Antimicrobial Resistance in Equines: A Growing Threat to Horse Health and Beyond—A Comprehensive Review
Abstract
:1. Introduction
2. Equines Are a Crucial Component of One Health
3. Historical Usage of Antibiotics
4. Regulations and Guidelines for Antibiotic Usage in Veterinary Practice
5. Practical Applications of Antimicrobials in Equines
6. Drawbacks of Antibiotic Usage in Equine Production
6.1. Disruption of Normal Microbiota
6.2. Selection Pressure for the Suitable Treatment of Certain Illnesses
7. Epidemiology of AMR Infections in Equines
7.1. Bacterial Pathogens Affecting Gastrointestinal Tract of Horses
7.1.1. Salmonella Infections
7.1.2. E. coli Infections
7.1.3. Clostridium Infections
7.1.4. Campylobacter Infections
7.1.5. Staphylococcus aureus Infections
7.1.6. Listeria Infections
7.1.7. Enterococcus Infections
7.2. Bacterial Pathogens Affecting the Respiratory Tract of Horses
7.2.1. Rhodococcus equi Infections
7.2.2. Streptococcus equi Subspecies equi Infections
7.3. Bacterial Pathogens Affecting Horses’ Reproduction
7.3.1. Streptococcus equi Subspecies zooepidemicus Infections
7.3.2. Pseudomonas Infections
7.3.3. Taylorella equigenitalis
7.3.4. Klebsiella Infections
7.3.5. Amycolatopsis spp. and Crossiella equi Causing Nocardioform Placentitis
7.4. Bacterial Pathogens Affecting Musckloskeletal/Joints of Horses
7.5. Bacterial Pathogens Affecting the Neurological Health of Horses
7.6. Bacterial Pathogens Affecting the Urinary Tract of Horses
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Singh, A.; Pal, Y.; Kumar, R.; Kumar, S.; Bhardwaj, A.; Rani, K.; Ana, R. Equine husbandry based agri-entrepreneurship-an overview. J. Community Mobilization Sustain. Dev. 2022, 3, 697–704. [Google Scholar]
- AHC. Congress Clarifies That Horses Are Not “Pets”, Advances Landmark Livestock Health Measures. Available online: https://horseandrider.com/news/congress-clarifies-horses-are-not-pets/ (accessed on 10 June 2024).
- AHC. American Horse Council 2017 Economic Impact Study. Available online: https://www.aqha.com/-/ahc-releases-results-of-economic-impact-study (accessed on 10 June 2024).
- AHC. American Horse Council 2023 National Equine Economic Impact Study. Available online: https://www.americanhorsepubs.org/newsgroup/34555/results-from-the-2023-national-equine-economic-impact-study-released/ (accessed on 10 June 2024).
- Jaqueth, A.; Lochner, H.; Staniar, W.; Martinson, K. 176 Employment in the equine industry: Insights into job types, salaries, and education. J. Equine Vet. Sci. 2023, 124, 104522. [Google Scholar] [CrossRef]
- Huseman, C.; Walker, N.; McCorkle, D.A.; Hanselka, D.; Cater, M.; Zoller, J. Early evidence of the economic effects of COVID-19 on the horse show industry in 2020. J. Equine Vet. Sci. 2021, 106, 103734. [Google Scholar] [CrossRef] [PubMed]
- Brains, G.; Franks, I. Prospects for developments in the use of equines for crop production. In Proceedings of the Fourth International Conference on Working Equines, Hama, Syria, 20–25 April 2002. [Google Scholar]
- Ollenburg, C. Worldwide Structure of the Equestrian Tourism Sector. J. Ecotourism 2005, 4, 47–55. [Google Scholar] [CrossRef]
- Wilson, R.T. The Past, Present and Future of Domestic Equines in Tanzania. J. Equine Sci. 2013, 24, 37–45. [Google Scholar] [CrossRef] [PubMed]
- Jiménez, B.L.M.; Elghandour, M.M.M.Y.; Adegbeye, M.J.; Tirado González, D.N.; Tirado Estrada, G.; Salem, A.Z.M.; Pacheco, E.B.F.; Pliego, A.B. Use of Antibiotics in Equines and Their Effect on Metabolic Health and Cecal Microflora Activities. J. Equine Vet. Sci. 2021, 105, 103717. [Google Scholar] [CrossRef] [PubMed]
- Khusro, A.; Aarti, C.; Buendía-Rodriguez, G.; Arasu, M.V.; Al-Dhabi, N.A.; Barbabosa-Pliego, A. Adverse effect of antibiotics administration on horse health: An overview. J. Equine Vet. Sci. 2021, 97, 103339. [Google Scholar] [CrossRef] [PubMed]
- Stringer, A.P. Infectious diseases of working equids. Vet. Clin. N. Am. Equine Pract. 2014, 30, 695–718. [Google Scholar] [CrossRef] [PubMed]
- Shaw-Taylor, L. An introduction to the history of infectious diseases, epidemics and the early phases of the long-run decline in mortality. Econ. Hist. Rev. 2020, 73, E1–E19. [Google Scholar] [CrossRef]
- Williams-Nguyen, J.; Sallach, J.B.; Bartelt-Hunt, S.; Boxall, A.B.; Durso, L.M.; McLain, J.E.; Singer, R.S.; Snow, D.D.; Zilles, J.L. Antibiotics and antibiotic resistance in agroecosystems: State of the science. J. Environ. Qual. 2016, 45, 394–406. [Google Scholar] [CrossRef]
- Marles-Wright, J.; Lewis, R.J. Stress responses of bacteria. Curr. Opin. Struct. Biol. 2007, 17, 755–760. [Google Scholar] [CrossRef]
- Caneschi, A.; Bardhi, A.; Barbarossa, A.; Zaghini, A. The Use of Antibiotics and Antimicrobial Resistance in Veterinary Medicine, a Complex Phenomenon: A Narrative Review. Antibiotics 2023, 12, 487. [Google Scholar] [CrossRef]
- Salam, M.A.; Al-Amin, M.Y.; Salam, M.T.; Pawar, J.S.; Akhter, N.; Rabaan, A.A.; Alqumber, M.A.A. Antimicrobial Resistance: A Growing Serious Threat for Global Public Health. Healthcare 2023, 11, 1946. [Google Scholar] [CrossRef]
- Malaluang, P.; Wilén, E.; Lindahl, J.; Hansson, I.; Morrell, J.M. Antimicrobial Resistance in Equine Reproduction. Animals 2021, 11, 3035. [Google Scholar] [CrossRef]
- Murray, C.J.; Ikuta, K.S.; Sharara, F.; Swetschinski, L.; Aguilar, G.R.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef]
- WHO. Global Antimicrobial Resistance and Use Surveillance System (GLASS) Report: 2022; World Health Organization: Geneva, Switzerland, 2024.
- CDC. CDC Prioritizes Health Equity Related to Antimicrobial Resistance. Available online: https://www.cdc.gov/antimicrobial-resistance/stories/ar-health-equity.html (accessed on 18 July 2024).
- Varela, M.F.; Stephen, J.; Lekshmi, M.; Ojha, M.; Wenzel, N.; Sanford, L.M.; Hernandez, A.J.; Parvathi, A.; Kumar, S.H. Bacterial resistance to antimicrobial agents. Antibiotics 2021, 10, 593. [Google Scholar] [CrossRef]
- Kauter, A.; Epping, L.; Ghazisaeedi, F.; Lübke-Becker, A.; Wolf, S.A.; Kannapin, D.; Stoeckle, S.D.; Semmler, T.; Günther, S.; Gehlen, H. Frequency, local dynamics, and genomic characteristics of ESBL-producing Escherichia coli isolated from specimens of hospitalized horses. Front. Microbiol. 2021, 12, 671676. [Google Scholar] [CrossRef]
- Weese, J.S.; Rousseau, J.; Traub-Dargatz, J.L.; Willey, B.M.; McGeer, A.J.; Low, D.E. Community-associated methicillin-resistant Staphylococcus aureus in horses and humans who work with horses. J. Am. Vet. Med. Assoc. 2005, 226, 580–583. [Google Scholar] [CrossRef] [PubMed]
- Soza-Ossandón, P.; Rivera, D.; Tardone, R.; Riquelme-Neira, R.; García, P.; Hamilton-West, C.; Adell, A.D.; González-Rocha, G.; Moreno-Switt, A.I. Widespread environmental presence of multidrug-resistant Salmonella in an equine veterinary hospital that received local and international horses. Front. Vet. Sci. 2020, 7, 346. [Google Scholar] [CrossRef] [PubMed]
- Magnusson, U.; Moodley, A.; Osbjer, K. Antimicrobial resistance at the livestock-human interface: Implications for Veterinary Services. Rev. Sci. Tech. (Int. Off. Epizoot.) 2021, 40, 511–521. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, W.; Thomas, L.F.; Coyne, L.; Rushton, J. Mitigating the risks posed by intensification in livestock production: The examples of antimicrobial resistance and zoonoses. Animal 2021, 15, 100123. [Google Scholar] [CrossRef]
- Weese, J.; Caldwell, F.; Willey, B.; Kreiswirth, B.; McGeer, A.; Rousseau, J.; Low, D. An outbreak of methicillin-resistant Staphylococcus aureus skin infections resulting from horse to human transmission in a veterinary hospital. Vet. Microbiol. 2006, 114, 160–164. [Google Scholar] [CrossRef] [PubMed]
- Sack, A.; Oladunni, F.S.; Gonchigoo, B.; Chambers, T.M.; Gray, G.C. Zoonotic diseases from horses: A systematic review. Vector-Borne Zoonotic Dis. 2020, 20, 484–495. [Google Scholar] [CrossRef] [PubMed]
- Pelkonen, S.; Lindahl, S.B.; Suomala, P.; Karhukorpi, J.; Vuorinen, S.; Koivula, I.; Väisänen, T.; Pentikäinen, J.; Autio, T.; Tuuminen, T. Transmission of Streptococcus equi subspecies zooepidemicus infection from horses to humans. Emerg. Infect. Dis. 2013, 19, 1041. [Google Scholar] [CrossRef] [PubMed]
- Bourély, C.; Cazeau, G.; Jarrige, N.; Haenni, M.; Gay, E.; Leblond, A. Antimicrobial resistance in bacteria isolated from diseased horses in France. Equine Vet. J. 2020, 52, 112–119. [Google Scholar] [CrossRef] [PubMed]
- Duchesne, R.; Castagnet, S.; Maillard, K.; Petry, S.; Cattoir, V.; Giard, J.-C.; Leon, A. In vitro antimicrobial susceptibility of equine clinical isolates from France, 2006–2016. J. Glob. Antimicrob. Resist. 2019, 19, 144–153. [Google Scholar] [CrossRef] [PubMed]
- Adams, R.; Smith, J.; Locke, S.; Phillips, E.; Erol, E.; Carter, C.; Odoi, A. An epidemiologic study of antimicrobial resistance of Staphylococcus species isolated from equine samples submitted to a diagnostic laboratory. BMC Vet. Res. 2018, 14, 42. [Google Scholar] [CrossRef] [PubMed]
- Chung, Y.S.; Song, J.W.; Kim, D.H.; Shin, S.; Park, Y.K.; Yang, S.J.; Lim, S.K.; Park, K.T.; Park, Y.H. Isolation and characterization of antimicrobial-resistant Escherichia coli from national horse racetracks and private horse-riding courses in Korea. J. Vet. Sci. 2016, 17, 199–206. [Google Scholar] [CrossRef] [PubMed]
- WHO. One Health. 2024. Available online: https://www.who.int/news-room/questions-and-answers/item/one-health (accessed on 10 June 2024).
