Drug Resistance and Comorbidities in the Treatment of Pulmonary Tuberculosis: A Multicenter Retrospective Cohort Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Global Tuberculosis Report 2024; World Health Organization: Geneva, Switzerland, 2024.
- World Health Organization. WHO Consolidated Guidelines on Drug-Resistant Tuberculosis Treatment; World Health Organization: Geneva, Switzerland, 2019.
- Guglielmetti, L.; Veziris, N.; Aubry, A.; Brossier, F.; Bernard, C.; Sougakoff, W.; Jarlier, V.; Robert, J. Risk factors for extensive drug resistance in multidrug-resistant tuberculosis cases: A case-case study. Int. J. Tuberc. Lung. Dis. 2018, 22, 54–59. [Google Scholar] [CrossRef]
- Ahmad, N.; Ahuja, S.D.; Akkerman, O.W.; Alffenaar, J.W.C.; Anderson, L.F.; Baghaei, P.; Bang, D.; Barry, P.M.; Bastos, M.L.; Behera, D.; et al. Treatment correlates of successful outcomes in pulmonary multidrug-resistant tuberculosis: An individual patient data meta-analysis. Lancet 2018, 392, 821–834. [Google Scholar] [CrossRef]
- Rodrigues, L.; Cravo, P.; Viveiros, M. Efflux pump inhibitors as a promising adjunct therapy against drug resistant tuberculosis: A new strategy to revisit mycobacterial targets and repurpose old drugs. Expert Rev. Anti-Infect. Ther. 2020, 18, 741–757. [Google Scholar] [CrossRef]
- Vasilyeva, I.A.; Samoylova, A.G.; Lovacheva, O.V.; Chernousova, L.N.; Bagdasaryan, T.R. The effect of different TB drugs and antimicrobial agents on the efficiency of treatment of tuberculosis patients with multiple drug resistance. Tuberc. Lung Dis. 2017, 95, 9–15. (In Russian) [Google Scholar] [CrossRef]
- Andries, K.; Verhasselt, P.; Guillemont, J.; Göhlmann, H.W.; Neefs, J.M.; Winkler, H.; Van Gestel, J.; Timmerman, P.; Zhu, M.; Lee, E.; et al. A diarylquinoline drug active on the ATP synthase of Mycobacterium tuberculosis. Science 2005, 307, 223–227. [Google Scholar] [CrossRef]
- Chan, B.; Khadem, T.M.; Brown, J. A review of tuberculosis: Focus on bedaquiline. Am. J. Health Pharm. 2013, 70, 84–94. [Google Scholar] [CrossRef]
- World Health Organization. The Use of Bedaquiline in the Treatment of Multidrug-Resistant Tuberculosis: Interim Policy Guidance; World Health Organization: Geneva, Switzerland, 2013.
- Shaw, E.S.; Stoker, N.G.; Potter, J.L.; Claassen, H.; Leslie, A.; Tweed, C.D.; Chiang, C.Y.; Conradie, F.; Esmail, H.; Lange, C.; et al. Bedaquiline: What might the future hold? Lancet Microbe 2024, 5, 100909. [Google Scholar] [CrossRef]
- Starshinova, A.; Dovgalyk, I.; Belyaeva, E.; Glushkova, A.; Osipov, N.; Kudlay, D. Efficacy of Tuberculosis Treatment in Patients with Drug-Resistant Tuberculosis with the Use of Bedaquiline: The Experience of the Russian Federation. Antibiotics 2022, 11, 1622. [Google Scholar] [CrossRef] [PubMed]
- Stavitskaya, N.V.; Felker, I.G.; Zhukova, E.M.; Tlif, А.I.; Doktorova, N.P.; Kudlay, D.А. The multivariate analysis of results of bedaquiline use in the therapy of MDR/XDR pulmonary tuberculosis. Tuberc. Lung Dis. 2020, 98, 56–62. (In Russian) [Google Scholar] [CrossRef]
- Yablonskiy, P.K.; Starshinova, А.А.; Nazarenko, М.М.; Beliaeva, Е.N.; Chuzhov, А.L.; Alekseev, D.Y.; Pavlova, М.V. Increasing the efficiency of patients with pulmonary tuberculosis treatment with the use of new therapy regimens. Bull. Contemp. Clin. Med. 2022, 15, 67–75. (In Russian) [Google Scholar] [CrossRef]
- Conradie, F.; Diacon, A.H.; Ngubane, N.; Howell, P.; Everitt, D.; Crook, A.M.; Mendel, C.M.; Egizi, E.; Moreira, J.; Timm, J.; et al. Treatment of Highly Drug-Resistant Pulmonary Tuberculosis. N. Engl. J. Med. 2020, 382, 893–902. [Google Scholar] [CrossRef]
- Nyang’wa, B.T.; Berry, C.; Kazounis, E.; Motta, I.; Parpieva, N.; Tigay, Z.; Solodovnikova, V.; Liverko, I.; Moodliar, R.; Dodd, M.; et al. A 24-Week, All-Oral Regimen for Rifampin-Resistant Tuberculosis. N. Engl. J. Med. 2022, 387, 2331–2343. [Google Scholar] [CrossRef]
- World Health Organization. WHO Consolidated Guidelines on Tuberculosis. Module 4: Treatment-Drug-Resistant Tuberculosis Treatment, 2022 Update; World Health Organization: Geneva, Switzerland, 2022.
