Rapid Nanopore Sequencing of Positive Blood Cultures Using Automated Benzyl-Alcohol Extraction Improves Time-Critical Sepsis Management
Abstract
1. Introduction
2. Results
2.1. DNA Purity After Benzyl-Alcohol Pretreatment and Automated Extraction
2.2. Automated Workflow Increases Read Count, Read Length, and Assembly Contiguity
2.3. Increased Sequencing Output and Read-Length Metrics
2.4. Improved Species-Level Classification Accuracy
2.5. End-to-End Workflow Time and Operational Efficiency
3. Discussion
4. Materials and Methods
4.1. Clinical Specimens
4.2. Benzyl Alcohol Phase-Separation Pretreatment
4.3. Nucleic Acid Extraction
4.3.1. Nucleic Acid Automated Extraction
4.3.2. Nucleic Acid Manual Extraction
4.4. DNA Quality Assessment
4.5. Library Preparation and Nanopore Sequencing
4.6. Bioinformatic Metrics and Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AMR | Antimicrobial Resistance |
N50 | Read length at which 50% of the total bases are contained in reads ≥ that length |
ONT | Oxford Nanopore Technologies |
PBS | Phosphate-Buffered Saline |
SPS | Sodium Polyanetholesulfonate |
References
- Rudd, K.E.; Johnson, S.C.; Agesa, K.M.; Shackelford, K.A.; Tsoi, D.; Kievlan, D.R.; Colombara, D.V.; Ikuta, K.S.; Kissoon, N.; Finfer, S.; et al. Global, regional, and national sepsis incidence and mortality, 1990–2017: Analysis for the Global Burden of Disease Study. Lancet 2020, 395, 200–211. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Roberts, D.; Wood, K.E.; Light, B.; Parrillo, J.E.; Sharma, S.; Suppes, R.; Feinstein, D.; Zanotti, S.; Taiberg, L.; et al. Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock. Crit. Care Med. 2006, 34, 1589–1596. [Google Scholar] [CrossRef] [PubMed]
- Charalampous, T.; Kay, G.L.; Richardson, H.; Aydin, A.; Baldan, R.; Jeanes, C.; Rae, D.; Grundy, S.; Turner, D.J.; Wain, J.; et al. Nanopore metagenomics enables rapid clinical diagnosis of bacterial lower respiratory infection. Nat. Biotechnol. 2019, 37, 783–792. [Google Scholar] [CrossRef] [PubMed]
- Taxt, A.M.; Avershina, E.; Frye, S.A.; Naseer, U.; Ahmad, R. Rapid identification of pathogens, antibiotic-resistance genes, and plasmids in blood cultures by nanopore sequencing. Sci. Rep. 2020, 10, 7622. [Google Scholar] [CrossRef] [PubMed]
- Harris, P.N.A.; Bauer, M.J.; Lüftinger, L.; Egle, A.; Kaczmarek, A.; Bateson, M.; Stahlhut, J.; Schöberl, A.; Schäfer, J.; Lagler, H.; et al. Rapid nanopore sequencing and predictive susceptibility testing of positive blood cultures from intensive-care patients with sepsis. Microbiol. Spectr. 2024, 12, e0306523. [Google Scholar] [CrossRef] [PubMed]
- Alcolea-Medina, A.; Alder, C.; Snell, L.B.; Perry, C.; Williams, R.; Hakeem, L.; Frazer, Z.; Price, J.; Edgeworth, J.D.; Goldenberg, S.D. A unified metagenomic method for rapid detection of microorganisms in clinical samples. Commun. Med. 2024, 4, 135. [Google Scholar] [CrossRef] [PubMed]