- White-Lewis, S. Equine-assisted therapies using horses as healers: A concept analysis. Nurs. Open 2020, 7, 58–67. [Google Scholar] [CrossRef]
- Kumar, B.; Manuja, A.; Gulati, B.; Virmani, N.; Tripathi, B. Suppl-2, M5: Zoonotic viral diseases of equines and their impact on human and animal health. Open Virol. J. 2018, 12, 80. [Google Scholar] [CrossRef]
- Valdés-Correcher, E.; Sitters, J.; Wassen, M.; Brion, N.; Olde Venterink, H. Herbivore dung quality affects plant community diversity. Sci. Rep. 2019, 9, 5675. [Google Scholar] [CrossRef]
- Vasanthakumar, M.A.; Upjohn, M.M.; Watson, T.L.; Dwyer, C.M. ‘All My Animals Are Equal, but None Can Survive without the Horse’. The Contribution of Working Equids to the Livelihoods of Women across Six Communities in the Chimaltenango Region of Guatemala. Animals 2021, 11, 1509. [Google Scholar] [CrossRef]
- Stanciu, S. Horse meat consumption—Between scandal and reality. Procedia Econ. Financ. 2015, 23, 697–703. [Google Scholar] [CrossRef]
- Timoney, P.J. Infectious diseases and international movement of horses. In Equine Infectious Diseases; Elsevier: Amsterdam, The Netherlands, 2014; p. 544. [Google Scholar]
- Todd, E.C.; Michaels, B.S.; Smith, D.; Greig, J.D.; Bartleson, C.A. Outbreaks where food workers have been implicated in the spread of foodborne disease. Part 9. Washing and drying of hands to reduce microbial contamination. J. Food Prot. 2010, 73, 1937–1955. [Google Scholar] [CrossRef]
- Weese, J. A review of equine zoonotic diseases: Risks in veterinary medicine. In Proceedings of the 48th Annual Convention of the AAEP, Orlando, FL, USA, 4 December 2002; pp. 362–369. [Google Scholar]
- Adler, B.; de la Peña Moctezuma, A. Leptospira and leptospirosis. Vet. Microbiol. 2010, 140, 287–296. [Google Scholar] [CrossRef] [PubMed]
- Mukarim, A.; Dechassa, T.; Mahendra, P. Equine bacterial and viral zoonosis: A systematic review. Austin. J. Trop. Med. Hyg. 2015, 1, 1001–1006. [Google Scholar]
- Vázquez-Boland, J.A.; Giguère, S.; Hapeshi, A.; MacArthur, I.; Anastasi, E.; Valero-Rello, A. Rhodococcus equi: The many facets of a pathogenic actinomycete. Vet. Microbiol. 2013, 167, 9–33. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, M.G.; Nardi, G.d.; Megid, J.; Franco, M.M.; Guerra, S.T.; Portilho, F.V.; Rodrigues, S.A.; Paes, A.C. Tetanus in horses: An overview of 70 cases. Pesqui. Vet. Bras. 2018, 38, 285–293. [Google Scholar] [CrossRef]
- Khurana, S.; Dhama, K.; Prasad, M.; Karthik, K.; Tiwari, R. Zoonotic pathogens transmitted from equines: Diagnosis and control. Adv. Anim. Vet. Sci. 2015, 3, 32–53. [Google Scholar] [CrossRef]
- Cummings, K.J.; Perkins, G.A.; Khatibzadeh, S.M.; Warnick, L.D.; Aprea, V.A.; Altier, C. Antimicrobial resistance trends among Salmonella isolates obtained from horses in the northeastern United States (2001–2013). Am. J. Vet. Res. 2016, 77, 505–513. [Google Scholar] [CrossRef]
- Pal, M.; Rahman, T. Rhodococcus equi: An emerging zoonotic pathogen. Ann. Vet. Anim. Sci. 2015, 2, 3–10. [Google Scholar]
- Vo, A.T.; van Duijkeren, E.; Fluit, A.C.; Gaastra, W. Characteristics of extended-spectrum cephalosporin-resistant Escherichia coli and Klebsiella pneumoniae isolates from horses. Vet. Microbiol. 2007, 124, 248–255. [Google Scholar] [CrossRef]
- Weese, J.S.; Archambault, M.; Willey, B.; Dick, H.; Hearn, P.; Kreiswirth, B.; Said-Salim, B.; McGeer, A.; Likhoshvay, Y.; Prescott, J. Methicillin-resistant Staphylococcus aureus in horses and horse personnel, 2000–2002. Emerg. Infect. Dis. 2005, 11, 430. [Google Scholar] [CrossRef]
- Da Costa, P.M.; Loureiro, L.; Matos, A.J.F. Transfer of Multidrug-Resistant Bacteria Between Intermingled Ecological Niches: The Interface Between Humans, Animals and the Environment. Int. J. Environ. Res. Public Health 2013, 10, 278–294. [Google Scholar] [CrossRef]
- Onmaz, A.; Beutel, R.; Schneeberg, K.; Pavaloiu, A.; Komarek, A.; Van Den Hoven, R. Vectors and vector-borne diseases of horses. Vet. Res. Commun. 2013, 37, 65–81. [Google Scholar] [CrossRef]
- Doyle, M.E.; Kaspar, C.; Archer, J.; Klos, R. White paper on human illness caused by Salmonella from all food and non-food vectors. FRI Brief. 2009, 24, 1–81. [Google Scholar]
- Davies, M.; Anderson, M.; Hilton, A.C. The housefly Musca domestica as a mechanical vector of Clostridium difficile. J. Hosp. Infect. 2016, 94, 263–267. [Google Scholar] [CrossRef]
- Ahmad, A.; Nagaraja, T.; Zurek, L. Transmission of Escherichia coli O157: H7 to cattle by house flies. Prev. Vet. Med. 2007, 80, 74–81. [Google Scholar] [CrossRef]
- Schaumburg, F.; Onwugamba, F.C.; Akulenko, R.; Peters, G.; Mellmann, A.; Köck, R.; Becker, K. A geospatial analysis of flies and the spread of antimicrobial resistant bacteria. Int. J. Med. Microbiol. 2016, 306, 566–571. [Google Scholar] [CrossRef]
- Lönker, N.S.; Fechner, K.; Wahed, A.A.E. Horses as a Crucial Part of One Health. Vet. Sci. 2020, 7, 28. [Google Scholar] [CrossRef]
- Isgren, C. Antimicrobial resistance in horses. Vet. Rec. 2018, 183, 316–318. [Google Scholar]
- Steinman, A.; Navon-Venezia, S. Antimicrobial Resistance in Horses. Animals 2020, 10, 1161. [Google Scholar] [CrossRef] [PubMed]
- Wollein Waldetoft, K.; Sundius, S.; Kuske, R.; Brown, S.P. Defining the Benefits of Antibiotic Resistance in Commensals and the Scope for Resistance Optimization. mBio 2023, 14, e0134922. [Google Scholar] [CrossRef]
- Kaspar, U.; von Lützau, K.; Schlattmann, A.; Rösler, U.; Köck, R.; Becker, K. Zoonotic multidrug-resistant microorganisms among non-hospitalized horses from Germany. One Health 2019, 7, 100091. [Google Scholar] [CrossRef]
- Trigo da Roza, F.; Couto, N.; Carneiro, C.; Cunha, E.; Rosa, T.; Magalhães, M.; Tavares, L.; Novais, Â.; Peixe, L.; Rossen, J.W. Commonality of multidrug-resistant Klebsiella pneumoniae ST348 isolates in horses and humans in Portugal. Front. Microbiol. 2019, 10, 1657. [Google Scholar] [CrossRef]
- Fleming, A. On the Antibacterial Action of Cultures of a Penicillium, with Special Reference to their Use in the Isolation of B. influenzæ. Br. J. Exp. Pathol. 1929, 10, 226–236. [Google Scholar] [CrossRef]
- Okeke, I.N.; Lamikanra, A.; Edelman, R. Socioeconomic and behavioral factors leading to acquired bacterial resistance to antibiotics in developing countries. Emerg. Infect. Dis. 1999, 5, 18. [Google Scholar] [CrossRef]
- Adedeji, W.A. The treasure called antibiotics. Ann. Ib. Postgrad. Med. 2016, 14, 56–57. [Google Scholar] [PubMed]
- Prescott, J.F. History and Current Use of Antimicrobial Drugs in Veterinary Medicine. Microbiol. Spectr. 2017, 5, 1–16. [Google Scholar] [CrossRef]
- Patel, P.; Wermuth, H.R.; Calhoun, C.; Hall, G.A. Antibiotics, January 2023 ed.; StatPearls: Treasure Island, FL, USA, 2023. [Google Scholar]
- Gustafson, R.H.; Bowen, R.E. Antibiotic use in animal agriculture. J. Appl. Microbiol. 1997, 83, 531–541. [Google Scholar] [CrossRef]
- Alaboudi, A.R. Chapter 42—Antimicrobial Residues in Table Eggs. In Egg Innovations and Strategies for Improvements; Hester, P.Y., Ed.; Academic Press: San Diego, CA, USA, 2017; pp. 447–456. [Google Scholar] [CrossRef]
- Russell, J.B.; Strobel, H.J. Effects of additives on in vitro ruminal fermentation: A comparison of monensin and bacitracin, another gram-positive antibiotic. J. Anim. Sci. 1988, 66, 552–558. [Google Scholar] [CrossRef] [PubMed]
- Dewell, G.A.; Rademacher, C.J.; Sato, Y. Review of regulations and indications for the use of in-feed antimicrobials for production animals. J. Am. Vet. Med. Assoc. 2022, 260, S129–S132. [Google Scholar] [CrossRef] [PubMed]
- U.S. Food and Drug Administration (FDA). Timeline of FDA Action on Antimicrobial Resistance. Available online: https://www.fda.gov/animal-veterinary/antimicrobial-resistance/timeline-fda-action-antimicrobial-resistance (accessed on 7 June 2024).
