Rapid Molecular Diagnostics of Pneumonia Caused by Gram-Negative Bacteria: A Clinician’s Review
Abstract
:1. Introduction
2. Epidemiology
3. Main GNB Involved in Pneumonia
Phenotypes and Genotypes of Antimicrobial Resistance
4. Molecular Diagnostic Assays
5. Diagnostic Performance of Rapid Molecular Tests in GNB Pneumonia
5.1. Identification of Respiratory Bacterial Pathogens
5.2. Identification of Bacterial Resistance to Antimicrobials
5.3. Discordances between the Multiplex-PCR Panels and Conventional Culture in the Detection of GNB in Respiratory Samples
6. Clinical Utility of Molecular Testing in GNB Pneumonia
6.1. Clinical Utility of Rapid Multiplex PCR Assessed in Randomized Controlled Trials
6.2. Contributors to Clinical Utility of Molecular Syndromic Panels in Pneumonia
7. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kyu, H.H.; Vongpradith, A.; Sirota, S.B.; Novotney, A.; Troeger, C.E.; Doxey, M.C.; Bender, R.G.; Ledesma, J.R.; Biehl, M.H.; Albertson, S.B.; et al. Age–Sex differences in the global burden of lower respiratory infections and risk factors, 1990–2019: Results from the Global Burden of Disease Study 2019. Lancet Infect. Dis. 2022, 22, 1626–1647. [Google Scholar] [CrossRef] [PubMed]
- Jain, S.; Self, W.H.; Wunderink, R.G.; Fakhran, S.; Balk, R.; Bramley, A.M.; Reed, C.; Grijalva, C.G.; Anderson, E.J.; Courtney, D.M.; et al. Community-Acquired Pneumonia Requiring Hospitalization among U.S. Adults. N. Engl. J. Med. 2015, 373, 415–427. [Google Scholar] [CrossRef] [PubMed]
- Dessajan, J.; Timsit, J.-F. Impact of Multiplex PCR in the Therapeutic Management of Severe Bacterial Pneumonia. Antibiotics 2024, 13, 95. [Google Scholar] [CrossRef]
- Tellapragada, C.; Giske, C.G. The Unyvero Hospital-Acquired pneumonia panel for diagnosis of secondary bacterial pneumonia in COVID-19 patients. Eur. J. Clin. Microbiol. Infect. Dis. 2021, 40, 2479–2485. [Google Scholar] [CrossRef] [PubMed]
- Buchan, B.W.; Armand-Lefevre, L.; Anderson, N. Molecular Diagnosis of Pneumonia (Including Multiplex Panels). Clin. Chem. 2022, 68, 59–68. [Google Scholar] [CrossRef]
- Liapikou, A.; Cillóniz, C.; Torres, A. Emerging strategies for the noninvasive diagnosis of nosocomial pneumonia. Expert Rev. Anti. Infect. Ther. 2019, 17, 523–533. [Google Scholar] [CrossRef]
- Torres, A.; Cilloniz, C.; Niederman, M.S.; Menéndez, R.; Chalmers, J.D.; Wunderink, R.G.; van der Poll, T. Pneumonia. Nat. Rev. Dis. Primers 2021, 7, 25. [Google Scholar] [CrossRef]
- Alnimr, A. Antimicrobial Resistance in Ventilator-Associated Pneumonia: Predictive Microbiology and Evidence-Based Therapy. Infect. Dis. Ther. 2023, 12, 1527–1552. [Google Scholar] [CrossRef]
- Son, Y.G.; Shin, J.; Ryu, H.G. Pneumonitis and pneumonia after aspiration. J. Dent. Anesth. Pain Med. 2017, 17, 1–12. [Google Scholar] [CrossRef]
- Gentilotti, E.; De Nardo, P.; Cremonini, E.; Górska, A.; Mazzaferri, F.; Canziani, L.M.; Hellou, M.M.; Olchowski, Y.; Poran, I.; Leeflang, M.; et al. Diagnostic accuracy of point-of-care tests in acute community-acquired lower respiratory tract infections. A systematic review and meta-analysis. Clin. Microbiol. Infect. 2022, 28, 13–22. [Google Scholar] [CrossRef]
- Luna, C.M.; Palma, I.; Niederman, M.S.; Membriani, E.; Giovini, V.; Wiemken, T.L.; Peyrani, P.; Ramirez, J. The Impact of Age and Comorbidities on the Mortality of Patients of Different Age Groups Admitted with Community-acquired Pneumonia. Ann. ATS 2016, 13, 1519–1526. [Google Scholar] [CrossRef] [PubMed]
- Magill, S.S.; Edwards, J.R.; Bamberg, W.; Beldavs, Z.G.; Dumyati, G.; Kainer, M.A.; Lynfield, R.; Maloney, M.; McAllister-Hollod, L.; Nadle, J.; et al. Multistate Point-Prevalence Survey of Health Care–Associated Infections. N. Engl. J. Med. 2014, 370, 1198–1208. [Google Scholar] [CrossRef]
- Calvo, M.; Stefani, S.; Migliorisi, G. Bacterial Infections in Intensive Care Units: Epidemiological and Microbiological Aspects. Antibiotics 2024, 13, 238. [Google Scholar] [CrossRef] [PubMed]
- Zilberberg, M.D.; Nathanson, B.H.; Puzniak, L.A.; Shorr, A.F. Descriptive Epidemiology and Outcomes of Nonventilated Hospital-Acquired, Ventilated Hospital-Acquired, and Ventilator-Associated Bacterial Pneumonia in the United States, 2012–2019. Crit. Care Med. 2022, 50, 460. [Google Scholar] [CrossRef]
- Candel, F.J.; Salavert, M.; Estella, A.; Ferrer, M.; Ferrer, R.; Gamazo, J.J.; García-Vidal, C.; del Castillo, J.G.; González-Ramallo, V.J.; Gordo, F.; et al. Ten Issues to Update in Nosocomial or Hospital-Acquired Pneumonia: An Expert Review. J. Clin. Med. 2023, 12, 6526. [Google Scholar] [CrossRef] [PubMed]
- Murray, C.J.L.; Ikuta, K.S.; Sharara, F.; Swetschinski, L.; Aguilar, G.R.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E.; et al. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef]
- Bassetti, M.; Kanj, S.S.; Kiratisin, P.; Rodrigues, C.; Van Duin, D.; Villegas, M.V.; Yu, Y. Early appropriate diagnostics and treatment of MDR Gram-negative infections. JAC-Antimicrob. Resist. 2022, 4, dlac089. [Google Scholar] [CrossRef]
- Sader, H.S.; Streit, J.M.; Carvalhaes, C.G.; Huband, M.D.; Shortridge, D.; Mendes, R.E.; Castanheira, M. Frequency of occurrence and antimicrobial susceptibility of bacteria isolated from respiratory samples of patients hospitalized with pneumonia in Western Europe, Eastern Europe and the USA: Results from the SENTRY Antimicrobial Surveillance Program (2016–2019). JAC-Antimicrob. Resist. 2021, 3, dlab117. [Google Scholar] [CrossRef]
