Multi-Analyte Method for Antibiotic Residue Determination in Honey Under EU Regulation 2021/808
Abstract
1. Introduction
2. Results and Discussion
2.1. Compound Identification
2.2. Validation Parameters
2.3. Analysis of Commercial Portuguese Samples
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Instrumentation
3.3. Standard Solutions
3.4. Sample Preparation and Extraction Protocol
3.5. Method Validation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baffoni, L.; Alberoni, D.; Gaggìa, F.; Braglia, C.; Stanton, C.; Ross, P.R.; Di Gioia, D. Honeybee Exposure to Veterinary Drugs: How Is the Gut Microbiota Affected? Microbiol. Spectr. 2021, 9, e0017621. [Google Scholar] [CrossRef]
- Kumar, R.; Kumari, S.; Saxena, A. Role of Honeybees in Improving Biodiversity and Sustainable Source of Income. J. Entomol. Res. 2024, 48, 924–927. [Google Scholar] [CrossRef]
- Hristov, P.; Shumkova, R.; Palova, N.; Neov, B. Factors Associated with Honey Bee Colony Losses: A Mini-Review. Vet. Sci. 2020, 7, 166. [Google Scholar] [CrossRef]
- Margaoan, R.; Papa, G.; Nicolescu, A.; Cornea-Cipcigan, M.; Kösoğlu, M.; Topal, E.; Negri, I. Environmental Pollution Effect on Honey Bees and Their Derived Products: A Comprehensive Analysis. Environ. Sci. Pollut. Res. 2024, 32, 10370–10391. [Google Scholar] [CrossRef]
- Ullah, A.; Gajger, I.T.; Majoros, A.; Dar, S.A.; Khan, S.; Shah, A.H.; Khabir, M.N.; Hussain, R.; Khan, H.U.; Hameed, M.; et al. Viral Impacts on Honey Bee Populations: A Review. Saudi J. Biol. Sci. 2021, 28, 523–530. [Google Scholar] [CrossRef] [PubMed]
- Ortiz-Alvarado, Y.; Clark, D.R.; Vega-Melendez, C.J.; Flores-Cruz, Z.; Domingez-Bello, M.G.; Giray, T. Antibiotics in Hives and Their Effects on Honey Bee Physiology and Behavioral Development. Biol. Open 2020, 9, bio053884. [Google Scholar] [CrossRef] [PubMed]
- Reybroeck, W.; Daeseleire, E.; De Brabander, H.F.; Herman, L. Antimicrobials in Beekeeping. Vet. Microbiol. 2012, 158, 1–11. [Google Scholar] [CrossRef]
- Arsène, M.M.J.; Davares, A.K.L.; Viktorovna, P.I.; Andreevna, S.L.; Sarra, S.; Khelifi, I.; Sergueïevna, D.M. The Public Health Issue of Antibiotic Residues in Food and Feed: Causes, Consequences, and Potential Solutions. Vet. World 2022, 15, 662–671. [Google Scholar] [CrossRef]
- Bacanlı, M.G. The Two Faces of Antibiotics: An Overview of the Effects of Antibiotic Residues in Foodstuffs. Arch. Toxicol. 2024, 98, 1717–1725. [Google Scholar] [CrossRef]
- European Commission. Commission Regulation (EU) No 37/2010 of 22 December 2009 on Pharmacologically Active Substances and Their Classification Regarding Maximum Residue Limits in Foodstuffs of Animal Origin. Off. J. Eur. Communities 2010, L 15, 1–72. [Google Scholar]