- Algammal, A.M.; Hetta, H.F.; Elkelish, A.; Alkhalifah, D.H.H.; Hozzein, W.N.; Batiha, G.E.; El Nahhas, N.; Mabrok, M.A. Methicillin-Resistant Staphylococcus aureus (MRSA): One Health Perspective Approach to the Bacterium Epidemiology, Virulence Factors, Antibiotic-Resistance, and Zoonotic Impact. Infect. Drug Resist. 2020, 13, 3255–3265. [Google Scholar] [CrossRef] [PubMed]
- U.S. Food and Drug Administration (FDA). What Is a VFD? Available online: https://www.fda.gov/animal-veterinary/development-approval-process/veterinary-feed-directive-requirements-veterinarians#:~:text=What%20is%20the%20difference%20between%20a%20VFD%20drug,FDA%20approves%20these%20drugs%20as%20a%20VFD%20drug (accessed on 28 May 2024).
- Step, D.L.; Giedy, E.J.; Whitworth, B. Veterinary Feed Directive. Available online: https://extension.okstate.edu/fact-sheets/veterinary-feed-directive.html#:~:text=VFD%20drugs%20are%20not%20prescription%20drugs.%20VFD%20drugs,manner%2C%20which%20is%20strictly%20prohibited%20for%20VFD%20drugs (accessed on 27 May 2024).
- AVMA. AAAP Guidelines for Judicious Therapeutic Use of Antimicrobials in Poultry. Available online: https://www.avma.org/resources-tools/avma-policies/aaap-guidelines-judicious-therapeutic-use-antimicrobials-poultry (accessed on 7 June 2024).
- Equine Antimicrobial Use Guidelines. July 2022. Available online: https://www.bing.com/search?q=equine+antimicrobial+use+guidelines+ue&qs=n&form=QBRE&sp=-1&ghc=1&lq=0&pq=equine+antimicrobial+use+guidelines+ue&sc=10-38&sk=&cvid=614C651D7344403EB3D7D47118D600ED&ghsh=0&ghacc=0&ghpl= (accessed on 7 June 2024).
- Helmy, Y.A.; Taha-Abdelaziz, K.; Hawwas, H.A.E.-H.; Ghosh, S.; AlKafaas, S.S.; Moawad, M.M.M.; Saied, E.M.; Kassem, I.I.; Mawad, A.M.M. Antimicrobial Resistance and Recent Alternatives to Antibiotics for the Control of Bacterial Pathogens with an Emphasis on Foodborne Pathogens. Antibiotics 2023, 12, 274. [Google Scholar] [CrossRef] [PubMed]
- Abouelela, M.E.; Helmy, Y.A. Next-Generation Probiotics as Novel Therapeutics for Improving Human Health: Current Trends and Future Perspectives. Microorganisms 2024, 12, 430. [Google Scholar] [CrossRef] [PubMed]
- Karp, B.E.; Tate, H.; Plumblee, J.R.; Dessai, U.; Whichard, J.M.; Thacker, E.L.; Hale, K.R.; Wilson, W.; Friedman, C.R.; Griffin, P.M.; et al. National Antimicrobial Resistance Monitoring System: Two Decades of Advancing Public Health Through Integrated Surveillance of Antimicrobial Resistance. Foodborne Pathog. Dis. 2017, 14, 545–557. [Google Scholar] [CrossRef] [PubMed]
- CARB. National Action Plan for Combating Antibiotic-Resistance. Available online: https://www.hhs.gov/sites/default/files/carb-national-action-plan-2020-2025.pdf (accessed on 4 June 2024).
- Troedsson, M.H.; Woodward, E.M. Our current understanding of the pathophysiology of equine endometritis with an emphasis on breeding-induced endometritis. Reprod. Biol. 2016, 16, 8–12. [Google Scholar] [CrossRef] [PubMed]
- Zent, W.W.; Troedsson, M.H.T.; Xue, J.-L. Postbreeding Uterine Fluid Accumulation in a Normal Population of Thoroughbred Mares: A Field Study. In Proceedings of the Annual Convention of the AAEP 1998, Baltilmore, MD, USA, 9 December 1998. [Google Scholar]
- Troedsson, M.H.; Scott, M.A.; Liu, I.K. Comparative treatment of mares susceptible to chronic uterine infection. Am. J. Vet. Res. 1995, 56, 468–472. [Google Scholar] [CrossRef] [PubMed]
- Díaz-Bertrana, M.L.; Deleuze, S.; Pitti Rios, L.; Yeste, M.; Morales Fariña, I.; Rivera Del Alamo, M.M. Microbial Prevalence and Antimicrobial Sensitivity in Equine Endometritis in Field Conditions. Animals 2021, 11, 1476. [Google Scholar] [CrossRef]
- Rasmussen, C.D.; Haugaard, M.M.; Petersen, M.R.; Nielsen, J.M.; Pedersen, H.G.; Bojesen, A.M. Streptococcus equi subsp. zooepidemicus isolates from equine infectious endometritis belong to a distinct genetic group. Vet. Res. 2013, 44, 26. [Google Scholar] [CrossRef]
- Petersen, M.R.; Skive, B.; Christoffersen, M.; Lu, K.; Nielsen, J.M.; Troedsson, M.H.; Bojesen, A.M. Activation of persistent Streptococcus equi subspecies zooepidemicus in mares with subclinical endometritis. Vet. Microbiol. 2015, 179, 119–125. [Google Scholar] [CrossRef] [PubMed]
- Ferris, R.A.; Wittstock, S.; McCue, P.M.; Borlee, B.R. Evaluation of biofilms in gram-negative bacteria isolated from the equine uterus. J. Equine Vet. Sci. 2014, 34, 121. [Google Scholar] [CrossRef]
- Stewart, P.S.; Costerton, J.W. Antibiotic resistance of bacteria in biofilms. Lancet 2001, 358, 135–138. [Google Scholar] [CrossRef] [PubMed]
- Canisso, I.; Ball, B.A.; Erol, E.; Squires, E.L.; Troedsson, M.H.T. Comprehensive review on equine placentitis. In Proceedings of the 61st Annual Convention of the American Association of Equine Practitioners, Las Vegas, NV, USA, 5–9 December 2015. [Google Scholar]
- El-Sheikh Ali, H.; Ball, B.; Fedorka, C.E.; Scoggin, K.; Schnobrich, M.; Erol, E.; Ruby, R.; Loynachan, A.; Smith, J.; Dini, P. Nocardioform Placentitis: A Continuing Question. In Proceedings of the American Association of Equine Practitioners, Nashville, TN, USA, 4–8 December 2021. [Google Scholar]
- Fernandes, C.B.; Ball, B.A.; Loux, S.C.; Boakari, Y.L.; Scoggin, K.E.; El-Sheikh Ali, H.; Cogliati, B.; Esteller-Vico, A. Uterine cervix as a fundamental part of the pathogenesis of pregnancy loss associated with ascending placentitis in mares. Theriogenology 2020, 145, 167–175. [Google Scholar] [CrossRef] [PubMed]
- El-Sheikh Ali, H.; Dini, P.; Scoggin, K.; Loux, S.; Fedorka, C.; Boakari, Y.; Norris, J.; Esteller-Vico, A.; Kalbfleisch, T.; Ball, B. Transcriptomic analysis of equine placenta reveals key regulators and pathways involved in ascending placentitis. Biol. Reprod. 2021, 104, 638–656. [Google Scholar] [CrossRef] [PubMed]
- Bailey, C.S.; Macpherson, M.L.; Pozor, M.A.; Troedsson, M.H.; Benson, S.; Giguere, S.; Sanchez, L.C.; Leblanc, M.M.; Vickroy, T.W. Treatment efficacy of trimethoprim sulfamethoxazole, pentoxifylline and altrenogest in experimentally induced equine placentitis. Theriogenology 2010, 74, 402–412. [Google Scholar] [CrossRef]
- Canisso, I.F.; Loux, S.C.; Lima, F.S. Biomarkers for placental disease in mares. Theriogenology 2020, 150, 302–307. [Google Scholar] [CrossRef]
- Cummins, C.; Carrington, S.; Fitzpatrick, E.; Duggan, V. Ascending placentitis in the mare: A review. Ir. Vet. J. 2008, 61, 307–313. [Google Scholar] [CrossRef]
- Murchie, T.A.; Macpherson, M.L.; LeBlanc, M.M.; Luznar, S.; Vickroy, T.W. Continuous monitoring of penicillin G and gentamicin in allantoic fluid of pregnant pony mares by in vivo microdialysis. Equine Vet. J. 2006, 38, 520–525. [Google Scholar] [CrossRef]
- Álvarez-Narváez, S.; Berghaus, L.J.; Morris, E.R.A.; Willingham-Lane, J.M.; Slovis, N.M.; Giguere, S.; Cohen, N.D. A Common Practice of Widespread Antimicrobial Use in Horse Production Promotes Multi-Drug Resistance. Sci. Rep. 2020, 10, 911. [Google Scholar] [CrossRef]
- Shamdasani, P.; Liew, D.F.L.; Nohrenberg, M.; Leroi, M.M.; McMaster, C.; Owen, C.E.; Hardidge, A.; Buchanan, R.R.C. Diagnosis of septic arthritis in the acute care setting: The value of routine intra-operative sample culture. Rheumatol. Adv. Pract. 2023, 7, i12–i18. [Google Scholar] [CrossRef] [PubMed]
- Rofe, A.P.; Davis, L.J.; Whittingham, J.L.; Latimer-Bowman, E.C.; Wilkinson, A.J.; Pryor, P.R. The Rhodococcus equi virulence protein VapA disrupts endolysosome function and stimulates lysosome biogenesis. MicrobiologyOpen 2017, 6, e00416. [Google Scholar] [CrossRef] [PubMed]
- Huber, L.; Giguère, S.; Cohen, N.D.; Slovis, N.M.; Hanafi, A.; Schuckert, A.; Berghaus, L.; Greiter, M.; Hart, K.A. Prevalence and risk factors associated with emergence of Rhodococcus equi resistance to macrolides and rifampicin in horse-breeding farms in Kentucky, USA. Vet. Microbiol. 2019, 235, 243–247. [Google Scholar] [CrossRef] [PubMed]