- Chung, M.; Dudley, E.; Kittana, H.; Abdo, Z.; Norman, K.; Sanchez, P.L.; Gabler, F.; Lawhon, S.D.; Andrews-Polymenis, H.L. Genomic profiling of antimicrobial resistance genes in clinical Salmonella isolates from cattle in the Texas Panhandle, USA. Antibiotics 2024, 13, 843. [Google Scholar] [CrossRef] [PubMed]
- Shelenkov, A.; Petrova, L.; Mironova, A.; Zamyatin, M.; Korobeynikov, A.; Akimkin, V.; Mikhaylova, Y.; Shcherbakova, L.; Malakhova, M. Long-read whole genome sequencing elucidates the mechanisms of amikacin resistance in multidrug-resistant Klebsiella pneumoniae isolates obtained from COVID-19 patients. Antibiotics 2022, 11, 1364. [Google Scholar] [CrossRef] [PubMed]
- Fredricks, D.N.; Relman, D.A. Improved amplification of microbial DNA from blood cultures by removal of the PCR inhibitor sodium polyanetholesulfonate. J. Clin. Microbiol. 1998, 36, 2810–2816. [Google Scholar] [CrossRef] [PubMed]
- Hyman, J.; Scholz, C.F.P.; Godtfredsen, S.E.; Christensen, J.J. Improved DNA extraction from blood cultures by benzyl alcohol/guanidine phase separation. PLoS ONE 2010, 5, e12095. [Google Scholar]
- Trigodet, F.; Lolans, K.; Fogarty, E.; Shaffer, M.; Glickman, C.; Zwick, M.E.; Green, R.E.; Weinstein, R.A.; Hayden, M.K.; Claassen, J.; et al. High-molecular-weight DNA extraction strategies for long-read sequencing of complex metagenomes. Mol. Ecol. Resour. 2022, 22, 1786–1802. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Chen, T.; Wang, Y.; Guo, L.; Gao, F.; Bai, H.; Li, J.; Xu, H.; Ma, L.; Zhang, R. Comparison analysis of different DNA extraction methods on suitability for long-read metagenomic nanopore sequencing. Front. Cell. Infect. Microbiol. 2022, 12, 919903. [Google Scholar] [CrossRef]
- Gand, M.; Bloemen, B.; Vanneste, K.; Heylen, K.; Coucke, W.; De Keersmaecker, S.C.J.; Roosens, N.H.C.; De Keersmaecker, S.C.J. Comparison of six DNA extraction methods for isolation of high-yield, high-molecular-weight DNA suitable for shotgun metagenomics nanopore sequencing. BMC Genomics 2023, 24, 438. [Google Scholar] [CrossRef] [PubMed]
- Rehner, J.; Schmartz, G.P.; Groeger, L.; Bunk, B.; Spröer, C.; Overmann, J.; Rupp, O.; Goesmann, A.; Sczyrba, A. Systematic cross-biospecimen evaluation of DNA extraction kits for long- and short-read multi-metagenomic sequencing studies. Genomics Proteomics Bioinform. 2022, 20, 405–417. [Google Scholar] [CrossRef]
- Nicholls, S.M.; Quick, J.C.; Tang, S.; Loman, N.J. Ultra-deep, long-read nanopore sequencing of mock microbial community standards. GigaScience 2019, 8, giz043. [Google Scholar] [CrossRef] [PubMed]
- Wilson, M.R.; Sample, H.A.; Zorn, K.C.; Arevalo, S.; Yu, G.; Neuhaus, J.; Federman, S.; Stryke, D.; Briggs, B.; Langelier, C.; et al. Clinical metagenomic sequencing for diagnosis of meningitis and encephalitis. N. Engl. J. Med. 2019, 380, 2327–2340. [Google Scholar] [CrossRef]