- Pratiwi, R.; Ramadhanti, S.P.; Amatulloh, A.; Megantara, S.; Subra, L. Recent Advances in the Determination of Veterinary Drug Residues in Food. Foods 2023, 12, 3422. [Google Scholar] [CrossRef]
- Bargańska, Ż.; Namieśnik, J.; Ślebioda, M. Determination of Antibiotic Residues in Honey. TrAC Trends Anal. Chem. 2011, 30, 1035–1041. [Google Scholar] [CrossRef]
- Kujawski, M.W.; Namieśnik, J. Challenges in Preparing Honey Samples for Chromatographic Determination of Contaminants and Trace Residues. TrAC Trends Anal. Chem. 2008, 27, 785–793. [Google Scholar] [CrossRef]
- Ghimpețeanu, O.M.; Pogurschi, E.N.; Popa, D.C.; Dragomir, N.; Drăgotoiu, T.; Mihai, O.D.; Petcu, C.D. Antibiotic Use in Livestock and Residues in Food—A Public Health Threat: A Review. Foods 2022, 11, 1430. [Google Scholar] [CrossRef]
- Jakšić, S.; Mihaljev, Ž.; Kartalović, B.; Babić, J.; Vidaković, S.; Baloš-Živkov, M. Evaluation of ELISA Tests as Screening Methods for Determination of Antibiotics and Sulfonamides in Honey. Food Feed. Res. 2018, 45, 11–17. [Google Scholar] [CrossRef]
- Mahmoudi, R.; Norian, R.; Pajohi-Alamoti, M. Antibiotic Residues in Iranian Honey by Elisa. Int. J. Food Prop. 2014, 17, 2367–2373. [Google Scholar] [CrossRef]
- Wu, Q.; Shabbir, M.A.B.; Peng, D.; Yuan, Z.; Wang, Y. Microbiological Inhibition-Based Method for Screening and Identifying of Antibiotic Residues in Milk, Chicken Egg and Honey. Food Chem. 2021, 363, 130074. [Google Scholar] [CrossRef] [PubMed]
- Orso, D.; Floriano, L.; Ribeiro, L.C.; Bandeira, N.M.G.; Prestes, O.D.; Zanella, R. Simultaneous Determination of Multiclass Pesticides and Antibiotics in Honey Samples Based on Ultra-High Performance Liquid Chromatography-Tandem Mass Spectrometry. Food Anal. Methods 2016, 9, 1638–1653. [Google Scholar] [CrossRef]
- Schwaiger, B.; König, J.; Lesueur, C. Development and Validation of a Multi-Class UHPLC-MS/MS Method for Determination of Antibiotic Residues in Dairy Products. Food Anal. Methods 2018, 11, 1417–1434. [Google Scholar] [CrossRef]
- Igualada, C.; Giraldo, J.; Font, G.; Yusà, V. Validation of a Multi-Residue UHPLC-HRMS Method for Antibiotics Screening in Milk, Fresh Cheese, and Whey. J. Food Compos. Anal. 2022, 106, 104265. [Google Scholar] [CrossRef]
- Leite, M.; Marques, A.R.; Pouca, A.S.V.; Barros, S.C.; Barbosa, J.; Ramos, F.; Afonso, I.M.; Freitas, A. UHPLC-ToF-MS as a High-Resolution Mass Spectrometry Tool for Veterinary Drug Quantification in Milk. Separations 2023, 10, 457. [Google Scholar] [CrossRef]
- Spörri, A.S.; Jan, P.; Cognard, E.; Ortelli, D.; Edder, P. Comprehensive Screening of Veterinary Drugs in Honey by Ultra-High-Performance Liquid Chromatography Coupled to Mass Spectrometry. Food Addit. Contam. Part A 2014, 31, 806–816. [Google Scholar] [CrossRef]