- Parker, J.L.; Page, A.; Jacob, O.; Stanton, V.; Davis, B.; Flythe, M.; Adam, E.N. Equine fecal microbiota response to short term antibiotic administration. J. Equine Vet. Sci. 2024, 133, 104993. [Google Scholar] [CrossRef]
- Harlow, B.E. Changes to the Equine Hindgut Microflora in Response to Antibiotic Challenge. Master’s Thesis, University of Kentucky, Lexington, KT, USA, 2012. [Google Scholar]
- Hutchings, M.I.; Truman, A.W.; Wilkinson, B. Antibiotics: Past, present and future. Curr. Opin. Microbiol. 2019, 51, 72–80. [Google Scholar] [CrossRef] [PubMed]
- Lord, J.; Carter, C.; Smith, J.; Locke, S.; Phillips, E. Antimicrobial resistance among Streptococcus equi subspecies zooepidemicus and Rhodococcus equi isolated from equine specimens submitted to a diagnostic laboratory in Kentucky, USA. PeerJ 2022, 10, e13682. [Google Scholar] [CrossRef] [PubMed]
- Nocera, F.P.; D’Eletto, E.; Ambrosio, M.; Fiorito, F.; Pagnini, U.; De Martino, L. Occurrence and antimicrobial susceptibility profiles of Streptococcus equi subsp. zooepidemicus strains isolated from mares with fertility problems. Antibiotics 2021, 11, 25. [Google Scholar] [CrossRef] [PubMed]
- Isgren, C.M.; Williams, N.J.; Fletcher, O.D.; Timofte, D.; Newton, R.J.; Maddox, T.W.; Clegg, P.D.; Pinchbeck, G.L. Antimicrobial resistance in clinical bacterial isolates from horses in the UK. Equine Vet. J. 2022, 54, 390–414. [Google Scholar] [CrossRef] [PubMed]
- Chipangura, J.K.; Chetty, T.; Kgoete, M.; Naidoo, V. Prevalence of antimicrobial resistance from bacterial culture and susceptibility records from horse samples in South Africa. Prev. Vet. Med. 2017, 148, 37–43. [Google Scholar] [CrossRef]
- Marshall, K.; Marsella, R. Evolution of the prevalence of antibiotic resistance to Staphylococcus spp. isolated from horses in Florida over a 10-year period. Vet. Sci. 2023, 10, 71. [Google Scholar] [CrossRef]
- Mama, O.M.; Gómez, P.; Ruiz-Ripa, L.; Gómez-Sanz, E.; Zarazaga, M.; Torres, C. Antimicrobial resistance, virulence, and genetic lineages of staphylococci from horses destined for human consumption: High detection of S. aureus isolates of lineage ST1640 and those carrying the lukPQ gene. Animals 2019, 9, 900. [Google Scholar] [CrossRef] [PubMed]
- Schnellmann, C.; Gerber, V.; Rossano, A.; Jaquier, V.; Panchaud, Y.; Doherr, M.G.; Thomann, A.; Straub, R.; Perreten, V. Presence of new mecA and mph (C) variants conferring antibiotic resistance in Staphylococcus spp. isolated from the skin of horses before and after clinic admission. J. Clin. Microbiol. 2006, 44, 4444–4454. [Google Scholar] [CrossRef] [PubMed]
- Nwobi, O.C.; Anyanwu, M.U.; Jaja, I.F.; Nwankwo, I.O.; Okolo, C.C.; Nwobi, C.A.; Ezenduka, E.V.; Oguttu, J.W. Staphylococcus aureus in Horses in Nigeria: Occurrence, Antimicrobial, Methicillin and Heavy Metal Resistance and Virulence Potentials. Antibiotics 2023, 12, 242. [Google Scholar] [CrossRef] [PubMed]
- Smith, M.A.; Ross, M.W. Postoperative infection with Actinobacillus spp in horses: 10 cases (1995–2000). J. Am. Vet. Med. Assoc. 2002, 221, 1306–1310. [Google Scholar] [CrossRef] [PubMed]
- Haggett, E.; Wilson, W. Overview of the use of antimicrobials for the treatment of bacterial infections in horses. Equine Vet. Educ. 2008, 20, 433–448. [Google Scholar] [CrossRef]
- Dejkong, R.; Wattanachai, S.; Phuektes, P.; Putthachalee, S.; Angkititrakul, S. Epidemiology and antimicrobial resistance of Salmonella isolated from racehorses and horsemen in Northeastern Thailand. Vet. Integr. Sci. 2022, 20, 497–506. [Google Scholar] [CrossRef]
- Dunowska, M.; Morley, P.S.; Traub-Dargatz, J.L.; Hyatt, D.R.; Dargatz, D.A. Impact of hospitalization and antimicrobial drug administration on antimicrobial susceptibility patterns of commensal Escherichia coli isolated from the feces of horses. J. Am. Vet. Med. Assoc. 2006, 228, 1909–1917. [Google Scholar] [CrossRef] [PubMed]
- Maddox, T.; Clegg, P.; Diggle, P.; Wedley, A.; Dawson, S.; Pinchbeck, G.; Williams, N. Cross-sectional study of antimicrobial-resistant bacteria in horses. Part 1: Prevalence of antimicrobial-resistant Escherichia coli and methicillin-resistant Staphylococcus aureus. Equine Vet. J. 2012, 44, 289–296. [Google Scholar] [CrossRef]
- Gravey, F.; Sévin, C.; Castagnet, S.; Foucher, N.; Maillard, K.; Tapprest, J.; Léon, A.; Langlois, B.; Le Hello, S.; Petry, S. Antimicrobial resistance and genetic diversity of Klebsiella pneumoniae strains from different clinical sources in horses. Front. Microbiol. 2023, 14, 1334555. [Google Scholar] [CrossRef]
- Giguère, S.; Berghaus Londa, J.; Willingham-Lane Jennifer, M. Antimicrobial Resistance in Rhodococcus equi. Microbiol. Spectr. 2017, 5, 10–1128. [Google Scholar] [CrossRef]
- Steneroden, K.K.; Van Metre, D.C.; Jackson, C.; Morley, P.S. Detection and Control of a Nosocomial Outbreak Caused by Salmonella Newport at a Large Animal Hospital. J. Vet. Intern. Med. 2010, 24, 606–616. [Google Scholar] [CrossRef] [PubMed]
- Jang, S.S.; Hansen, L.M.; Breher, J.E.; Riley, D.A.; Magdesian, K.G.; Madigan, J.E.; Tang, Y.J.; Silva, J., Jr.; Hirsh, D.C. Antimicrobial susceptibilities of equine isolates of Clostridium difficile and molecular characterization of metronidazole-resistant strains. Clin. Infect. Dis. 1997, 25 (Suppl. S2), S266–S267. [Google Scholar] [CrossRef] [PubMed]
- Patangia, D.V.; Anthony Ryan, C.; Dempsey, E.; Paul Ross, R.; Stanton, C. Impact of antibiotics on the human microbiome and consequences for host health. Microbiologyopen 2022, 11, e1260. [Google Scholar] [CrossRef] [PubMed]
- Afzaal, M.; Saeed, F.; Shah, Y.A.; Hussain, M.; Rabail, R.; Socol, C.T.; Hassoun, A.; Pateiro, M.; Lorenzo, J.M.; Rusu, A.V.; et al. Human gut microbiota in health and disease: Unveiling the relationship. Front. Microbiol. 2022, 13, 999001. [Google Scholar] [CrossRef]
- Costa, M.C.; Stämpfli, H.R.; Arroyo, L.G.; Allen-Vercoe, E.; Gomes, R.G.; Weese, J.S. Changes in the equine fecal microbiota associated with the use of systemic antimicrobial drugs. BMC Vet. Res. 2015, 11, 19. [Google Scholar] [CrossRef]
- Liepman, R.S.; Swink, J.M.; Habing, G.G.; Boyaka, P.N.; Caddey, B.; Costa, M.; Gomez, D.E.; Toribio, R.E. Effects of intravenous antimicrobial drugs on the equine fecal microbiome. Animals 2022, 12, 1013. [Google Scholar] [CrossRef]
- Merenstein, D.; Fraser, C.M.; Roberts, R.F.; Liu, T.; Grant-Beurmann, S.; Tan, T.P.; Smith, K.H.; Cronin, T.; Martin, O.A.; Sanders, M.E. Bifidobacterium animalis subsp. lactis BB-12 protects against antibiotic-induced functional and compositional changes in human fecal microbiome. Nutrients 2021, 13, 2814. [Google Scholar] [CrossRef] [PubMed]
- Collinet, A.; Grimm, P.; Julliand, S.; Julliand, V. Multidimensional Approach for Investigating the Effects of an Antibiotic–Probiotic Combination on the Equine Hindgut Ecosystem and Microbial Fibrolysis. Front. Microbiol. 2021, 12, 646294. [Google Scholar] [CrossRef]
- Matzaras, R.; Nikopoulou, A.; Protonotariou, E.; Christaki, E. Gut Microbiota Modulation and Prevention of Dysbiosis as an Alternative Approach to Antimicrobial Resistance: A Narrative Review. Yale J. Biol. Med. 2022, 95, 479–494. [Google Scholar]
- Eliopoulos, G.M.; Cosgrove, S.E.; Carmeli, Y. The impact of antimicrobial resistance on health and economic outcomes. Clin. Infect. Dis. 2003, 36, 1433–1437. [Google Scholar] [CrossRef]
- Friedman, N.D.; Temkin, E.; Carmeli, Y. The negative impact of antibiotic resistance. Clin. Microbiol. Infect. 2016, 22, 416–422. [Google Scholar] [CrossRef]