- Cardenas, A.M.; Smyth, D.S.; Benson, M.D.; Narayanan, M.; Deiss, T.C.; Jankeel, A.; Dobbins, S.; MacNeil, A.; Altman, D.R.; Zody, M.C.; et al. Automation of DNA Extraction Accelerates Metagenomic Sequencing for Infectious Disease Diagnostics. Clin. Chem. 2023, 69, 310–320. [Google Scholar]
- Payne, A.; Holmes, N.; Clarke, T.; Munro, R.; Debebe, B.J.; Loose, M. ReadFish enables targeted nanopore sequencing of gigabase-sized genomes by real-time mapping. Nat. Biotechnol. 2021, 39, 442–450. [Google Scholar] [CrossRef] [PubMed]
- Oxford Nanopore Technologies. PCR Barcoding Kit SQK-PBK004: Protocol PBK_9125_v109_revS_24Mar2024; Oxford Nanopore Technologies: Oxford, UK, 2024. [Google Scholar]
- De Maayer, P.; NanoStat Developers. NanoStat v1.6.0 User Manual; Vrije Universiteit Amsterdam: Amsterdam, The Netherlands, 2023. [Google Scholar]
Nr | Method | NanoDrop Concentration (ng/µL) | 260/280 | 260/230 | Qubit (ng/µL) | N/Q Ratio ** |
---|---|---|---|---|---|---|
Culture ID | ||||||
clBC_01 L. monocytogenes | LabTurboAIO | 34.45 | 2.05 | 2.04 | 8.41 | 4.10 |
Qiagen | 43.20 | 2.46 | 1.13 | 6.37 | 6.78 | |
clBC_02 S. marcescens | LabTurboAIO | 67.10 | 2.06 | 1.83 | 66.80 | 1.00 |
Qiagen | 57.30 | 2.29 | 2.47 | 9.66 | 5.93 | |
clBC_03 S. agalactiae (GBS) | LabTurboAIO | 63.20 | 1.90 | 2.45 | 51.60 | 1.22 |
Qiagen | 47.20 | 2.16 | 3.98 | 13.70 | 3.45 | |
clBC_04 S. agalactiae (GBS) | LabTurboAIO | 261.40 | 2.05 | 2.32 | 91.90 | 2.84 |
Qiagen | 536.10 | 2.17 | 2.36 | 69.40 | 7.72 | |
clBC_05 K. michiganensis | LabTurboAIO | 49.80 | 1.94 | 1.18 | 40.30 | 1.24 |
Qiagen | 35.05 | 2.00 | 1.44 | 8.50 | 4.12 | |
clBC_06 K. aerogenes | LabTurboAIO | 66.40 | 1.87 | 0.66 | 25.30 | 2.62 |
Qiagen | 46.30 | 2.09 | 1.84 | 7.77 | 5.96 | |
clBC_07 P. mirabilis | LabTurboAIO | 60.15 | 1.90 | 1.37 | 42.20 | 1.43 |
Qiagen | 48.20 | 2.08 | 2.07 | 3.82 | 12.62 | |
clBC_08 S. marcescens | LabTurboAIO | 143.05 | 1.90 | 2.06 | 167.00 | 0.86 |
Qiagen | 88.80 | 2.06 | 2.58 | 81.10 | 1.09 | |
clBC_09 * S. maltophilia | LabTurboAIO | 12.75 | NR | 0.84 | Low | NR |
Qiagen | 25.40 | 2.41 | 1.74 | 8.19 | 3.10 | |
clBC_10 S. agalactiae (GBS) | LabTurboAIO | 51.85 | 1.88 | 1.90 | 43.80 | 1.18 |
Qiagen | 131.50 | 2.18 | 2.40 | 26.90 | 4.89 | |
clBC_11 P. mirabilis | LabTurboAIO | 22.95 | 1.91 | 1.19 | 19.60 | 1.17 |
Qiagen | 58.15 | 2.21 | 3.83 | 10.60 | 5.49 | |
clBC_12 * E. cloacae | LabTurboAIO | 9.75 | NR | 1.15 | Low | NR |
Qiagen | 16.65 | 2.40 | 3.10 | 4.37 | 3.81 | |
clBC_13 B. fragilis | LabTurboAIO | 179.15 | 1.87 | 2.09 | 236.00 | 0.76 |
Qiagen | 145.30 | 1.96 | 2.78 | 169.00 | 0.86 |
Nr | Method | No. of Reads | Total Base | Median Read Length | Mean Read Length | N50 |
---|---|---|---|---|---|---|
Culture ID | ||||||
clBC_01 L. monocytogenes | LabTurboAIO | 4111 | 4,833,591 | 459 | 1175 | 2986 |
Qiagen | 3216 | 10,429,773 | 1439 | 3243 | 7572 | |
clBC_02 S. marcescens | LabTurboAIO | 43,686 | 359,964,236 | 3959 | 8239 | 18,268 |