- Chen, Z.; Daka, Z.; Yao, L.; Dong, J.; Zhang, Y.; Li, P.; Zhang, K.; Ji, S. Recent Progress in the Application of Chromatography-Coupled Mass-Spectrometry in the Analysis of Contaminants in Food Products. Food Chem. X 2025, 27, 102397. [Google Scholar] [CrossRef]
- Shin, D.; Kim, J.; Kang, H.-S. Simultaneous Determination of Multi-Pesticide Residues in Fish and Shrimp Using Dispersive-Solid Phase Extraction with Liquid Chromatography–Tandem Mass Spectrometry. Food Control 2021, 120, 107552. [Google Scholar] [CrossRef]
- European Commission. Commission Implementing Regulation (EU) 2021/808 of 22 March 2021 on the Performance of Analytical Methods for Residues of Pharmacologically Active Substances Used in Food-Producing Animals and on the Interpretation of Results as Well as on the Methods to Be Used for Sampling and Repealing Decisions 2002/657/EC and 98/179/EC. Off. J. Eur. Union 2021, L 180, 84–109. [Google Scholar]
- Varenina, I.; Bilandžić, N.; Luburić, Đ.B.; Kolanović, B.S.; Varga, I.; Sedak, M.; Đokić, M. Determination of Quinolones, Macrolides, Sulfonamides and Tetracyclines in Honey Using QuEChERS Sample Preparation and UHPLC-MS/MS Analysis. Food Control 2023, 148, 109676. [Google Scholar] [CrossRef]
- Xu, J.; Yang, M.; Wang, Y.; Yang, Y.; Tu, F.; Yi, J.; Hou, J.; Lu, H.; Jiang, X.; Chen, D. Multiresidue Analysis of 15 Antibiotics in Honey Using Modified QuEChERS and High Performance Liquid Chromatography-Tandem Mass Spectrometry. J. Food Compos. Anal. 2021, 103, 104120. [Google Scholar] [CrossRef]
- Yang, Y.; Lin, G.; Liu, L.; Lin, T. Rapid Determination of Multi-Antibiotic Residues in Honey Based on Modified QuEChERS Method Coupled with UPLC–MS/MS. Food Chem. 2022, 374, 131733. [Google Scholar] [CrossRef]
- Lei, H.; Guo, J.; Lv, Z.; Zhu, X.; Xue, X.; Wu, L.; Cao, W. Simultaneous Determination of Nitroimidazoles and Quinolones in Honey by Modified QuEChERS and LC-MS/MS Analysis. Int. J. Anal. Chem. 2018, 2018, 4271385. [Google Scholar] [CrossRef] [PubMed]
- Gün, R.; Dursun, İ.; Arıcı, B.; Saraç, Y. Detection of Multiple Antibiotic Residues in Turkish Pine and Blossom Honeys Using LC–MS/MS Method. Chem. Biodivers 2024, 21, e202301261. [Google Scholar] [CrossRef]
- Paoletti, F.; Sdogati, S.; Barola, C.; Giusepponi, D.; Moretti, S.; Galarini, R. Two-Procedure Approach for Multiclass Determination of 64 Antibiotics in Honey Using Liquid Chromatography Coupled to Time-of-Flight Mass Spectrometry. Food Control 2022, 136, 108893. [Google Scholar] [CrossRef]
- Wang, Z.; Li, Y.; Chang, Q.; Kang, J.; Pang, G.-F. A Detection and Confirmation Strategy for Screening of Veterinary Drugs in Honey by Liquid Chromatography Coupled Quadrupole Time-of-Flight Mass Spectrometry. Anal. Methods 2018, 10, 59–68. [Google Scholar] [CrossRef]