- Patel, G.; Huprikar, S.; Factor, S.H.; Jenkins, S.G.; Calfee, D.P. Outcomes of carbapenem-resistant Klebsiella pneumoniae infection and the impact of antimicrobial and adjunctive therapies. Infect. Control Hosp. Epidemiol. 2008, 29, 1099–1106. [Google Scholar] [CrossRef] [PubMed]
- Sarmah, A.K.; Meyer, M.T.; Boxall, A.B. A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere 2006, 65, 725–759. [Google Scholar] [CrossRef]
- Kolář, M.; Urbánek, K.; Látal, T. Antibiotic selective pressure and development of bacterial resistance. Int. J. Antimicrob. Agents 2001, 17, 357–363. [Google Scholar] [CrossRef] [PubMed]
- Skalet, A.H.; Cevallos, V.; Ayele, B.; Gebre, T.; Zhou, Z.; Jorgensen, J.H.; Zerihun, M.; Habte, D.; Assefa, Y.; Emerson, P.M.; et al. Antibiotic Selection Pressure and Macrolide Resistance in Nasopharyngeal Streptococcus pneumoniae: A Cluster-Randomized Clinical Trial. PLoS Med. 2010, 7, e1000377. [Google Scholar] [CrossRef] [PubMed]
- Malhotra-Kumar, S.; Lammens, C.; Coenen, S.; Van Herck, K.; Goossens, H. Effect of azithromycin and clarithromycin therapy on pharyngeal carriage of macrolide-resistant streptococci in healthy volunteers: A randomised, double-blind, placebo-controlled study. Lancet 2007, 369, 482–490. [Google Scholar] [CrossRef]
- Keenan, J.D.; Chin, S.A.; Amza, A.; Kadri, B.; Nassirou, B.; Cevallos, V.; Cotter, S.Y.; Zhou, Z.; West, S.K.; Bailey, R.L.; et al. The Effect of Antibiotic Selection Pressure on the Nasopharyngeal Macrolide Resistome: A Cluster-randomized Trial. Clin. Infect. Dis. 2018, 67, 1736–1742. [Google Scholar] [CrossRef]
- Burton, A.J.; Giguère, S.; Sturgill, T.L.; Berghaus, L.J.; Slovis, N.M.; Whitman, J.L.; Levering, C.; Kuskie, K.R.; Cohen, N.D. Macrolide-and rifampin-resistant Rhodococcus equi on a horse breeding farm, Kentucky, USA. Emerg. Infect. Dis. 2013, 19, 282. [Google Scholar] [CrossRef]
- Knox, A.; Zerna, G.; Beddoe, T. Current and Future Advances in the Detection and Surveillance of Biosecurity-Relevant Equine Bacterial Diseases Using Loop-Mediated Isothermal Amplification (LAMP). Animals 2023, 13, 2663. [Google Scholar] [CrossRef]
- EFSA Panel on Animal Health and Welfare (AHAW); Nielsen, S.S.; Bicout, D.J.; Calistri, P.; Canali, E.; Drewe, J.A.; Garin-Bastuji, B.; Gonzales Rojas, J.L.; Gortázar, C.; Herskin, M.; et al. Assessment of listing and categorisation of animal diseases within the framework of the Animal Health Law (Regulation (EU) No 2016/429): Antimicrobial-resistant Rhodococcus equi in horses. EFSA J. 2022, 20, e07081. [Google Scholar] [CrossRef]
- Raidal, S. Antimicrobial stewardship in equine practice. Aust. Vet. J. 2019, 97, 238–242. [Google Scholar] [CrossRef] [PubMed]
- Morse, E.; Duncan, M.; Page, E.; Fessler, J. Salmonellosis in Equidae: A study of 23 cases. Cornell Vet. 1976, 66, 198–213. [Google Scholar] [PubMed]
- Carter, M.; Dewes, H.; Griffiths, O. Salmonellosis in foals. J. Equine Med. Surg. 1979, 3, 78–83. [Google Scholar]
- Carter, J.; Hird, D.; Farver, T.; Hjerpe, C. Salmonellosis in hospitalized horses: Seasonality and case fatality rates. J. Am. Vet. Med. Assoc. 1986, 188, 163–167. [Google Scholar] [PubMed]
- Roberts, M.; O’boyle, D. The prevalence and epizootiology of salmonellosis among groups of horses in south east Queensland. Aust. Vet. J. 1981, 57, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Kikuchi, N.; Kawakami, Y.; Murase, N.; Ohishi, H.; Tomioka, Y.; Iwata, K.; Fujimura, M.; Sakazaki, R. The isolation of Salmonella typhimurium from foals with pyrexia and diarrhea. Bull. Equine Res. Inst. 1982, 1982, 43–50. [Google Scholar]
- Hird, D.; Casebolt, D.; Carter, J.; Pappaioanou, M.; Hjerpe, C. Risk factors for salmonellosis in hospitalized horses. J. Am. Vet. Med. Assoc. 1986, 188, 173–177. [Google Scholar] [PubMed]
- Faulstich, A. Investigations on the Appearance of Salmonella in Hospitalized Horses. Ph.D. Thesis, Fachbereich Veterinärmedizin der Freien Universität, Berlin, Germany, 1987. [Google Scholar]
- Castor, M.; Wooley, R.; Shotts, E.; Brown, J.; Payeur, J. Characteristics of Salmonella isolated from an outbreak of equine salmonellosis in a veterinary teaching hospital. J. Equine Vet. Sci. 1989, 9, 236–241. [Google Scholar] [CrossRef]
- Begg, A.; Johnston, K.; Hutchins, D.; Edwards, D. Some aspects of the epidemiology of equine salmonellosis. Aust. Vet. J. 1988, 65, 221–223. [Google Scholar] [CrossRef] [PubMed]
- Powell, D.G.; Donahue, M.; Ferris, K.; Osborne, M.; Dwyer, R. An Epidemiological Investigation of Equine Salmonellosis in Central Kentucky during 1985 and 1986. In Equine Infectious Diseases V: Proceedings of the Fifth International Conference; University Press of Kentucky: Lexington, KY, USA, 1988; Volume 5, p. 231. [Google Scholar]
- Rumschlag, H.S.; Boyce, J.R. Plasmid profile analysis of Salmonellae in a large-animal hospital. Vet. Microbiol. 1987, 13, 301–311. [Google Scholar]
- Van Duijkeren, E.; van Oldruitenborgh-Oosterbaan, M.S.; Houwers, D.; Van Leeuwen, W.; Kalsbeek, H. Equine salmonellosis in a Dutch veterinary teaching hospital. Vet. Rec. 1994, 135, 248–250. [Google Scholar] [CrossRef]
- Traub-Dargatz, J.L.; Salman, M.D.; Jones, R.L. Epidemiologic study of salmonellae shedding in the feces of horses and potential risk factors for development of the infection in hospitalized horses. J. Am. Vet. Med. Assoc. 1990, 196, 1617–1622. [Google Scholar] [CrossRef] [PubMed]
- Smith, B.; Reina-Guerra, M.; Hardy, A. Prevalence and epizootiology of equine salmonellosis. J. Am. Vet. Med. Assoc. 1978, 172, 353–356. [Google Scholar] [PubMed]
- McCain, C.S.; Powell, K.C. Asymptomatic salmonellosis in healthy adult horses. J. Vet. Diagn. Investig. 1990, 2, 236–237. [Google Scholar] [CrossRef]
- Traub-Dargatz, J.L.; Garber, L.P.; Fedorka-Cray, P.J.; Ladely, S.; Ferris, K.E. Fecal shedding of Salmonella spp by horses in the United States during 1998 and 1999 and detection of Salmonella spp in grain and concentrate sources on equine operations. J. Am. Vet. Med. Assoc. 2000, 217, 226–230. [Google Scholar] [CrossRef]
- Feary, D.J.; Hassel, D.M. Enteritis and colitis in horses. Vet. Clin. Equine Pract. 2006, 22, 437–479. [Google Scholar] [CrossRef] [PubMed]
- Myers, L.; Shoop, D.; Byars, T. Diarrhea associated with enterotoxigenic Bacteroides fragilis in foals. Am. J. Vet. Res. 1987, 48, 1565–1567. [Google Scholar]
- Van Duijkeren, E.; Sloet van Oldruitenborgh-Oosterbaan, M.M.; Breukink, H.J.; Vulto, A.G.; van Miert, A.S. A survey of horses with acute diarrhoea: Diagnosis, assessment of the prognosis, and comparison of two antibiotic therapies. Vet. Q. 1996, 18, 153–156. [Google Scholar] [CrossRef] [PubMed]
- Walker, R.L.; de Peralta, T.L.; Villanueva, M.R.; Snipes, K.P.; Madigan, J.E.; Hird, D.W.; Kasten, R.W. Genotypic and phenotypic analysis of Salmonella strains associated with an outbreak of equine neonatal salmonellosis. Vet. Microbiol. 1995, 43, 143–150. [Google Scholar] [CrossRef]
- Burgess, B.A. Salmonella in horses. Vet. Clin. Equine Pract. 2023, 39, 25–35. [Google Scholar] [CrossRef]
- Alinovi, C.A.; Ward, M.P.; Couëtil, L.L.; Wu, C.C. Risk factors for fecal shedding of Salmonella from horses in a veterinary teaching hospital. Prev. Vet. Med. 2003, 60, 307–317. [Google Scholar] [CrossRef]
- Lamichhane, B.; Mawad, A.M.M.; Saleh, M.; Kelley, W.G.; Harrington, P.J.; Lovestad, C.W.; Amezcua, J.; Sarhan, M.M.; El Zowalaty, M.E.; Ramadan, H.; et al. Salmonellosis: An Overview of Epidemiology, Pathogenesis, and Innovative Approaches to Mitigate the Antimicrobial Resistant Infections. Antibiotics 2024, 13, 76. [Google Scholar] [CrossRef]
- Dallap Schaer, B.L.; Aceto, H.; Rankin, S.C. Outbreak of Salmonellosis Caused by Salmonella enterica Serovar Newport MDR-AmpC in a Large Animal Veterinary Teaching Hospital. J. Vet. Intern. Med. 2010, 24, 1138–1146. [Google Scholar] [CrossRef] [PubMed]