- World Health Organization. WHO Consolidated Guidelines on Tuberculosis: Module 6: Tuberculosis and Comorbidities; World Health Organization: Geneva, Switzerland, 2024.
- World Health Organization. WHO Operational Handbook on Tuberculosis: Module 6: Tuberculosis and Comorbidities, 2nd ed.; World Health Organization: Geneva, Switzerland, 2024.
- Wang, B.Y.; Song, K.; Wang, H.T.; Wang, S.S.; Wang, W.J.; Li, Z.W.; Du, W.Y.; Xue, F.Z.; Zhao, L.; Cao, W.C. Comorbidity increases the risk of pulmonary tuberculosis: A nested case-control study using multi-source big data. BMC Pulm. Med. 2024, 24, 29. [Google Scholar] [CrossRef]
- Antonio-Arques, V.; Franch-Nadal, J.; Moreno-Martinez, A.; Real, J.; Orcau, À.; Mauricio, D.; Mata-Cases, M.; Julve, J.; Navas Mendez, E.; Puig Treserra, R.; et al. Subjects With Diabetes Mellitus Are at Increased Risk for Developing Tuberculosis: A Cohort Study in an Inner-City District of Barcelona (Spain). Front. Public Health 2022, 10, 789952. [Google Scholar] [CrossRef] [PubMed]
- Kang, Y.A. Tuberculosis treatment in patients with comorbidities. Tuberc. Respir. Dis. 2014, 76, 257–260. [Google Scholar] [CrossRef] [PubMed]
- Nowiński, A.; Wesołowski, S.; Korzeniewska-Koseła, M. The impact of comorbidities on tuberculosis treatment outcomes in Poland: A national cohort study. Front. Public Health 2023, 11, 1253615. [Google Scholar] [CrossRef] [PubMed]
- Kunoor, A.; Reddy, S.C.; Gopalakrishnan, V.; Rakesh, P.S.; Kadayara, A.R.; Haridas, N.; James, P.T.; Mehta, A.A. Burden of Comorbidity and Treatment Outcome in Tuberculosis—A Descriptive Study from a Tertiary Care Center, Kerala, India. Pulmon 2023, 25, 44–48. [Google Scholar] [CrossRef]
- Zhang, S.; Tong, X.; Wang, L.; Zhang, T.; Huang, J.; Wang, D.; Wang, L.; Fan, H. Clinical Characteristics and Prognostic Analysis of Patients with Pulmonary Tuberculosis and Type 2 Diabetes Comorbidity in China: A Retrospective Analysis. Front. Public Health. 2021, 9, 710981. [Google Scholar] [CrossRef]
- Jakimova, M.A.; Karpina, N.; Gordeeva, O.; Asanov, R. Comorbidity: Pulmonary tuberculosis and chronic obstructive pulmonary disease. Eur. Respir. J. 2019, 54, PA2969. [Google Scholar] [CrossRef]
- Yamaguti, V.; Rijo, R.; Crepaldi, N.; Ruffino-Netto, A.; Carvalho, I.; Alves, D. Charlson Comorbidities Index importance evaluation as a predictor to tuberculosis treatments outcome in the state of São Paulo, Brazil. Procedia Comput. Sci. 2018, 138, 258–263. [Google Scholar] [CrossRef]
- Starshinova, A.; Nazarenko, M.; Belyaeva, E.; Chuzhov, A.; Osipov, N.; Kudlay, D. Assessment of Comorbidity in Patients with Drug-Resistant Tuberculosis. Pathogens 2023, 12, 1394. [Google Scholar] [CrossRef]
- Tao, N.N.; Li, Y.F.; Song, W.M.; Liu, J.Y.; Zhang, Q.Y.; Xu, T.T.; Li, S.J.; An, Q.Q.; Liu, S.Q.; Li, H.C. Risk factors for drug-resistant tuberculosis, the association between comorbidity status and drug-resistant patterns: A retrospective study of previously treated pulmonary tuberculosis in Shandong, China, during 2004–2019. BMJ Open 2021, 11, e044349. [Google Scholar] [CrossRef]
- Utz, J.; Whitley, C.B.; van Giersbergen, P.L.; Kolb, S.A. Comorbidities and pharmacotherapies in patients with Gaucher disease type 1: The potential for drug-drug interactions. Mol. Genet. Metab. 2016, 117, 172–178. [Google Scholar] [CrossRef] [PubMed]
- Moyé, L. What can we do about exploratory analyses in clinical trials? Contemp. Clin. Trials 2015, 45 Pt B, 302–310. [Google Scholar] [CrossRef] [PubMed]
- Nuzzo, R. Scientific method: Statistical errors. Nature 2014, 506, 150–152. [Google Scholar] [CrossRef] [PubMed]
- Linh, N.N.; Viney, K.; Gegia, M. World Health Organization treatment outcome definitions for tuberculosis: 2021 update. Eur. Respir. J. 2021, 58, 2100804. [Google Scholar] [CrossRef]
- World Health Organization. Definitions and Reporting Framework for Tuberculosis–2013 Revision; World Health Organization: Geneva, Switzerland, 2013.