- Garg, S.K. Antibiotic misuse during COVID-19 Pandemic: A Recipe for Disaster. Indian J. Crit. Care Med. 2021, 25, 617–619. [Google Scholar] [CrossRef]
- Langford, B.J.; So, M.; Simeonova, M.; Leung, V.; Lo, J.; Kan, T.; Raybardhan, S.; Sapin, M.E.; Mponponsuo, K.; Farrell, A.; et al. Antimicrobial resistance in patients with COVID-19: A systematic review and meta-analysis. Lancet Microbe 2023, 4, e179–e191. [Google Scholar] [CrossRef]
- Montassier, E.; Kitsios, G.D.; Radder, J.E.; Le Bastard, Q.; Kelly, B.J.; Panzer, A.; Lynch, S.V.; Calfee, C.S.; Dickson, R.P.; Roquilly, A. Robust airway microbiome signatures in acute respiratory failure and hospital-acquired pneumonia. Nat. Med. 2023, 29, 2793–2804. [Google Scholar] [CrossRef] [PubMed]
- Man, W.H.; de Steenhuijsen Piters, W.A.A.; Bogaert, D. The microbiota of the respiratory tract: Gatekeeper to respiratory health. Nat. Rev. Microbiol. 2017, 15, 259–270. [Google Scholar] [CrossRef] [PubMed]
- Fenn, D.; Abdel-Aziz, M.I.; van Oort, P.M.P.; Brinkman, P.; Ahmed, W.M.; Felton, T.; Artigas, A.; Póvoa, P.; Martin-Loeches, I.; Schultz, M.J.; et al. Composition and diversity analysis of the lung microbiome in patients with suspected ventilator-associated pneumonia. Crit. Care 2022, 26, 203. [Google Scholar] [CrossRef] [PubMed]
- Hartzell, J.D.; Kim, A.S.; Kortepeter, M.G.; Moran, K.A. Acinetobacter Pneumonia: A Review. Medscape Gen. Med. 2007, 9, 4. [Google Scholar]
- Abbas, R.; Chakkour, M.; Zein El Dine, H.; Obaseki, E.F.; Obeid, S.T.; Jezzini, A.; Ghssein, G.; Ezzeddine, Z. General Overview of Klebsiella pneumonia: Epidemiology and the Role of Siderophores in Its Pathogenicity. Biology 2024, 13, 78. [Google Scholar] [CrossRef]
- Giacobbe, D.R.; Pilato, V.D.; Karaiskos, I.; Giani, T.; Marchese, A.; Rossolini, G.M.; Bassetti, M. Treatment and diagnosis of severe KPC-producing Klebsiella pneumoniae infections: A perspective on what has changed over last decades. Ann. Med. 2023, 55, 101–113. [Google Scholar] [CrossRef]
- Han, Y.-L.; Wen, X.-H.; Zhao, W.; Cao, X.-S.; Wen, J.-X.; Wang, J.-R.; Hu, Z.-D.; Zheng, W.-Q. Epidemiological characteristics and molecular evolution mechanisms of carbapenem-resistant hypervirulent Klebsiella pneumoniae. Front. Microbiol. 2022, 13, 1003783. [Google Scholar] [CrossRef] [PubMed]
- Thi, M.T.T.; Wibowo, D.; Rehm, B.H.A. Pseudomonas aeruginosa Biofilms. Int. J. Mol. Sci. 2020, 21, 8671. [Google Scholar] [CrossRef]
- Qin, S.; Xiao, W.; Zhou, C.; Pu, Q.; Deng, X.; Lan, L.; Liang, H.; Song, X.; Wu, M. Pseudomonas aeruginosa: Pathogenesis, virulence factors, antibiotic resistance, interaction with host, technology advances and emerging therapeutics. Sig. Transduct. Target. Ther. 2022, 7, 199. [Google Scholar] [CrossRef]
- John, T.M.; Deshpande, A.; Brizendine, K.; Yu, P.-C.; Rothberg, M.B. Epidemiology and Outcomes of Community-Acquired Escherichia coli Pneumonia. Open Forum Infect. Dis. 2022, 9, ofab597. [Google Scholar] [CrossRef]
- Prioritization of Pathogens to Guide Discovery, Research and Development of New Antibiotics for Drug-Resistant Bacterial Infections, Including Tuberculosis. Available online: https://www.who.int/publications-detail-redirect/WHO-EMP-IAU-2017.12 (accessed on 17 April 2024).
- Centers for Disease Control and Prevention (U.S.). Antibiotic Resistance Threats in the United States, 2019; Centers for Disease Control and Prevention: Atlanta, GA, USA, 2019. [Google Scholar]
- Gauba, A.; Rahman, K.M. Evaluation of Antibiotic Resistance Mechanisms in Gram-Negative Bacteria. Antibiotics 2023, 12, 1590. [Google Scholar] [CrossRef] [PubMed]
- Moxon, C.A.; Paulus, S. Beta-lactamases in Enterobacteriaceae infections in children. J. Infect. 2016, 72, S41–S49. [Google Scholar] [CrossRef] [PubMed]
- Shields, R.K.; Doi, Y. Aztreonam Combination Therapy: An Answer to Metallo-β-Lactamase–Producing Gram-Negative Bacteria? Clin. Infect. Dis. 2020, 71, 1099–1101. [Google Scholar] [CrossRef]
- Asempa, T.E.; Kois, A.K.; Gill, C.M.; Nicolau, D.P. Phenotypes, genotypes and breakpoints: An assessment of β-lactam/β-lactamase inhibitor combinations against OXA-48. J. Antimicrob. Chemother. 2023, 78, 636–645. [Google Scholar] [CrossRef]
- Bassetti, M.; Magnè, F.; Giacobbe, D.R.; Bini, L.; Vena, A. New antibiotics for Gram-negative pneumonia. Eur. Respir. Rev. 2022, 31, 220119. [Google Scholar] [CrossRef]
- Murdoch, D.R.; Werno, A.M.; Jennings, L.C. Microbiological Diagnosis of Respiratory Illness. In Kendig’s Disorders of the Respiratory Tract in Children; Elsevier: Amsterdam, The Netherlands, 2019; pp. 396–405.e3. [Google Scholar] [CrossRef]
- Bustin, S.A.; Kirvell, S.; Nolan, T.; Shipley, G.L. FlashPCR: Revolutionising qPCR by Accelerating Amplification through Low ∆T Protocols. Int. J. Mol. Sci. 2024, 25, 2773. [Google Scholar] [CrossRef] [PubMed]
- Poirier, A.C.; Kuang, D.; Siedler, B.S.; Borah, K.; Mehat, J.W.; Liu, J.; Tai, C.; Wang, X.; van Vliet, A.H.M.; Ma, W.; et al. Development of Loop-Mediated Isothermal Amplification Rapid Diagnostic Assays for the Detection of Klebsiella pneumoniae and Carbapenemase Genes in Clinical Samples. Front. Mol. Biosci. 2022, 8, 794961. [Google Scholar] [CrossRef]
- Biomérieux BIOFIRE FILMARRAY Pneumonia Panel Plus. Available online: https://www.biomerieux.com (accessed on 26 March 2024).