- Perin, M.; Barnet, L.S.; da Costa, J.S.; Barreto, F. Determination of Different Antimicrobial Classes Residues in Honey Using a Simple LLE Technique and Clean-Up Dispersive SPE Couple LC–MS/MS: Application in Sample of Different Regions from Brazil. Food Anal. Methods 2023, 16, 1099–1109. [Google Scholar] [CrossRef]
- Rodrigues, H.; Leite, M.; Oliveira, B.; Freitas, A. Development and Optimization of Extraction Methodologies for the Determination of Antibiotics in Honey by UHPLC-ToF-MS. J. AOAC Int. 2025, qsaf043. [Google Scholar] [CrossRef] [PubMed]
- European Commission. Commission Implementing Regulation (EU) 2018/470 of 21 March 2018 on Detailed Rules on the Maximum Residue Limit to Be Considered for Control Purposes for Foodstuffs Derived from Animals Which Have Been Treated in the EU under Article 11 of Directive 2001/82/EC. Off. J. Eur. Union 2018, L 79, 16–18. [Google Scholar]
Compound | Formula | Exact Mass (Da) | RT (min) | RRT Maximum Deviation (%) | Exact Mass Deviation (ppm) |
---|---|---|---|---|---|
Cefacetrile | C13H13N3O6S | 340.0599 | 4.46 | 0.46 | 0.48 |
Cefoperazone | C25H27N9O8S2 | 646.1490 | 4.46 | 0.32 | −0.98 |
Trimethoprim | C14H18N4O3 | 291.1452 | 3.97 | 0.04 | −0.02 |
Cinoxacin | C12H10N2O5 | 263.0639 | 4.65 | 0.12 | −4.80 |
Ciprofloxacin | C17H18FN3O3 | 332.1408 | 4.04 | 0.06 | 0.91 |
Danofloxacin | C19H20FN3O3 | 358.1563 | 4.09 | 0.01 | 0.56 |
Enrofloxacin | C19H22FN3O3 | 360.1721 | 4.14 | 0.01 | 0.75 |
Lomefloxacin | C17H19F2N3O3 | 352.1466 | 4.10 | 0.00 | −0.40 |
Tylosin A | C46H77NO17 | 916.5248 | 4.91 | 0.03 | −1.81 |
Lincomycin | C18H34N2O6S | 407.2223 | 3.79 | 0.00 | 3.14 |
Sulfadimethoxine | C12H14N4O4S | 311.0806 | 4.92 | 0.04 | −0.91 |
Sulfadimidine | C15H15N5O2S2 | 279.0925 | 5.63 | 0.01 | 4.17 |
Sulfathiazole | C9H9N3O2S2 | 256.0209 | 3.87 | 0.27 | −0.02 |
Oxytetracycline | C22H24N2O9 | 461.1552 | 4.04 | 0.10 | −0.51 |
Tetracycline | C22H24N2O8 | 445.1604 | 4.14 | 0.04 | −0.36 |
Compound | RT (min.) | Range (μg·kg−1) | Linearity (R2 Value) | Levels (μg·kg−1) (n = 6) | Repeatability (%) | Reproducibility (%) | Recovery (%) | CCβ (μg·kg−1) | LOD (μg·kg−1) | LOQ (μg·kg−1) |
---|---|---|---|---|---|---|---|---|---|---|
Cefacetrile | 4.00 | 12.5–250 | 0.9891 | 62.5 | 16.6 | 27.4 | 86.5 | 12.5 | 1.52 | 4.59 |
125 | 4.6 | 5.6 | 99.0 | |||||||
187.5 | 6.2 | 7.6 | 103.5 | |||||||
Cefoperazone | 4.46 | 5–100 | 0.9898 | 25 | 9.6 | 24.2 | 98.2 | 5 | 1.10 | 3.35 |
50 | 1.9 | 8.3 | 95.1 | |||||||
75 | 13.1 | 12.5 | 105.2 | |||||||
Cinoxacin | 4.66 | 15–60 | 0.9801 | 15 | 11.1 | 10.9 | 101.1 | 15 | 6.19 | 18.77 |
30 | 0.5 | 2.5 | 111.8 | |||||||
45 | 11.4 | 9.8 | 106.2 | |||||||
Ciprofloxacin | 4.03 | 5–100 | 0.9905 | 25 | 32.3 | 31.6 | 89.9 | 5 | 0.41 | 1.23 |