- Burgess, B.A.; Morley, P.S. Risk factors for shedding of Salmonella enterica among hospitalized large animals over a 10-year period in a veterinary teaching hospital. J. Vet. Intern. Med. 2019, 33, 2239–2248. [Google Scholar] [CrossRef] [PubMed]
- Dróżdż, M.; Małaszczuk, M.; Paluch, E.; Pawlak, A. Zoonotic potential and prevalence of Salmonella serovars isolated from pets. Infect. Ecol. Epidemiol. 2021, 11, 1975530. [Google Scholar] [CrossRef] [PubMed]
- Chousalkar, K.K.; Willson, N.L. Nontyphoidal Salmonella infections acquired from poultry. Curr. Opin. Infect. Dis. 2022, 35, 431–435. [Google Scholar] [CrossRef] [PubMed]
- Münch, S.; Braun, P.; Wernery, U.; Kinne, J.; Pees, M.; Flieger, A.; Tietze, E.; Rabsch, W. Prevalence, serovars, phage types, and antibiotic susceptibilities of Salmonella strains isolated from animals in the United Arab Emirates from 1996 to 2009. Trop. Anim. Health Prod. 2012, 44, 1725–1738. [Google Scholar] [CrossRef] [PubMed]
- Astorga, R.; Arenas, A.; Tarradas, C.; Mozos, E.; Zafra, R.; Pérez, J. Outbreak of peracute septicaemic salmonellosis in horses associated with concurrent Salmonella Enteritidis and Mucor species infection. Vet. Rec. 2004, 155, 240–242. [Google Scholar] [CrossRef]
- Leon, I.M.; Lawhon, S.D.; Norman, K.N.; Threadgill, D.S.; Ohta, N.; Vinasco, J.; Scott, H.M. Serotype Diversity and Antimicrobial Resistance among Salmonella enterica Isolates from Patients at an Equine Referral Hospital. Appl. Environ. Microbiol. 2018, 84, e02829-17. [Google Scholar] [CrossRef]
- Ernst, N.S.; Hernandez, J.A.; MacKay, R.J.; Brown, M.P.; Gaskin, J.M.; Nguyen, A.D.; Giguere, S.; Colahan, P.T.; Troedsson, M.R.; Haines, G.R.; et al. Risk factors associated with fecal Salmonella shedding among hospitalized horses with signs of gastrointestinal tract disease. J. Am. Vet. Med. Assoc. 2004, 225, 275–281. [Google Scholar] [CrossRef]
- Widenhouse, T.S.V. Equine Salmonellosis: Molecular Epidemiology of Clinical Isolates and the Effect of Antibiotics on the Cecal Microenvironment with Particular Reference to Short-Chain Fatty Acids and the Salmonella Plasmid Virulence (SPV) Genes. Ph.D. Thesis, University of Florida, Gainesville, FL, USA, 2004. [Google Scholar]
- Hartmann, F.A.; West, S. Utilization of both phenotypic and molecular analyses to investigate an outbreak of multidrug-resistant Salmonella anatum in horses. Can. J. Vet. Res. 1997, 61, 173. [Google Scholar] [PubMed]
- Madić, J.; Hajsig, D.; Sostarić, B.; Curić, S.; Seol, B.; Naglić, T.; Cvetnić, Z. An outbreak of abortion in mares associated with Salmonella abortusequi infection. Equine Vet. J. 1997, 29, 230–233. [Google Scholar] [CrossRef] [PubMed]
- Van Duijkeren, E.; van Klingeren, B.; Vulto, A.G.; Sloet van Oldruitenborgh-Oosterbaan, M.M.; Breukink, H.J.; van Miert, A.S. In vitro susceptibility to antimicrobial drugs of 62 Salmonella strains isolated from horses in The Netherlands. Vet. Microbiol. 1995, 45, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Jørgensen, F.; Bailey, R.; Williams, S.; Henderson, P.; Wareing, D.; Bolton, F.; Frost, J.; Ward, L.; Humphrey, T. Prevalence and numbers of Salmonella and Campylobacter spp. on raw, whole chickens in relation to sampling methods. Int. J. Food Microbiol. 2002, 76, 151–164. [Google Scholar] [CrossRef]
- Chen, H.-M.; Wang, Y.; Su, L.-H.; Chiu, C.-H. Nontyphoid Salmonella infection: Microbiology, clinical features, and antimicrobial therapy. Pediatr. Neonatol. 2013, 54, 147–152. [Google Scholar] [CrossRef] [PubMed]
- Stoycheva, M.V.; Murdjeva, M.A. Antimicrobial therapy of salmonelloses—Current state and perspectives. Folia Medica 2006, 48, 5–10. [Google Scholar] [PubMed]
- Wright, G.D. Antibiotic resistance in the environment: A link to the clinic? Curr. Opin. Microbiol. 2010, 13, 589–594. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; McDermott, P.F.; White, D.G.; Qaiyumi, S.; Friedman, S.L.; Abbott, J.W.; Glenn, A.; Ayers, S.L.; Post, K.W.; Fales, W.H.; et al. Characterization of multidrug resistant Salmonella recovered from diseased animals. Vet. Microbiol. 2007, 123, 122–132. [Google Scholar] [CrossRef]
- Van Duijkeren, E.; Wannet, W.J.B.; Heck, M.E.O.C.; van Pelt, W.; Sloet van Oldruitenborgh-Oosterbaan, M.M.; Smit, J.A.H.; Houwers, D.J. Sero types, phage types and antibiotic susceptibilities of Salmonella strains isolated from horses in The Netherlands from 1993 to 2000. Vet. Microbiol. 2002, 86, 203–212. [Google Scholar] [CrossRef]
- Singh, B.R.; Jyoti, J.; Chandra, M.; Babu, N.; Sharma, G. Drug resistance patterns of Salmonella isolates of equine origin from India. J. Infect. Dev. Ctries. 2009, 3, 141–147. [Google Scholar] [CrossRef]
- DebRoy, C.; Roberts, E.; Jayarao, B.M.; Brooks, J.W. Bronchopneumonia associated with extraintestinal pathogenic Escherichia coli in a horse. J. Vet. Diagn. Investig. 2008, 20, 661–664. [Google Scholar] [CrossRef] [PubMed]
- Helmy, Y.A.; El-Adawy, H.; Abdelwhab, E.M. A Comprehensive Review of Common Bacterial, Parasitic and Viral Zoonoses at the Human-Animal Interface in Egypt. Pathogens 2017, 6, 33. [Google Scholar] [CrossRef] [PubMed]
- Hariharan, H.; Barnum, D.; Mitchell, W. Drug resistance among pathogenic bacteria from animals in Ontario. Can. J. Comp. Med. 1974, 38, 213. [Google Scholar] [PubMed]
- Uzal, F.A.; Diab, S.S. Gastritis, enteritis, and colitis in horses. Vet. Clin. Equine Pract. 2015, 31, 337–358. [Google Scholar] [CrossRef] [PubMed]
- Starčič Erjavec, M.; Žgur-Bertok, D. Virulence potential for extraintestinal infections among commensal Escherichia coli isolated from healthy humans—The Trojan horse within our gut. FEMS Microbiol. Lett. 2015, 362, fnu061. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, S.; Julliand, V.; Leblond, A. Risk factors associated with colic in horses. Vet. Res. 2002, 33, 641–652. [Google Scholar] [CrossRef] [PubMed]
- Reshadi, P.; Heydari, F.; Ghanbarpour, R.; Bagheri, M.; Jajarmi, M.; Amiri, M.; Alizade, H.; Badouei, M.A.; Sahraei, S.; Adib, N. Molecular characterization and antimicrobial resistance of potentially human-pathogenic Escherichia coli strains isolated from riding horses. BMC Vet. Res. 2021, 17, 131. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, C.; Walsh, C.; Karczmarczyk, M.; O’Brien, S.; Akasheh, N.; Quirke, M.; Farrell-Ward, S.; Buckley, T.; Fogherty, U.; Kavanagh, K. Multi-drug resistant Escherichia coli in diarrhoeagenic foals: Pulsotyping, phylotyping, serotyping, antibiotic resistance and virulence profiling. Vet. Microbiol. 2018, 223, 144–152. [Google Scholar] [CrossRef] [PubMed]
- Lengacher, B.; Kline, T.R.; Harpster, L.; Williams, M.L.; LeJeune, J.T. Low prevalence of Escherichia coli O157: H7 in horses in Ohio, USA. J. Food Prot. 2010, 73, 2089–2092. [Google Scholar] [CrossRef] [PubMed]
- Pichner, R.; Sander, A.; Steinrück, H.; Gareis, M. Occurrence of Salmonella spp. and shigatoxin-producing Escherichia coli (STEC) in horse faeces and horse meat products. Berl. Und Munch. Tierarztl. Wochenschr. 2005, 118, 321–325. [Google Scholar]
- Luna, S. Outbreak of E. coli O157: H7 infections associated with exposure to animal manure in a rural community—Arizona and Utah, June–July 2017. MMWR Morb. Mortal. Wkly. Rep. 2018, 67, 659–662. [Google Scholar] [CrossRef] [PubMed]
- Awad, A.M.; El-Shall, N.A.; Khalil, D.S.; El-Hack, M.E.A.; Swelum, A.A.; Mahmoud, A.H.; Ebaid, H.; Komany, A.; Sammour, R.H.; Sedeik, M.E. Incidence, pathotyping, and antibiotic susceptibility of avian pathogenic Escherichia coli among diseased broiler chicks. Pathogens 2020, 9, 114. [Google Scholar] [CrossRef] [PubMed]
