant-associated (Zingiber spectabile) | 1.95 µg/mL | ATCC 49476 | MY | [116] |
| Ethyl acetate fraction/Unidentified compound | Streptomyces pharmamarensis ICN40 | Animal-associated (marine sponge) | >10 mm | ATCC 33591 | IN | [117] |
| Ethyl acetate fraction/Unidentified compounds | Streptomyces sp. CS392 | Soil | 2.03–4.06 µg/mL | Clinical isolate | KR | [118] |
| Methanolic fraction | Streptomyces sp. O PVRK-1 | Soil | 32–34 µg/mL | Clinical isolate | IN | [119] |
| Ethyl acetate fraction | Streptomyces sp. MNP32 | Soil | 12 μg/mL | Clinical isolate | IN | [120] |
| Ethyl acetate fraction | Streptomyces sp. 4054 | Marine sediments | 12 mm | ATCC 33591 | BR | [121] |
| Ethyl acetate fraction/Unidentified compound | Streptomyces sp. O MN41 | Marine sediments | 2.8 µg/mL | ATCC 33591 | IR | [122] |
| Chloroformic fraction | Streptomyces sp. JRG-02 | Soil | 1.25 μg/mL | Clinical isolate | IN | [123] |
| Methanolic fraction/Unidentified compound | Streptomyces rubrolavendulae ICN3 | Soil | 2.5 μg/mL | Clinical isolate | IN | [124] |
| Ethyl acetate fraction | Streptomyces sp. BT-408 | Marine sediments | 64 µg/mL | ATCC 33591 | IN | [125] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernandes, S.P.; de Almeida, L.L.C.; de Souza, T.A.; de Oliveira, G.D.; Silva, M.d.S.; Rodrigues-Junior, V.d.S.; Alves, H.d.S.; Cibulski, S.P. Chemical Diversity and Ecological Origins of Anti-MRSA Metabolites from Actinomycetota. Antibiotics 2025, 14, 1060. https://doi.org/10.3390/antibiotics14111060
Fernandes SP, de Almeida LLC, de Souza TA, de Oliveira GD, Silva MdS, Rodrigues-Junior VdS, Alves HdS, Cibulski SP. Chemical Diversity and Ecological Origins of Anti-MRSA Metabolites from Actinomycetota. Antibiotics. 2025; 14(11):1060. https://doi.org/10.3390/antibiotics14111060
Chicago/Turabian StyleFernandes, Sayoane Pessoa, Luana Layse Câmara de Almeida, Thalisson Amorim de Souza, Genil Dantas de Oliveira, Marcelly da Silveira Silva, Valnês da Silva Rodrigues-Junior, Harley da Silva Alves, and Samuel Paulo Cibulski. 2025. "Chemical Diversity and Ecological Origins of Anti-MRSA Metabolites from Actinomycetota" Antibiotics 14, no. 11: 1060. https://doi.org/10.3390/antibiotics14111060
APA StyleFernandes, S. P., de Almeida, L. L. C., de Souza, T. A., de Oliveira, G. D., Silva, M. d. S., Rodrigues-Junior, V. d. S., Alves, H. d. S., & Cibulski, S. P. (2025). Chemical Diversity and Ecological Origins of Anti-MRSA Metabolites from Actinomycetota. Antibiotics, 14(11), 1060. https://doi.org/10.3390/antibiotics14111060