- Curetis GmbH Manual—Unyvero HPN Hospitalized Pneumonia Cartridge Set, Rev. 8.0—EN. Available online: https://ifu.curetis.com/curetis/RO/Unyvero?keycode=CUR10046 (accessed on 16 April 2024).
- Qiagen QIAstat-Dx Respiratory SARS-CoV-2 Panel Instructions for Use (Handbook) 2020. Available online: https://www.qiagen.com/us/resources/resourcedetail?id=250fafc2-3e66-4400-b5cb-ca69ba8607ab (accessed on 16 April 2024).
- Siemens Healthcare Diagnostics Inc. FTD-Respiratory-Pathogens-21-Assay—Spec-Sheet-0223-FINAL.pdf. Available online: https://marketing.webassets.siemens-healthineers.com/87939635400eba90/f668ff8f6d82/OUS-FTD-Respiratory-Pathogens-21-Assay---Spec-Sheet-0223-FINAL.pdf (accessed on 30 June 2024).
- Gadsby, N.J.; McHugh, M.P.; Forbes, C.; MacKenzie, L.; Hamilton, S.K.D.; Griffith, D.M.; Templeton, K.E. Comparison of Unyvero P55 Pneumonia Cartridge, in-house PCR and culture for the identification of respiratory pathogens and antibiotic resistance in bronchoalveolar lavage fluids in the critical care setting. Eur. J. Clin. Microbiol. Infect. Dis. 2019, 38, 1171–1178. [Google Scholar] [CrossRef] [PubMed]
- Ozongwu, C.; Personne, Y.; Platt, G.; Jeanes, C.; Aydin, S.; Kozato, N.; Gant, V.; O’Grady, J.; Enne, V.I. The Unyvero P55 ‘sample-in, answer-out’ pneumonia assay: A performance evaluation. Biomol. Detect. Quantif. 2017, 13, 1–6. [Google Scholar] [CrossRef]
- Collins, M.E.; Popowitch, E.B.; Miller, M.B. Evaluation of a Novel Multiplex PCR Panel Compared to Quantitative Bacterial Culture for Diagnosis of Lower Respiratory Tract Infections. J. Clin. Microbiol. 2020, 58, e02013-19. [Google Scholar] [CrossRef]
- Pickens, C.; Wunderink, R.G.; Qi, C.; Mopuru, H.; Donnelly, H.; Powell, K.; Sims, M.D. A multiplex polymerase chain reaction assay for antibiotic stewardship in suspected pneumonia. Diagn. Microbiol. Infect. Dis. 2020, 98, 115179. [Google Scholar] [CrossRef]
- Klein, M.; Bacher, J.; Barth, S.; Atrzadeh, F.; Siebenhaller, K.; Ferreira, I.; Beisken, S.; Posch, A.E.; Carroll, K.C.; Wunderink, R.G.; et al. Multicenter Evaluation of the Unyvero Platform for Testing Bronchoalveolar Lavage Fluid. J. Clin. Microbiol. 2021, 59, e02497-20. [Google Scholar] [CrossRef]
- Gastli, N.; Loubinoux, J.; Daragon, M.; Lavigne, J.-P.; Saint-Sardos, P.; Pailhoriès, H.; Lemarié, C.; Benmansour, H.; d’Humières, C.; Broutin, L.; et al. Multicentric evaluation of BioFire FilmArray Pneumonia Panel for rapid bacteriological documentation of pneumonia. Clin. Microbiol. Infect. 2021, 27, 1308–1314. [Google Scholar] [CrossRef] [PubMed]
- Ginocchio, C.C.; Garcia-Mondragon, C.; Mauerhofer, B.; Rindlisbacher, C. Multinational evaluation of the BioFire® FilmArray® Pneumonia plus Panel as compared to standard of care testing. Eur. J. Clin. Microbiol. Infect. Dis. 2021, 40, 1609–1622. [Google Scholar] [CrossRef]
- Gong, J.; Yang, J.; Liu, L.; Chen, X.; Yang, G.; He, Y.; Sun, R. Evaluation and clinical practice of pathogens and antimicrobial resistance genes of BioFire FilmArray Pneumonia panel in lower respiratory tract infections. Infection 2024, 52, 545–555. [Google Scholar] [CrossRef] [PubMed]
- Moy, A.-C.; Kimmoun, A.; Merkling, T.; Berçot, B.; Caméléna, F.; Poncin, T.; Deniau, B.; Mebazaa, A.; Dudoignon, E.; Dépret, F.; et al. Performance evaluation of a PCR panel (FilmArray® Pneumonia Plus) for detection of respiratory bacterial pathogens in respiratory specimens: A systematic review and meta-analysis. Anaesth. Crit. Care Pain Med. 2023, 42, 101300. [Google Scholar] [CrossRef] [PubMed]
- Enne, V.I.; Aydin, A.; Baldan, R.; Owen, D.R.; Richardson, H.; Ricciardi, F.; Russell, C.; Nomamiukor-Ikeji, B.O.; Swart, A.-M.; High, J.; et al. Multicentre evaluation of two multiplex PCR platforms for the rapid microbiological investigation of nosocomial pneumonia in UK ICUs: The INHALE WP1 study. Thorax 2022, 77, 1220–1228. [Google Scholar] [CrossRef] [PubMed]
- Cassidy, H.; van Genne, M.; Lizarazo-Forero, E.; Niesters, H.G.M.; Gard, L. Evaluation of the QIAstat-Dx RP2.0 and the BioFire FilmArray RP2.1 for the Rapid Detection of Respiratory Pathogens Including SARS-CoV-2. Front. Microbiol. 2022, 13, 854209. [Google Scholar] [CrossRef]
- Søgaard, K.K.; Hinic, V.; Goldenberger, D.; Gensch, A.; Schweitzer, M.; Bättig, V.; Siegemund, M.; Bassetti, S.; Bingisser, R.; Tamm, M.; et al. Evaluation of the clinical relevance of the Biofire© FilmArray pneumonia panel among hospitalized patients. Infection 2024, 52, 173–181. [Google Scholar] [CrossRef]
- Luyt, C.-E.; Hékimian, G.; Bonnet, I.; Bréchot, N.; Schmidt, M.; Robert, J.; Combes, A.; Aubry, A. Usefulness of point-of-care multiplex PCR to rapidly identify pathogens responsible for ventilator-associated pneumonia and their resistance to antibiotics: An observational study. Crit. Care 2020, 24, 378. [Google Scholar] [CrossRef]
- Peiffer-Smadja, N.; Bouadma, L.; Mathy, V.; Allouche, K.; Patrier, J.; Reboul, M.; Montravers, P.; Timsit, J.-F.; Armand-Lefevre, L. Performance and impact of a multiplex PCR in ICU patients with ventilator-associated pneumonia or ventilated hospital-acquired pneumonia. Crit. Care 2020, 24, 366. [Google Scholar] [CrossRef]
- Oliver, J.D. Recent findings on the viable but nonculturable state in pathogenic bacteria. FEMS Microbiol. Rev. 2010, 34, 415–425. [Google Scholar] [CrossRef]