- Bista, S.; Thapa Shrestha, U.; Dhungel, B.; Koirala, P.; Gompo, T.R.; Shrestha, N.; Adhikari, N.; Joshi, D.R.; Banjara, M.R.; Adhikari, B. Detection of plasmid-mediated colistin resistant mcr-1 gene in Escherichia coli isolated from infected chicken livers in Nepal. Animals 2020, 10, 2060. [Google Scholar] [CrossRef] [PubMed]
- De Lagarde, M.; Fairbrother, J.M.; Arsenault, J. Prevalence, Risk Factors, and Characterization of Multidrug Resistant and ESBL/AmpC Producing Escherichia coli in Healthy Horses in Quebec, Canada, in 2015–2016. Animals 2020, 10, 523. [Google Scholar] [CrossRef] [PubMed]
- Mobley, R.; Madden, U.; Brooks-Walter, A. Detection of escherichia coli 0157: H7 in fecal samples in meat goats. Education 2004, 124, 439. [Google Scholar]
- Chalmers, R.; Salmon, R.; Willshaw, G.; Cheasty, T.; Looker, N.; Davies, I.; Wray, C. Vero-cytotoxin-producing Escherichia coli 0157 in a farmer handling horses. Lancet 1997, 349, 1816. [Google Scholar] [CrossRef] [PubMed]
- Lanz, R.; Kuhnert, P.; Boerlin, P. Antimicrobial resistance and resistance gene determinants in clinical Escherichia coli from different animal species in Switzerland. Vet. Microbiol. 2003, 91, 73–84. [Google Scholar] [CrossRef] [PubMed]
- Sanders, C.C. Chromosomal Cephalosporinases Responsible for Multiple Resistance to Newer β-Lactam Antibiotics. Annu. Rev. Microbiol. 1987, 41, 573–594. [Google Scholar] [CrossRef] [PubMed]
- Apostolakos, I.; Franz, E.; van Hoek, A.; Florijn, A.; Veenman, C.; Sloet-van Oldruitenborgh-Oosterbaan, M.M.; Dierikx, C.; van Duijkeren, E. Occurrence and molecular characteristics of ESBL/AmpC-producing Escherichia coli in faecal samples from horses in an equine clinic. J. Antimicrob. Chemother. 2017, 72, 1915–1921. [Google Scholar] [CrossRef]
- Mitchell, S.; Bull, M.; Muscatello, G.; Chapman, B.; Coleman, N.V. The equine hindgut as a reservoir of mobile genetic elements and antimicrobial resistance genes. Crit. Rev. Microbiol. 2021, 47, 543–561. [Google Scholar] [CrossRef]
- Kohnen, A.B.; Wiedenheft, A.M.; Traub-Dargatz, J.L.; Short, D.M.; Cook, K.L.; Lantz, K.; Morningstar-Shaw, B.; Lawrence, J.P.; House, S.; Marshall, K.L.; et al. Antimicrobial susceptibility of Salmonella and Escherichia coli from equids sampled in the NAHMS 2015–2016 equine study and association of management factors with resistance. Prev. Vet. Med. 2023, 213, 105857. [Google Scholar] [CrossRef] [PubMed]
- Schoster, A.; Arroyo, L.G.; Staempfli, H.R.; Shewen, P.E.; Weese, J.S. Presence and molecular characterization of Clostridium difficile and Clostridium perfringens in intestinal compartments of healthy horses. BMC Vet. Res. 2012, 8, 94. [Google Scholar] [CrossRef] [PubMed]
- Dunkel, B.; Johns, I.C. Antimicrobial use in critically ill horses. J. Vet. Emerg. Crit. Care 2015, 25, 89–100. [Google Scholar] [CrossRef] [PubMed]
- Wongtawan, T.; Narinthorn, R.; Sontigun, N.; Sansamur, C.; Petcharat, Y.; Fungwithaya, P.; Saengsawang, P.; Blackall, P.J.; Thomrongsuwannakij, T. Characterizing the antimicrobial resistance profile of Escherichia coli found in sport animals (fighting cocks, fighting bulls, and sport horses) and soils from their environment. Vet. World 2022, 15, 2673. [Google Scholar] [CrossRef] [PubMed]
- Ruby, R.; Magdesian, K.G.; Kass, P.H. Comparison of clinical, microbiologic, and clinicopathologic findings in horses positive and negative for Clostridium difficile infection. J. Am. Vet. Med. Assoc. 2009, 234, 777–784. [Google Scholar] [CrossRef] [PubMed]
- Ehrich, M.; Perry, B.D.; Troutt, H.F.; Dellers, R.W.; Magnusson, R.A. Acute diarrhea in horses of the Potomac River area: Examination for clostridial toxins. J. Am. Vet. Med. Assoc. 1984, 185, 433–435. [Google Scholar] [PubMed]
- Båverud, V.; Gustafsson, A.; Franklin, A.; Aspán, A.; Gunnarsson, A. Clostridium difficile: Prevalence in horses and environment, and antimicrobial susceptibility. Equine Vet. J. 2003, 35, 465–471. [Google Scholar] [CrossRef] [PubMed]
- Frederick, J.; Giguère, S.; Sanchez, L.C. Infectious agents detected in the feces of diarrheic foals: A retrospective study of 233 cases (2003–2008). J. Vet. Intern. Med. 2009, 23, 1254–1260. [Google Scholar] [CrossRef]
- Thean, S.; Elliott, B.; Riley, T.V. Clostridium difficile in horses in Australia—A preliminary study. J. Med. Microbiol. 2011, 60, 1188–1192. [Google Scholar] [CrossRef]
- Morsi, A.E.K.M.; Elsohaby, I.; Abdelmageed, M.; Al-Marri, T.; Fayez, M. Clostridium difficile Infections in Adult Horses and Foals. Preval. Assoc. Risk Factors 2019, 7, 169–174. [Google Scholar]
- Tillotson, K.; Traub-Dargatz, J.L.; Dickinson, C.E.; Ellis, R.P.; Morley, P.S.; Hyatt, D.R.; Magnuson, R.J.; Riddle, W.T.; Bolte, D.; Salman, M.D. Population-based study of fecal shedding of Clostridium perfringens in broodmares and foals. J. Am. Vet. Med. Assoc. 2002, 220, 342–348. [Google Scholar] [CrossRef] [PubMed]
- Kuttappan, D.A.; Mooyottu, S.; Sponseller, B.A. An Overview of Equine Enteric Clostridial Diseases. Vet. Clin. N. Am. Equine Pract. 2023, 39, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Chapman, A.M. Acute Diarrhea in Hospitalized Horses. Vet. Clin. N. Am. Equine Pract. 2009, 25, 363–380. [Google Scholar] [CrossRef] [PubMed]
- McGorum, B.C.; Pirie, R.S. Antimicrobial associated diarrhoea in the horse. Part 1: Overview, pathogenesis and risk factors. Equine Vet. Educ. 2009, 21, 610–616. [Google Scholar] [CrossRef]
- Båverud, V. Clostridium difficile diarrhea: Infection control in horses. Vet. Clin. N. Am. Equine Pract. 2004, 20, 615–630. [Google Scholar] [CrossRef]
- Båverud, V. Clostridium difficile infections in animals with special reference to the horse. A review. Vet. Q. 2002, 24, 203–219. [Google Scholar] [CrossRef]
- Diab, S.S.; Songer, G.; Uzal, F.A. Clostridium difficile infection in horses: A review. Vet. Microbiol. 2013, 167, 42–49. [Google Scholar] [CrossRef] [PubMed]
- Diab, S.S.; Kinde, H.; Moore, J.; Shahriar, M.F.; Odani, J.; Anthenill, L.; Songer, G.; Uzal, F.A. Pathology of Clostridium perfringens Type C Enterotoxemia in Horses. Vet. Pathol. 2011, 49, 255–263. [Google Scholar] [CrossRef] [PubMed]
- Harlow, B.E.; Lawrence, L.M.; Flythe, M.D. Diarrhea-associated pathogens, lactobacilli and cellulolytic bacteria in equine feces: Responses to antibiotic challenge. Vet. Microbiol. 2013, 166, 225–232. [Google Scholar] [CrossRef] [PubMed]
- Papich, M.G. Antimicrobial therapy for gastrointestinal diseases. Vet. Clin. N. Am. Equine Pract. 2003, 19, 645–663. [Google Scholar] [CrossRef]
- Arroyo, L.G.; Weese, J.S.; Staempfli, H.R. Experimental Clostridium difficile Enterocolitis in Foals. J. Vet. Intern. Med. 2004, 18, 734–738. [Google Scholar] [CrossRef] [PubMed]
- Keel, M.K.; Songer, J.G. The Comparative Pathology of Clostridium difficile-associated Disease. Vet. Pathol. 2006, 43, 225–240. [Google Scholar] [CrossRef] [PubMed]
- Weese, J.S.; Slovis, N.; Rousseau, J. Clostridioides (Clostridium) difficile in neonatal foals and mares at a referral hospital. J. Vet. Intern. Med. 2021, 35, 1140–1146. [Google Scholar] [CrossRef] [PubMed]
- Elsohaby, I.; Abdelmageed, M.; Theeb, A.-M.; Fayez, M. Clostridium difficile infections in adult horses and foals: Prevalence and associated risk factors. Adv. Anim. Vet. Sci. 2019, 7, 169–174. [Google Scholar]
- Bouvet, P.J.; Popoff, M.R. Genetic relatedness of Clostridium difficile isolates from various origins determined by triple-locus sequence analysis based on toxin regulatory genes tcdC, tcdR, and cdtR. J. Clin. Microbiol. 2008, 46, 3703–3713. [Google Scholar] [CrossRef]
- Staempfli, H.R.; Prescott, J.F.; Carman, R.J.; McCutcheon, L.J. Use of bacitracin in the prevention and treatment of experimentally-induced idiopathic colitis in horses. Can. J. Vet. Res. Rev. Can. Rech. Vet. 1992, 56, 233–236. [Google Scholar]