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023; Available online: https://www.R-project.org/ (accessed on 19 October 2023).
- Campbell, I. Chi-squared and Fisher-Irwin tests of two-by-two tables with small sample recommendations. Stat. Med. 2007, 26, 3661–3675. [Google Scholar] [CrossRef]
- Aragon, T. epitools: Epidemiology Tools. R package version 0.5-10.1. 2020. Available online: https://CRAN.R-project.org/package=epitools (accessed on 22 March 2020).
- Rothman, K.J.; Greenland, S. Modern Epidemiology; Lippincott-Raven Publishers: Philadelphia, PA, USA, 1998. [Google Scholar]
- Guglielmetti, L.; Le Dû, D.; Veziris, N.; Caumes, E.; Marigot-Outtandy, D.; Yazdanpanah, Y.; Robert, J.; Fréchet-Jachym, M. Is bedaquiline as effective as fluoroquinolones in the treatment of multidrug-resistant tuberculosis? Eur. Respir. J. 2016, 48, 582–585. [Google Scholar] [CrossRef]
- Rubinstein, E.; Camm, J. Cardiotoxicity of fluoroquinolones. J. Antimicrob. Chemother. 2002, 49, 593–596. [Google Scholar] [CrossRef]
- Patel, H.; Pawara, R.; Pawara, K.; Ahmed, F.; Shirkhedkar, A.; Surana, S. A structural insight of bedaquiline for the cardiotoxicity and hepatotoxicity. Tuberculosis 2019, 117, 79–84. [Google Scholar] [CrossRef]
- Shao, H.; Shi, D.; Dai, Y. Linezolid and the risk of QT interval prolongation: A pharmacovigilance study of the Food and Drug Administration Adverse Event Reporting System. Br. J. Clin. Pharmacol. 2023, 89, 1386–1392. [Google Scholar] [CrossRef]
- Song, W.M.; Li, Y.F.; Liu, J.Y.; Tao, N.N.; Liu, Y.; Zhang, Q.Y.; Xu, T.T.; Li, S.J.; An, Q.Q.; Liu, S.Q.; et al. Drug resistance of previously treated tuberculosis patients with diabetes mellitus in Shandong, China. Respir. Med. 2020, 163, 105897. [Google Scholar] [CrossRef]
- Lang, S.M.; Ortmann, J.; Rostig, S.; Schiffl, H. Ursodeoxycholic acid attenuates hepatotoxicity of multidrug treatment of mycobacterial infections: A prospective pilot study. Int. J. Mycobacteriol. 2019, 8, 89–92. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Zhang, F.; Xu, C.; Liu, K.G.; Wu, W.; Tian, Y.X. Is the Prophylactic Use of Hepatoprotectants Necessary in Anti-Tuberculosis Treatment? Chemotherapy 2017, 62, 269–278. [Google Scholar] [CrossRef]
- Behzadifar, M.; Heydarvand, S.; Behzadifar, M.; Bragazzi, N.L. Prevalence of Hepatitis C Virus in Tuberculosis Patients: A Systematic Review and Meta-Analysis. Ethiop. J. Health Sci. 2019, 29, 945–956. [Google Scholar] [CrossRef]
- Ashkin, A.; Alexis, A.; Ninneman, M.; Tresgallo, R.R.; Ashkin, D.; Peloquin, C.A. Concomitant Treatment of Tuberculosis and Hepatitis C Virus in Coinfected Patients Using Serum Drug Concentration Monitoring. Open Forum Infect. Dis. 2023, 10, ofad237. [Google Scholar] [CrossRef]
- Jansen van Vuuren, J.; Crocker-Buque, T.; Berry, C.; Viatushka, D.; Usmanova, R.; Nyang’wa, B.T.; Parpieva, N.; Liverko, I.; Solodovnikova, V.; Sinha, A. Prevalence, treatment, and outcomes of hepatitis C in an MDR/RR-TB trial cohort. PLoS Glob. Public Health 2024, 4, e0003057. [Google Scholar] [CrossRef] [PubMed]