- Tellapragada, C.; Ydsten, K.A.; Ternhag, A.; Giske, C.G. Evaluation of a pneumonia multiplex PCR panel for detection of bacterial respiratory tract pathogens from serial specimens collected from hospitalized COVID-19 patients. Eur. J. Clin. Microbiol. Infect. Dis. 2022, 41, 1093–1098. [Google Scholar] [CrossRef]
- Rabin, E.E.; Walter, J.M.; Wunderink, R.G.; Qi, C.; Pickens, C.I. Clinical significance of culture-negative, PCR-positive bronchoalveolar lavage results in severe pneumonia. ERJ Open Res. 2023, 9, 00343–2023. [Google Scholar] [CrossRef] [PubMed]
- Bogdan, I.; Citu, C.; Bratosin, F.; Malita, D.; Romosan, I.; Gurban, C.V.; Bota, A.V.; Turaiche, M.; Bratu, M.L.; Pilut, C.N.; et al. The Impact of Multiplex PCR in Diagnosing and Managing Bacterial Infections in COVID-19 Patients Self-Medicated with Antibiotics. Antibiotics 2022, 11, 437. [Google Scholar] [CrossRef] [PubMed]
- Rothe, K.; Spinner, C.D.; Panning, M.; Pletz, M.W.; Rohde, G.; Rupp, J.; Witzenrath, M.; Erber, J.; Eberhardt, F.; Essig, A.; et al. Evaluation of a multiplex PCR screening approach to identify community-acquired bacterial co-infections in COVID-19: A multicenter prospective cohort study of the German competence network of community-acquired pneumonia (CAPNETZ). Infection 2021, 49, 1299–1306. [Google Scholar] [CrossRef] [PubMed]
- Maataoui, N.; Chemali, L.; Patrier, J.; Tran Dinh, A.; Le Fèvre, L.; Lortat-Jacob, B.; Marzouk, M.; d’Humières, C.; Rondinaud, E.; Ruppé, E.; et al. Impact of rapid multiplex PCR on management of antibiotic therapy in COVID-19-positive patients hospitalized in intensive care unit. Eur. J. Clin. Microbiol. Infect. Dis. 2021, 40, 2227–2234. [Google Scholar] [CrossRef]
- Soto, A.; Quiñones-Laveriano, D.M.; Valdivia, F.; Juscamayta-López, E.; Azañero-Haro, J.; Chambi, L.; Horna, H.; Patiño, G.; Guzman, E.; A De la Cruz-Vargas, J. Detection of Viral and Bacterial Respiratory Pathogens Identified by Molecular Methods in COVID-19 Hospitalized Patients and Its Impact on Mortality and Unfavorable Outcomes. Infect. Drug Resist. 2021, 14, 2795–2807. [Google Scholar] [CrossRef]
- Walker, A.M.; Timbrook, T.T.; Hommel, B.; Prinzi, A.M. Breaking Boundaries in Pneumonia Diagnostics: Transitioning from Tradition to Molecular Frontiers with Multiplex PCR. Diagnostics 2024, 14, 752. [Google Scholar] [CrossRef]
- Bogdan, I.; Gadela, T.; Bratosin, F.; Dumitru, C.; Popescu, A.; Horhat, F.G.; Negrean, R.A.; Horhat, R.M.; Mot, I.C.; Bota, A.V.; et al. The Assessment of Multiplex PCR in Identifying Bacterial Infections in Patients Hospitalized with SARS-CoV-2 Infection: A Systematic Review. Antibiotics 2023, 12, 465. [Google Scholar] [CrossRef] [PubMed]
- Buchan, B.W.; Windham, S.; Balada-Llasat, J.-M.; Leber, A.; Harrington, A.; Relich, R.; Murphy, C.; Dien Bard, J.; Naccache, S.; Ronen, S.; et al. Practical Comparison of the BioFire FilmArray Pneumonia Panel to Routine Diagnostic Methods and Potential Impact on Antimicrobial Stewardship in Adult Hospitalized Patients with Lower Respiratory Tract Infections. J. Clin. Microbiol. 2020, 58, 10–1128. [Google Scholar] [CrossRef] [PubMed]
- Burillo, A.; Bouza, E. Use of rapid diagnostic techniques in ICU patients with infections. BMC Infect. Dis. 2014, 14, 593. [Google Scholar] [CrossRef] [PubMed]
- Pholwat, S.; Heysell, S.; Stroup, S.; Foongladda, S.; Houpt, E. Rapid First- and Second-Line Drug Susceptibility Assay for Mycobacterium tuberculosis Isolates by Use of Quantitative PCR. J. Clin. Microbiol. 2020, 49, 69–75. [Google Scholar] [CrossRef]
- Àlvarez, G.; González, M.; Isabal, S.; Blanc, V.; León, R. Method to quantify live and dead cells in multi-species oral biofilm by real-time PCR with propidium monoazide. AMB Express 2013, 3, 1. [Google Scholar] [CrossRef]
- Ramamurthy, T.; Ghosh, A.; Pazhani, G.P.; Shinoda, S. Current Perspectives on Viable but Non-Culturable (VBNC) Pathogenic Bacteria. Front. Public Health 2014, 2, 103. [Google Scholar] [CrossRef]
- Posteraro, B.; Cortazzo, V.; Liotti, F.M.; Menchinelli, G.; Ippoliti, C.; De Angelis, G.; La Sorda, M.; Capalbo, G.; Vargas, J.; Antonelli, M.; et al. Diagnosis and Treatment of Bacterial Pneumonia in Critically Ill Patients with COVID-19 Using a Multiplex PCR Assay: A Large Italian Hospital’s Five-Month Experience. Microbiol. Spectr. 2021, 9, e00695-21. [Google Scholar] [CrossRef] [PubMed]
- Ferrer, J.; Clari, M.Á.; Giménez, E.; Carbonell, N.; Torres, I.; Blasco, M.L.; Albert, E.; Navarro, D. The Biofire® Filmarray® Pneumonia Plus panel for management of lower respiratory tract infection in mechanically-ventilated patients in the COVID-19 era: A diagnostic and cost-benefit evaluation. Diagn. Microbiol. Infect. Dis. 2023, 105, 115847. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Ahmed, S.; Sun, C.; Sheng, Y.-J.; Wu, G.; Deng, C.-L.; Ojha, S.C. Accuracy of Molecular Amplification Assays for Diagnosis of Staphylococcal Pneumonia: A Systematic Review and Meta-analysis. J. Clin. Microbiol. 2021, 59, 10–1128. [Google Scholar] [CrossRef]
- Textoris, J.; Wiramus, S.; Martin, C.; Leone, M. Antibiotic therapy in patients with septic shock. Eur. J. Anaesthesiol. EJA 2011, 28, 318. [Google Scholar] [CrossRef]
- Gavina, K.; Franco, L.C.; Khan, H.; Lavik, J.-P.; Relich, R.F. Molecular point-of-care devices for the diagnosis of infectious diseases in resource-limited settings—A review of the current landscape, technical challenges, and clinical impact. J. Clin. Virol. 2023, 169, 105613. [Google Scholar] [CrossRef]