50 | 13.1 | 10.8 | 112.1 | |||||||
75 | 22.9 | 20.0 | 101.3 | |||||||
Danofloxacin | 4.09 | 3–60 | 0.9662 | 15 | 1.6 | 13.3 | 95.2 | 3 | 0.29 | 0.87 |
30 | 9.8 | 9.3 | 117.5 | |||||||
45 | 9.7 | 10.8 | 107.6 | |||||||
Enrofloxacin | 4.14 | 5–100 | 0.9429 | 25 | 21.4 | 18.6 | 90.7 | 5 | 0.14 | 0.43 |
50 | 7.2 | 6.7 | 109.5 | |||||||
75 | 9.5 | 9.5 | 117.6 | |||||||
Lomefloxacin | 4.09 | 3–60 | 0.9783 | 15 | 12.3 | 14.8 | 92.5 | 3 | 0.09 | 0.29 |
30 | 11.5 | 10.0 | 104.9 | |||||||
45 | 11.5 | 12.7 | 111.0 | |||||||
Trimethoprim | 3.96 | 5–100 | 0.9957 | 25 | 23.4 | 27.1 | 90.5 | 5 | 0.20 | 0.62 |
50 | 9.1 | 8.1 | 102.3 | |||||||
75 | 14.6 | 15.5 | 104.5 | |||||||
Tylosin A | 4.91 | 5–100 | 0.9702 | 25 | 27.9 | 24.4 | 101.4 | 5 | 0.14 | 0.42 |
50 | 7.0 | 7.7 | 108.8 | |||||||
75 | 18.3 | 18.4 | 111.0 | |||||||
Lincomycin | 3.79 | 5–100 | 0.9849 | 25 | 4.4 | 4.7 | 108.1 | 5 | 0.64 | 1.93 |
50 | 8.2 | 9.8 | 104.7 | |||||||
75 | 18.6 | 22.6 | 106.2 | |||||||
Sulfadimethoxine | 4.92 | 10–200 | 0.9915 | 50 | 10.2 | 11.5 | 95.7 | 10 | 0.10 | 0.29 |
100 | 2.9 | 2.3 | 96.3 | |||||||
150 | 11.2 | 12.9 | 107.8 | |||||||
Sulfadimidine | 4.26 | 10–200 | 0.9647 | 50 | 24.4 | 14.9 | 85.2 | 10 | 1.30 | 3.95 |
100 | 11.6 | 10.5 | 103.0 | |||||||
150 | 19.3 | 14.4 | 115.0 | |||||||
Sulfathiazole | 3.87 | 10–200 | 0.9913 | 50 | 17.9 | 21.1 | 91.2 | 10 | 0.17 | 0.52 |
100 | 6.3 | 4.7 | 104.6 | |||||||
150 | 16.1 | 15.3 | 106.4 | |||||||
Oxytetracycline | 4.03 | 10–200 | 0.9982 | 50 | 27.8 | 14.6 | 100.0 | 10 | 0.96 | 2.91 |
100 | 20.0 | 17.5 | 97.9 | |||||||
150 | 4.5 | 13.7 | 103.6 | |||||||
Tetracycline | 4.13 | 10–200 | 0.9964 | 50 | 17.2 | 20.1 | 80.1 | 10 | 2.13 | 6.47 |
100 | 16.3 | 13.1 | 96.5 | |||||||
150 | 19.7 | 19.2 | 101.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodrigues, H.; Leite, M.; Oliveira, M.B.P.P.; Freitas, A. Multi-Analyte Method for Antibiotic Residue Determination in Honey Under EU Regulation 2021/808. Antibiotics 2025, 14, 987. https://doi.org/10.3390/antibiotics14100987
Rodrigues H, Leite M, Oliveira MBPP, Freitas A. Multi-Analyte Method for Antibiotic Residue Determination in Honey Under EU Regulation 2021/808. Antibiotics. 2025; 14(10):987. https://doi.org/10.3390/antibiotics14100987
Chicago/Turabian StyleRodrigues, Helena, Marta Leite, Maria Beatriz P. P. Oliveira, and Andreia Freitas. 2025. "Multi-Analyte Method for Antibiotic Residue Determination in Honey Under EU Regulation 2021/808" Antibiotics 14, no. 10: 987. https://doi.org/10.3390/antibiotics14100987
APA StyleRodrigues, H., Leite, M., Oliveira, M. B. P. P., & Freitas, A. (2025). Multi-Analyte Method for Antibiotic Residue Determination in Honey Under EU Regulation 2021/808. Antibiotics, 14(10), 987. https://doi.org/10.3390/antibiotics14100987