- Byrne, S.T.; Denkin, S.M.; Zhang, Y. Aspirin antagonism in isoniazid treatment of tuberculosis in mice. Antimicrob. Agents Chemother. 2007, 51, 794–795. [Google Scholar] [CrossRef] [PubMed]
- Rockwood, N.; Pasipanodya, J.G.; Denti, P.; Sirgel, F.; Lesosky, M.; Gumbo, T.; Meintjes, G.; McIlleron, H.; Wilkinson, R.J. Concentration-Dependent Antagonism and Culture Conversion in Pulmonary Tuberculosis. Clin. Infect. Dis. 2017, 64, 1350–1359, Erratum in Clin. Infect. Dis. 2017, 65, 1431–1433. https://doi.org/10.1093/cid/cix563. [Google Scholar] [CrossRef]
Gender | |
Male | 160 (73.1%) |
Female | 59 (26.9%) |
Age | |
18–24 | 15 (6.8%) |
25–40 | 105 (47.9%) |
41–60 | 89 (40.6%) |
61–80 | 10 (4.6%) |
Conditions | |
Patients with XDR-TB | 103 (47.0%) |
Patients with comorbidities | 106 (48.4%) |
Treatment outcomes | |
Success (cured or treatment completed) | 123 (56.2%) |
Other outcomes | 96 (43.8%) |
Features | Univariate Analysis | Multivariate Analysis | ||
---|---|---|---|---|
OR (95% CI) | p-Value | OR (95% CI) | p-Value | |
CCI > 0 | 0.53 (0.30, 0.91) | 0.020 | 0.81 (0.41, 1.62) | 0.55 |
XDR-TB | 0.56 (0.32, 0.96) | 0.033 | 0.49 (0.27, 0.88) | 0.018 |
Age less than 25 years | 5.20 (1.37, 36.90) | 0.014 | 4.87 (1.24, 32.41) | 0.045 |
Bedaquiline for XDR-TB | 4.15 (1.32, 16.20) | 0.012 | 6.51 (1.98, 26.04) | 0.0036 |
Resistance to thioamides if CCI > 0 | 0.46 (0.21, 0.99) | 0.044 | 0.40 (0.17, 0.89) | 0.028 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Osipov, N.N.; Spelnikov, D.; Belyaeva, E.; Kulpina, A.; Nazarenko, M.; Mikhail, G.; Nikolenko, N.Y.; Kudlay, D.; Starshinova, A. Drug Resistance and Comorbidities in the Treatment of Pulmonary Tuberculosis: A Multicenter Retrospective Cohort Study. Antibiotics 2025, 14, 986. https://doi.org/10.3390/antibiotics14100986
Osipov NN, Spelnikov D, Belyaeva E, Kulpina A, Nazarenko M, Mikhail G, Nikolenko NY, Kudlay D, Starshinova A. Drug Resistance and Comorbidities in the Treatment of Pulmonary Tuberculosis: A Multicenter Retrospective Cohort Study. Antibiotics. 2025; 14(10):986. https://doi.org/10.3390/antibiotics14100986
Chicago/Turabian StyleOsipov, Nikolay N., Dmitry Spelnikov, Ekaterina Belyaeva, Anastasia Kulpina, Mikhail Nazarenko, Gudkin Mikhail, Nikolay Yu. Nikolenko, Dmitry Kudlay, and Anna Starshinova. 2025. "Drug Resistance and Comorbidities in the Treatment of Pulmonary Tuberculosis: A Multicenter Retrospective Cohort Study" Antibiotics 14, no. 10: 986. https://doi.org/10.3390/antibiotics14100986
APA StyleOsipov, N. N., Spelnikov, D., Belyaeva, E., Kulpina, A., Nazarenko, M., Mikhail, G., Nikolenko, N. Y., Kudlay, D., & Starshinova, A. (2025). Drug Resistance and Comorbidities in the Treatment of Pulmonary Tuberculosis: A Multicenter Retrospective Cohort Study. Antibiotics, 14(10), 986. https://doi.org/10.3390/antibiotics14100986