- Blot, S. Limiting the attributable mortality of nosocomial infection and multidrug resistance in intensive care units. Clin. Microbiol. Infect. 2008, 14, 5–13. [Google Scholar] [CrossRef]
- Poole, S.; Clark, T.W. Rapid syndromic molecular testing in pneumonia: The current landscape and future potential. J. Infect. 2020, 80, 1–7. [Google Scholar] [CrossRef]
- Malik, S.S.; Mundra, S. Increasing Consumption of Antibiotics during the COVID-19 Pandemic: Implications for Patient Health and Emerging Anti-Microbial Resistance. Antibiotics 2023, 12, 45. [Google Scholar] [CrossRef]
- Petrakis, V.; Panopoulou, M.; Rafailidis, P.; Lemonakis, N.; Lazaridis, G.; Terzi, I.; Papazoglou, D.; Panagopoulos, P. The Impact of the COVID-19 Pandemic on Antimicrobial Resistance and Management of Bloodstream Infections. Pathogens 2023, 12, 780. [Google Scholar] [CrossRef]
- Lansbury, L.; Lim, B.; Baskaran, V.; Lim, W.S. Co-infections in people with COVID-19: A systematic review and meta-analysis. J. Infect. 2020, 81, 266–275. [Google Scholar] [CrossRef]
- Jorgensen, S.C.J.; Trinh, T.D.; Zasowski, E.J.; Lagnf, A.M.; Bhatia, S.; Melvin, S.M.; Steed, M.E.; Simon, S.P.; Estrada, S.J.; Morrisette, T.; et al. Real-World Experience With Ceftazidime-Avibactam for Multidrug-Resistant Gram-Negative Bacterial Infections. Open Forum Infect. Dis. 2019, 6, ofz522. [Google Scholar] [CrossRef]
- Markussen, D.L.; Kommedal, Ø.; Knoop, S.T.; Ebbesen, M.H.; Bjørneklett, R.O.; Ritz, C.; Heggelund, L.; Ulvestad, E.; Serigstad, S.; Grewal, H.M.S. Microbial aetiology of community-acquired pneumonia in hospitalized adults: A prospective study utilising comprehensive molecular testing. Int. J. Infect. Dis. 2024, 143, 107019. [Google Scholar] [CrossRef]
- Gilbert, D.N.; Leggett, J.E.; Wang, L.; Ferdosian, S.; Gelfer, G.D.; Johnston, M.L.; Footer, B.W.; Hendrickson, K.W.; Park, H.S.; White, E.E.; et al. Enhanced Detection of Community-Acquired Pneumonia Pathogens with the BioFire® Pneumonia FilmArray® Panel. Diagn. Microbiol. Infect. Dis. 2021, 99, 115246. [Google Scholar] [CrossRef]
- Gadsby, N.J.; Russell, C.D.; McHugh, M.P.; Mark, H.; Conway Morris, A.; Laurenson, I.F.; Hill, A.T.; Templeton, K.E. Comprehensive Molecular Testing for Respiratory Pathogens in Community-Acquired Pneumonia. Clin. Infect. Dis. 2016, 62, 817–823. [Google Scholar] [CrossRef]
- Shengchen, D.; Gu, X.; Fan, G.; Sun, R.; Wang, Y.; Yu, D.; Li, H.; Zhou, F.; Xiong, Z.; Lu, B.; et al. Evaluation of a molecular point-of-care testing for viral and atypical pathogens on intravenous antibiotic duration in hospitalized adults with lower respiratory tract infection: A randomized clinical trial. Clin. Microbiol. Infect. 2019, 25, 1415–1421. [Google Scholar] [CrossRef]
- Poole, S.; Tanner, A.R.; Naidu, V.V.; Borca, F.; Phan, H.; Saeed, K.; Grocott, M.P.W.; Dushianthan, A.; Moyses, H.; Clark, T.W. Molecular point-of-care testing for lower respiratory tract pathogens improves safe antibiotic de-escalation in patients with pneumonia in the ICU: Results of a randomised controlled trial. J. Infect. 2022, 85, 625–633. [Google Scholar] [CrossRef] [PubMed]
- Markussen, D.L.; Serigstad, S.; Ritz, C.; Knoop, S.T.; Ebbesen, M.H.; Faurholt-Jepsen, D.; Heggelund, L.; van Werkhoven, C.H.; Clark, T.W.; Bjørneklett, R.O.; et al. Diagnostic Stewardship in Community-Acquired Pneumonia With Syndromic Molecular Testing: A Randomized Clinical Trial. JAMA Netw. Open 2024, 7, e240830. [Google Scholar] [CrossRef] [PubMed]
- Serigstad, S.; Markussen, D.; Grewal, H.M.S.; Ebbesen, M.; Kommedal, Ø.; Heggelund, L.; van Werkhoven, C.H.; Faurholt-Jepsen, D.; Clark, T.W.; Ritz, C.; et al. Rapid syndromic PCR testing in patients with respiratory tract infections reduces time to results and improves microbial yield. Sci. Rep. 2022, 12, 326. [Google Scholar] [CrossRef] [PubMed]
- Darie, A.M.; Khanna, N.; Jahn, K.; Osthoff, M.; Bassetti, S.; Osthoff, M.; Schumann, D.M.; Albrich, W.C.; Hirsch, H.; Brutsche, M.; et al. Fast multiplex bacterial PCR of bronchoalveolar lavage for antibiotic stewardship in hospitalised patients with pneumonia at risk of Gram-negative bacterial infection (Flagship II): A multicentre, randomised controlled trial. Lancet Respir. Med. 2022, 10, 877–887. [Google Scholar] [CrossRef]
- Hellyer, T.P.; McAuley, D.F.; Walsh, T.S.; Anderson, N.; Conway Morris, A.; Singh, S.; Dark, P.; Roy, A.I.; Perkins, G.D.; McMullan, R.; et al. Biomarker-guided antibiotic stewardship in suspected ventilator-associated pneumonia (VAPrapid2): A randomised controlled trial and process evaluation. Lancet Respir. Med. 2020, 8, 182–191. [Google Scholar] [CrossRef]
- Fartoukh, M.; Nseir, S.; Mégarbane, B.; Cohen, Y.; Lafarge, A.; Contou, D.; Thille, A.W.; Galerneau, L.-M.; Reizine, F.; Cour, M.; et al. Respiratory multiplex PCR and procalcitonin to reduce antibiotic exposure in severe SARS-CoV-2 pneumonia: A multicentre randomized controlled trial. Clin. Microbiol. Infect. 2023, 29, 734–743. [Google Scholar] [CrossRef]