Qiagen | 413 | 285,148 | 178 | 690 | 7838 | |
clBC_03 S. agalactiae (GBS) | LabTurboAIO | 138,154 | 444,477,306 | 914 | 3217 | 10,145 |
Qiagen | 26,792 | 123,120,280 | 2854 | 4595 | 8761 | |
clBC_04 S. agalactiae (GBS) | LabTurboAIO | 73,297 | 94,102,975 | 550 | 1283 | 2857 |
Qiagen | 493 | 213,438 | 181 | 432 | 1425 | |
clBC_05 K. michiganensis | LabTurboAIO | 91,259 | 549,269,602 | 3169 | 6018 | 12,312 |
Qiagen | 2894 | 6,682,247 | 1067 | 2309 | 4997 | |
clBC_06 K. aerogenes | LabTurboAIO | 14,483 | 112,100,594 | 4660 | 7740 | 14,435 |
Qiagen | 1042 | 3,759,742 | 1513 | 3608 | 8944 | |
clBC_07 P. mirabilis | LabTurboAIO | 104,479 | 482,210,627 | 1264 | 4615 | 13,754 |
Qiagen | 637 | 1,171,550 | 194 | 1839 | 10,474 | |
clBC_08 S. marcescens | LabTurboAIO | 545,680 | 660,035,314 | 406 | 1209 | 4307 |
Qiagen | 77,605 | 57,104,905 | 373 | 735 | 1171 | |
clBC_09 S. maltophilia | LabTurboAIO | 684 | 591,111 | 205 | 864 | 5532 |
Qiagen | 84,725 | 227,474,249 | 1084 | 2629 | 5906 | |
clBC_10 S. agalactiae (GBS) | LabTurboAIO | 161,548 | 867,973,977 | 2334 | 5372 | 12,684 |
Qiagen | 2915 | 5,774,694 | 489 | 1946 | 6710 | |
clBC_11 P. mirabilis | LabTurboAIO | 135,079 | 610,332,467 | 2514 | 4518 | 8733 |
Qiagen | 36,490 | 73,806,550 | 934 | 1978 | 4185 | |
clBC_12 E. cloacae | LabTurboAIO | 129 | 75,002 | 227 | 581 | 2616 |
Qiagen | 23,181 | 57,514,746 | 1174 | 2382 | 4999 | |
clBC_13 B. fragilis | LabTurboAIO | 380,880 | 1,370,486,813 | 1605 | 3263 | 6864 |
Qiagen | 130,641 | 343,957,760 | 1058 | 1998 | 3876 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tai, C.-S.; Chung, H.-Y.; Lin, T.-H.; Chang, C.-K.; Perng, C.-L.; Hsieh, P.-S.; Shang, H.-S.; Jian, M.-J. Rapid Nanopore Sequencing of Positive Blood Cultures Using Automated Benzyl-Alcohol Extraction Improves Time-Critical Sepsis Management. Antibiotics 2025, 14, 1001. https://doi.org/10.3390/antibiotics14101001
Tai C-S, Chung H-Y, Lin T-H, Chang C-K, Perng C-L, Hsieh P-S, Shang H-S, Jian M-J. Rapid Nanopore Sequencing of Positive Blood Cultures Using Automated Benzyl-Alcohol Extraction Improves Time-Critical Sepsis Management. Antibiotics. 2025; 14(10):1001. https://doi.org/10.3390/antibiotics14101001
Chicago/Turabian StyleTai, Chi-Sheng, Hsing-Yi Chung, Tai-Han Lin, Chih-Kai Chang, Cherng-Lih Perng, Po-Shiuan Hsieh, Hung-Sheng Shang, and Ming-Jr Jian. 2025. "Rapid Nanopore Sequencing of Positive Blood Cultures Using Automated Benzyl-Alcohol Extraction Improves Time-Critical Sepsis Management" Antibiotics 14, no. 10: 1001. https://doi.org/10.3390/antibiotics14101001
APA StyleTai, C.-S., Chung, H.-Y., Lin, T.-H., Chang, C.-K., Perng, C.-L., Hsieh, P.-S., Shang, H.-S., & Jian, M.-J. (2025). Rapid Nanopore Sequencing of Positive Blood Cultures Using Automated Benzyl-Alcohol Extraction Improves Time-Critical Sepsis Management. Antibiotics, 14(10), 1001. https://doi.org/10.3390/antibiotics14101001