- Cartuliares, M.B.; Rosenvinge, F.S.; Mogensen, C.B.; Skovsted, T.A.; Andersen, S.L.; Østergaard, C.; Pedersen, A.K.; Skjøt-arkil, H. Evaluation of point-of-care multiplex polymerase chain reaction in guiding antibiotic treatment of patients acutely admitted with suspected community-acquired pneumonia in Denmark: A multicentre randomised controlled trial. PLoS Med. 2023, 20, e1004314. [Google Scholar] [CrossRef] [PubMed]
- Doan, Q.; Enarson, P.; Kissoon, N.; Klassen, T.P.; Johnson, D.W. Rapid viral diagnosis for acute febrile respiratory illness in children in the Emergency Department. Cochrane Database Syst. Rev. 2014, 2014, CD006452. [Google Scholar] [CrossRef]
- Serigstad, S.; Ritz, C.; Faurholt-Jepsen, D.; Markussen, D.; Ebbesen, M.H.; Kommedal, Ø.; Bjørneklett, R.O.; Heggelund, L.; Clark, T.W.; van Werkhoven, C.H.; et al. Impact of rapid molecular testing on diagnosis, treatment and management of community-acquired pneumonia in Norway: A pragmatic randomised controlled trial (CAPNOR). Trials 2022, 23, 622. [Google Scholar] [CrossRef]
- Esposito, S.; Mencacci, A.; Cenci, E.; Camilloni, B.; Silvestri, E.; Principi, N. Multiplex Platforms for the Identification of Respiratory Pathogens: Are They Useful in Pediatric Clinical Practice? Front. Cell. Infect. Microbiol. 2019, 9, 196. [Google Scholar] [CrossRef]
- Kalil, A.C.; Metersky, M.L.; Klompas, M.; Muscedere, J.; Sweeney, D.A.; Palmer, L.B.; Napolitano, L.M.; O’Grady, N.P.; Bartlett, J.G.; Carratalà, J.; et al. Executive Summary: Management of Adults With Hospital-acquired and Ventilator-associated Pneumonia: 2016 Clinical Practice Guidelines by the Infectious Diseases Society of America and the American Thoracic Society. Clin. Infect. Dis. 2016, 63, 575–582. [Google Scholar] [CrossRef] [PubMed]
- Torres, A.; Niederman, M.S.; Chastre, J.; Ewig, S.; Fernandez-Vandellos, P.; Hanberger, H.; Kollef, M.; Li Bassi, G.; Luna, C.M.; Martin-Loeches, I.; et al. International ERS/ESICM/ESCMID/ALAT guidelines for the management of hospital-acquired pneumonia and ventilator-associated pneumonia: Guidelines for the management of hospital-acquired pneumonia (HAP)/ventilator-associated pneumonia (VAP) of the European Respiratory Society (ERS), European Society of Intensive Care Medicine (ESICM), European Society of Clinical Microbiology and Infectious Diseases (ESCMID) and Asociación Latinoamericana del Tórax (ALAT). Eur. Respir. J. 2017, 50, 1700582. [Google Scholar] [CrossRef] [PubMed]
- Martin-Loeches, I.; Torres, A.; Nagavci, B.; Aliberti, S.; Antonelli, M.; Bassetti, M.; Bos, L.; Chalmers, J.D.; Derde, L.; de Waele, J.; et al. ERS/ESICM/ESCMID/ALAT guidelines for the management of severe community-acquired pneumonia. Eur. Respir. J. 2023, 61, 2200735. [Google Scholar] [CrossRef]
- Kamel, N.A.; Alshahrani, M.Y.; Aboshanab, K.M.; El Borhamy, M.I. Evaluation of the BioFire FilmArray Pneumonia Panel Plus to the Conventional Diagnostic Methods in Determining the Microbiological Etiology of Hospital-Acquired Pneumonia. Biology 2022, 11, 377. [Google Scholar] [CrossRef] [PubMed]
- Clavel, M.; Barraud, O.; Moucadel, V.; Meynier, F.; Karam, E.; Ploy, M.-C.; François, B.; Pichon, N.; Vignon, P.; Droual, R.; et al. Molecular quantification of bacteria from respiratory samples in patients with suspected ventilator-associated pneumonia. Clin. Microbiol. Infect. 2016, 22, 812.e1–812.e7. [Google Scholar] [CrossRef] [PubMed]
- van Asten, S.A.V.; Boers, S.A.; de Groot, J.D.F.; Schuurman, R.; Claas, E.C.J. Evaluation of the Genmark ePlex® and QIAstat-Dx® respiratory pathogen panels in detecting bacterial targets in lower respiratory tract specimens. BMC Microbiol. 2021, 21, 236. [Google Scholar] [CrossRef]
- Boers, S.A.; Melchers, W.J.G.; Peters, C.J.A.; Toonen, M.; McHugh, M.P.; Templeton, K.E.; Claas, E.C.J. Multicenter Evaluation of QIAstat-Dx Respiratory Panel V2 for Detection of Viral and Bacterial Respiratory Pathogens. J. Clin. Microbiol. 2020, 58, 10–1128. [Google Scholar] [CrossRef]
- Loens, K.; van Loon, A.M.; Coenjaerts, F.; van Aarle, Y.; Goossens, H.; Wallace, P.; Claas, E.J.C.; Ieven, M. Performance of Different Mono- and Multiplex Nucleic Acid Amplification Tests on a Multipathogen External Quality Assessment Panel. J. Clin. Microbiol. 2020, 50, 977–987. [Google Scholar] [CrossRef]
- Brendish, N.J.; Malachira, A.K.; Armstrong, L.; Houghton, R.; Aitken, S.; Nyimbili, E.; Ewings, S.; Lillie, P.J.; Clark, T.W. Routine molecular point-of-care testing for respiratory viruses in adults presenting to hospital with acute respiratory illness (ResPOC): A pragmatic, open-label, randomised controlled trial. Lancet Respir. Med. 2017, 5, 401–411. [Google Scholar] [CrossRef] [PubMed]
- Messacar, K.; Parker, S.K.; Todd, J.K.; Dominguez, S.R. Implementation of Rapid Molecular Infectious Disease Diagnostics: The Role of Diagnostic and Antimicrobial Stewardship. J. Clin. Microbiol. 2017, 55, 715–723. [Google Scholar] [CrossRef]
- Blaschke, A.J.; Hersh, A.L.; Beekmann, S.E.; Ince, D.; Polgreen, P.M.; Hanson, K.E. Unmet Diagnostic Needs in Infectious Disease. Diagn. Microbiol. Infect. Dis. 2015, 81, 57–59. [Google Scholar] [CrossRef] [PubMed]
- Prinzi, A.M.; Wattier, R.L.; Curtis, D.J.; Ziniel, S.I.; Fitzgerald, A.; Pearce, K.; Parker, S.K. Impact of Organism Reporting from Endotracheal Aspirate Cultures on Antimicrobial Prescribing Practices in Mechanically Ventilated Pediatric Patients. J. Clin. Microbiol. 2022, 60, e00930-22. [Google Scholar] [CrossRef] [PubMed]
- Moradi, T.; Bennett, N.; Shemanski, S.; Kennedy, K.; Schlachter, A.; Boyd, S. Use of Procalcitonin and a Respiratory Polymerase Chain Reaction Panel to Reduce Antibiotic Use via an Electronic Medical Record Alert. Clin. Infect. Dis. 2020, 71, 1684–1689. [Google Scholar] [CrossRef] [PubMed]
- Markussen, D.L.; Ebbesen, M.; Serigstad, S.; Knoop, S.T.; Ritz, C.; Bjørneklett, R.; Kommedal, Ø.; Jenum, S.; Ulvestad, E.; Grewal, H.M.S. The diagnostic utility of microscopic quality assessment of sputum samples in the era of rapid syndromic PCR testing. Microbiol. Spectr. 2023, 11, e03002-23. [Google Scholar] [CrossRef]
- Postma, D.F.; van Werkhoven, C.H.; van Elden, L.J.R.; Thijsen, S.F.T.; Hoepelman, A.I.M.; Kluytmans, J.A.J.W.; Boersma, W.G.; Compaijen, C.J.; van der Wall, E.; Prins, J.M.; et al. Antibiotic Treatment Strategies for Community-Acquired Pneumonia in Adults. N. Engl. J. Med. 2015, 372, 1312–1323. [Google Scholar] [CrossRef] [PubMed]
Target Category | Target | BioFire FilmArray Pneumonia (Plus) Panel | Unyvero Hospitalized Pneumonia Panel |
---|---|---|---|
Bacteria | |||
Enterobacteriaceae | Citrobacter freundii | - | Y |
Enterobacter cloacae complex | Y | Y | |
Escherichia coli | Y | Y | |
Klebsiella aerogenes (Enterobacter aerogenes) | Y | Y | |
Klebsiella oxytoca | Y | Y | |
Klebsiella pneumoniae | K. pneumoniae group (K. pneumoniae (KPI), K. quasipneumoniae (KPII), K. variicola (KPIII)) | Y (K. pneumoniae (KPI), K. quasipneumoniae (KPII)) | |
Klebsiella variicola | - | Y | |
Morganella morganii | - | Y | |
Proteus spp. | Y | Y | |
Serratia marcescens | Y | Y | |
Non-fermenting Gram-negative bacteria | Acinetobacter baumannii complex | Y | Y |
Moraxella catarrhalis | Y | Y | |
Pseudomonas aeruginosa | Y | Y | |
Stenotrophomonas maltophilia | - | Y | |
Atypical bacteria | Chlamydia pneumoniae | Y | Y |
Legionella pneumophila | Y | Y | |
Mycoplasma pneumoniae | Y | Y | |
Gram-positives | Staphylococcus aureus | Y | Y |
Streptococcus agalactiae | Y | - | |
Streptococcus pneumoniae | Y | Y | |
Streptococcus pyogenes | Y | - | |
Fungi | Pneumocystis jirovecii | - | Y |
Viruses | Adenovirus | Y | - |
Coronavirus | Y | - | |
Human metapneumovirus | Y | - | |
Human rhinovirus/enterovirus | Y | - | |
Influenza A virus | Y | - | |
Influenza B virus | Y | - | |
Middle East respiratory syndrome coronavirus (MERS-CoV) | Y * | - | |
Parainfluenza virus | Y | - | |
Respiratory syncytial virus | Y | - | |
Antimicrobial resistance genes | Carbapenemase, class A | blaKPC | blaKPC |
Carbapenemase, class B | blaIMP | blaIMP | |
blaNDM | blaNDM | ||
blaVIM | blaVIM | ||
Carbapenemase, class D | - | blaOXA-23 | |
- | blaOXA-24 | ||
blaOXA-48–like (oxa-48, -162, -181, -199, -204, -232, -244, -245, -252, -370, -484, -505) | blaOXA-48 (oxa-48, -162, -181, -232, -244) | ||
- | blaOXA-58 | ||
Extended spectrum β-lactamase | blaCTX-M | blaCTX-M | |
Fluoroquinolone resistance | - | gyrA83 of E. coli and P. aeruginosa | |
- | gyrA87 of E. coli and P. aeruginosa | ||
Macrolide/ lincosamide resistance | - | ermB | |
Methicillin resistance | mecA/C and MREJ | mecA, mecC | |
Penicillinase | - | blatem | |
- | blashv | ||
Sulfonamide resistance | - | sul1 |
Publication | Assay | Time | Location | Study Type | Population | No. of Patients | Antibiotic before Sampling | No. of Samples | Sample Type |
---|---|---|---|---|---|---|---|---|---|
Gadsby et al., 2019 | Unyvero P55 Pneumonia | 2013–2015 | UK | retrospective | ICU patients | 74 | 63.80% | 74 | BAL |
Klein et al., 2021 | Unyvero Lower Respiratory Tract BAL | 2015–2018 | USA | multicenter, retrospective + prospective | NA | 1016 prospective; 392 archived | BAL | ||
Collins et a.l, 2020 | Unyvero Lower Respiratory Tract | USA | 98 | NA | 175 | BAL | |||
Enne et al., 2022 | Unyvero Hospitalized Pneumonia | 2016–2018 | UK | multicenter, prospective | nosocomial pneumonia (HAP/VAP) | 260 (suspected HAP); 392 (suspected VAP) | 43.40% | 652 | Sputum (272) ETA (n = 299) BAL (44) mini-BAL (23) |
Peiffer-Smadja | Unyvero Hospitalized Pneumonia | 2017–2018 | France | single-center, prospective | ventilated HAP or VAP | 85 patients, 95 episodes (24 ventilated HAP or 71 VAP) | 43.20% | 95 | BAL (72) mini-BAL (23) |
Luyt et al., 2020 | Unyvero P55 Pneumonia, Hospitalized Pneumonia | 2016–2019 | France | prospective | suspicion of VAP | 83 | 81.00% | 93 | BAL |
Buchan et al., 2020 | BioFire FilmArray Pneumonia | 2016–2017 | USA | multicenter, retrospective | suspicion of HAP or VAP | NA | 259 | BAL (237) mini-BAL (22) | |
Enne et al., 2022 | BioFire FilmArray Pneumonia | 2016–2018 | UK | multicenter, prospective | nosocomial pneumonia (HAP/VAP) | 260 (suspected HAP); 392 (suspected VAP) | 42.50% | 652 | Sputum (272) ETA (299) BAL (44) mini-BAL (23) |
Gastli et al., 2021 | BioFire FilmArray Pneumonia | 2018 | France | multicenter, prospective | suspicion of pneumonia | 515 | NA | 515 | Sputum (58) ETA (217) BAL (240) |
Posteraro et al., 2021 | BioFire FilmArray Pneumonia plus | 2020–2021 | Italy | single-center, prospective | COVID-19 patients with suspicion of VAP | 150 | NA | 212 | ETA (130) BAL (82) |
Ginocchio, 2021 | BioFire FilmArray Pneumonia plus | Europe (12 countries), Israel | multicenter | suspicion of pneumonia | NA | 2476 | Sputum-like (1242) BAL-like (1234) | ||
Kamel et al., 2022 | BioFire FilmArray Pneumonia plus | 2021 | Egypt | single-center, prospective | suspicion of HAP or VAP | NA | 50 | Mini-BAL | |
Gong et al., 2024 | BioFire FilmArray Pneumonia | 2021–2023 | China | single-center, prospective | patients diagnosed with acute LRTIs (CAP and HAP) | 130 (CAP); 57 (HAP) | NA | 187 | BAL |
Publication | Assay | Pathogen Identification | Identification of Antimicrobial Resistance | |||||
---|---|---|---|---|---|---|---|---|
Reference Test | PPA | NPA | Out-of-Panel Microorganisms/Tested Samples | Reference Methodology for Phenotypic Testing | PPA | NPA | ||
Gadsby et al., 2019 | Unyvero P55 Pneumonia | MALDI-TOF and in-house bacterial PCR | 56.9% | 58.5% | Vitek 2 (UK standards) | 18.8% | 94.9% | |
Klein et al., 2021 | Unyvero Lower Respiratory Tract BAL | MALDI-TOF | 93.4% | 98.3% | 28/1016 | Vitek 2, Phoenix, MicroScan, Sensititre, disk diffusion, broth dilution, or agar dilution (CLSI) | insufficient data for PPA and NPA | |
Collins et al., 2020 | Unyvero Lower Respiratory Tract | MALDI-TOF | 96.5% | 99.6% | 35/175 | disk diffusion (CLSI) | insufficient data for PPA and NPA | |
Enne et al., 2022 | Unyvero Hospitalized Pneumonia | UK standard | 90.7% | 96.8% | 16/652 | |||
Peiffer-Smadja | Unyvero Hospitalized Pneumonia | MALDI-TOF | 80% | 99% | 8/95 | disk diffusion (EUCAST) | 77% | 99% |
Luyt et al., 2020 | Unyvero P55 Pneumonia, Hospitalized Pneumonia | culture | 77.4% | 14.3% | 5/93 | disk diffusion (French standard) | 46.3% | 82.7% |
Buchan et al., 2020 | BioFire FilmArray Pneumonia | MALDI-TOF | 96.2% | 98.1% | 30/259 | Vitek 2, BD Phoenix, disk diffusion, E-test | 52.4% | 66.7% |
Enne et al., 2022 | BioFire FilmArray Pneumonia | UK standard | 96.7% | 95.8% | 28/652 | |||
Gastli et al., 2021 | BioFire FilmArray Pneumonia | Vitek2 and/or MALDI-TOF | 94.4% | 96.0% | 46/515 | Vitek2 or disk diffusion (EUCAST) | 92.3% | 99.5% |
Posteraro et al., 2021 | BioFire FilmArray Pneumonia plus | MALDI-TOF | 100% | 99.2% | 2/120 | Vitek 2, broth microdilution | 100% | 99.7% |
Ginocchio, 2021 | BioFire FilmArray Pneumonia plus | standard of care (varied with site) | 92.9% | 96.10% | 512/2476 | standard of care (varied with site) | insufficient data for PPA and NPA | |
Kamel et al., 2022 | BioFire FilmArray Pneumonia plus | Vitek 2 | 100% | 90% | 2/50 | Vitek 2 | 97% | 95% |
Gong et al., 2024 | BioFire FilmArray Pneumonia | Vitek 2 | 85% | 92% | 4/187 | broth dilution (CLSI) | 85% | 60% |
Publication | Assay | Time | Location | Study Type | Population | No. of Patients | Sample Type | Main Results |
---|---|---|---|---|---|---|---|---|
Darie et al., 2022 | Unyvero Hospitalized Pneumonia | 2017–2019 | Switzerland | Multicenter RCT | Suspicion of pneumonia (CAP, HAP) and risk of GNB infection | 208:
| BAL | Primary outcome: time (h) on inappropriate antibiotic therapy from bronchoscopy to day 30 or to discharge or: 38.6 (I) vs. 85.7 (C) * Secondary outcomes:
|
Poole et al., 2022 | FilmArray Pneumonia Plus | 2019–2021 | UK | Single-center, parallel-group, open-label RCT | CAP, HAP, VAP | 200 patients (100 per arm):
| ETA: 63% Sputum: 29% Directed BAL: 4% Undirected BAL: 4%. | Primary outcome: proportion of patients receiving results-directed therapy within 48 h from result: 80% (I) vs. 29% (C) * Secondary outcomes:
|
Fartoukh et al., 2023 | FilmArray Pneumonia/ FilmArray Pneumonia Plus | 2020 | France | Multicenter, parallel-group, open-label RCT | Critically-ill ICU patients with SARS-CoV-2 pneumonia | 191:
| Sputum ETA BAL | Primary outcome: number of days free of antibiotic by day 28 after randomization: 12 (I) vs. 14 (C), NS Secondary outcomes:
|
Cartuliares et al., 2023 | FilmArray Pneumonia Plus | 2021–2022 | Denmark | Multicenter, parallel-group, open-label RCT | Patients admitted with suspicion of CAP | 294:
| Sputum ETA | Primary outcome: proportion of patients with prescription of “no or narrow-spectrum” antibiotics within 4 h after admission: 62.8% (I) vs. 59.6% (C), NS Secondary outcomes:
57.7% (I) vs. 24.1% (C) *
76.9% (I) vs. 62.1% (C) *
|
Markussen et al., 2024 (JAMA) | FilmArray Pneumonia Plus | 2020–2022 | Norway | Single-center, parallel-group, single-blinded RCT | CAP (Emergency Department) | 374 (187 per arm):
| Sputum induction, ETA | Primary outcomes:
Secondary outcomes:
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pintea-Simon, I.-A.; Bancu, L.; Mare, A.D.; Ciurea, C.N.; Toma, F.; Man, A. Rapid Molecular Diagnostics of Pneumonia Caused by Gram-Negative Bacteria: A Clinician’s Review. Antibiotics 2024, 13, 805. https://doi.org/10.3390/antibiotics13090805
Pintea-Simon I-A, Bancu L, Mare AD, Ciurea CN, Toma F, Man A. Rapid Molecular Diagnostics of Pneumonia Caused by Gram-Negative Bacteria: A Clinician’s Review. Antibiotics. 2024; 13(9):805. https://doi.org/10.3390/antibiotics13090805
Chicago/Turabian StylePintea-Simon, Ionela-Anca, Ligia Bancu, Anca Delia Mare, Cristina Nicoleta Ciurea, Felicia Toma, and Adrian Man. 2024. "Rapid Molecular Diagnostics of Pneumonia Caused by Gram-Negative Bacteria: A Clinician’s Review" Antibiotics 13, no. 9: 805. https://doi.org/10.3390/antibiotics13090805
APA StylePintea-Simon, I. -A., Bancu, L., Mare, A. D., Ciurea, C. N., Toma, F., & Man, A. (2024). Rapid Molecular Diagnostics of Pneumonia Caused by Gram-Negative Bacteria: A Clinician’s Review. Antibiotics, 13(9), 805. https://doi.org/10.3390/antibiotics13090805