- Magdesian, K.G.; Dujowich, M.; Madigan, J.E.; Hansen, L.M.; Hirsh, D.C.; Jang, S.S. Molecular characterization of Clostridium difficile isolates from horses in an intensive care unit and association of disease severity with strain type. J. Am. Vet. Med. Assoc. 2006, 228, 751–755. [Google Scholar] [CrossRef]
- Weese, J.S.; Staempfli, H.R.; Prescott, J.F. A prospective study of the roles of Clostridium difficile and enterotoxigenic Clostridium perfringens in equine diarrhoea. Equine Vet. J. 2001, 33, 403–409. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, C.; Taminiau, B.; Brévers, B.; Avesani, V.; Van Broeck, J.; Leroux, A.A.; Amory, H.; Delmée, M.; Daube, G. Carriage and acquisition rates of Clostridium difficile in hospitalized horses, including molecular characterization, multilocus sequence typing and antimicrobial susceptibility of bacterial isolates. Vet. Microbiol. 2014, 172, 309–317. [Google Scholar] [CrossRef]
- Dart, A.J.; Pascoe, R.R.; Gibson, J.A.; Harrower, B.J. Enterotoxaemia in a foal due to Clostridium perfringens type A. Aust. Vet. J. 1988, 65, 330–331. [Google Scholar] [CrossRef]
- Oliver-Espinosa, O. Foal Diarrhea: Established and Postulated Causes, Prevention, Diagnostics, and Treatments. Vet. Clin. N. Am. Equine Pract. 2018, 34, 55–68. [Google Scholar] [CrossRef]
- Magdesian, K.G.; Barnum, S.; Pusterla, N. Fecal PCR testing for detection of Clostridium perfringens and Clostridioides difficile toxin genes and other pathogens in foals with diarrhea: 28 cases. J. Vet. Diagn. Investig. 2022, 34, 396–401. [Google Scholar] [CrossRef] [PubMed]
- Uzal, F.A.; Arroyo, L.G.; Navarro, M.A.; Gomez, D.E.; Asín, J.; Henderson, E. Bacterial and viral enterocolitis in horses: A review. J. Vet. Diagn. Investig. 2022, 34, 354–375. [Google Scholar] [CrossRef]
- Gohari, I.M.; Parreira, V.; Timoney, J.; Fallon, L.; Slovis, N.; Prescott, J. NetF-positive Clostridium perfringens in neonatal foal necrotising enteritis in Kentucky. Vet. Rec. 2016, 178, 216. [Google Scholar] [CrossRef]
- Mehdizadeh Gohari, I.; Kropinski, A.M.; Weese, S.J.; Parreira, V.R.; Whitehead, A.E.; Boerlin, P.; Prescott, J.F. Plasmid characterization and chromosome analysis of two netF+ Clostridium perfringens isolates associated with foal and canine necrotizing enteritis. PLoS ONE 2016, 11, e0148344. [Google Scholar] [CrossRef]
- Farag, E.F.; Shalaby, B.; El-Hamed, A.; Taher, M. Potential role of Clostridium difficile and Clostridium perfringens as a cause of diarrhea in horses. J. Appl. Vet. Sci. 2019, 4, 18–29. [Google Scholar] [CrossRef]
- Park, C.S.; Hwang, J.Y.; Cho, G.J. The First Identification and Antibiogram of Clostridium perfringens Type C Isolated from Soil and The Feces of Dead Foals in South Korea. Animals 2019, 9, 579. [Google Scholar] [CrossRef]
- Dicks, L.; Botha, M.; Dicks, E.; Botes, M. The equine gastro-intestinal tract: An overview of the microbiota, disease and treatment. Livest. Sci. 2014, 160, 69–81. [Google Scholar] [CrossRef]
- Taha-Abdelaziz, K.; Singh, M.; Sharif, S.; Sharma, S.; Kulkarni, R.R.; Alizadeh, M.; Yitbarek, A.; Helmy, Y.A. Intervention Strategies to Control Campylobacter at Different Stages of the Food Chain. Microorganisms 2023, 11, 113. [Google Scholar] [CrossRef] [PubMed]
- Hailu, W.; Helmy, Y.A.; Carney-Knisely, G.; Kauffman, M.; Fraga, D.; Rajashekara, G. Prevalence and Antimicrobial Resistance Profiles of Foodborne Pathogens Isolated from Dairy Cattle and Poultry Manure Amended Farms in Northeastern Ohio, the United States. Antibiotics 2021, 10, 1450. [Google Scholar] [CrossRef]
- Kassem, I.; Kehinde, O.; Helmy, Y.; Kumar, A.; Chandrashekhar, K.; Pina-Mimbela, R.; Rajashekara, G. Campylobacter in poultry: The conundrums of highly adaptable and ubiquitous foodborne pathogens. In Foodborne Diseases: Case Studies of Outbreaks in the Agri-Food Industrie; Mei Soon, J., Manning, L., Wallace, C., Eds.; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Chaucheyras-Durand, F.; Sacy, A.; Karges, K.; Apper, E. Gastro-intestinal microbiota in equines and its role in health and disease: The black box opens. Microorganisms 2022, 10, 2517. [Google Scholar] [CrossRef] [PubMed]
- Moriarty, E.; Downing, M.; Bellamy, J.; Gilpin, B. Concentrations of faecal coliforms, Escherichia coli, enterococci and Campylobacter spp. in equine faeces. N. Z. Vet. J. 2015, 63, 104–109. [Google Scholar] [CrossRef] [PubMed]
- Gardner, D.; Young, G. Campylobacter in foals. N. Z. Vet. J. 1987, 35, 116–117. [Google Scholar] [CrossRef] [PubMed]
- Atherton, J.; Ricketts, S. Campylobacter infection from foals. Vet. Rec. 1981, 107, 264–265. [Google Scholar] [CrossRef] [PubMed]
- Hurcombe, S.D.; Fox, J.G.; Kohn, C.W. Isolation of Campylobacter fetus subspecies fetus in a two-year-old quarterhorse with chronic diarrhea of an undetermined etiology. J. Vet. Diagn. Investig. 2009, 21, 266–269. [Google Scholar] [CrossRef] [PubMed]
- Komba, E.V.; Mdegela, R.H.; Msoffe, P.L.; Matowo, D.E.; Maro, M.J. Occurrence, species distribution and antimicrobial resistance of thermophilic Campylobacter isolates from farm and laboratory animals in Morogoro, Tanzania. Vet. World 2014, 7, 559–565. [Google Scholar] [CrossRef]
- Baserisalehi, M.; Bahador, N.; Kapadnis, B. Isolation and characterization of Campylobacter spp. from domestic animals and poultry in south of Iran. Pak. J. Biol. Sci. PJBS 2007, 10, 1519–1524. [Google Scholar] [CrossRef] [PubMed]
- Selwet, M. An Assessment of the Occurrence of Selected Virulence and Antibiotic Resistance Genes in Bacteria of the Genus Campylobacter Collected from Horses. Open Vet. Sci. 2020, 1, 15–19. [Google Scholar] [CrossRef]
- Browning, G.; Chalmers, R.; Snodgrass, D.; Batt, R.; Hart, C.; Ormarod, S.; Leadon, D.; Stoneham, S.; Rossdale, P. The prevalence of enteric pathogens in diarrhoeic thoroughbred foals in Britain and Ireland. Equine Vet. J. 1991, 23, 405–409. [Google Scholar] [CrossRef]
- Bolton, D.; O’Neill, C.; Fanning, S. A preliminary study of Salmonella, verocytotoxigenic Escherichia coli/Escherichia coli O157 and Campylobacter on four mixed farms. Zoonoses Public Health 2012, 59, 217–228. [Google Scholar] [CrossRef]
- Prescott, J.; Bruin-Mosch, C. Carriage of Campylobacter jejuni in healthy and diarrheic animals. Am. J. Vet. Res. 1981, 42, 164–165. [Google Scholar] [PubMed]
- Karmali, M.; De Grandis, S.; Fleming, P. Antimicrobial susceptibility of Campylobacter jejuni with special reference to resistance patterns of Canadian isolates. Antimicrob. Agents Chemother. 1981, 19, 593–597. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, M.O.B. Zoonotic Bacteria and Antibiotic Resistance in the GI Tract of Horses. Ph.D. Thesis, University of Liverpool, Liverpool, UK, 2005. [Google Scholar]
- Wasyl, D.; Osek, J. Monitoring of antimicrobial resistance in Salmonella and Campylobacter strains isolated from animals. Życie Weterynaryjne 2008, 83, 107–110. [Google Scholar]
- Rzewuska, K.; Korsak, D.; Maćkiw, E. Antibiotic resistance of bacteria Campylobacter sp. Prz. Epidemiol. 2010, 64, 63–68. [Google Scholar]
- Ishihara, K.; Kira, T.; Ogikubo, K.; Morioka, A.; Kojima, A.; Kijima-Tanaka, M.; Takahashi, T.; Tamura, Y. Antimicrobial susceptibilities of Campylobacter isolated from food-producing animals on farms (1999–2001): Results from the Japanese Veterinary Antimicrobial Resistance Monitoring Program. Int. J. Antimicrob. Agents 2004, 24, 261–267. [Google Scholar] [CrossRef] [PubMed]
- Selwet, M.; Galbas, M. Assessment of the occurrence of selected virulence genes, and antibiotic resistance of Campylobacter jejuni isolates collected from horses. Wiad. Zootech. 2019, 3, 55–62. [Google Scholar]
- Weese, J.S. Methicillin-resistant Staphylococcus aureus in horses and horse personnel. Vet. Clin. Equine Pract. 2004, 20, 601–613. [Google Scholar] [CrossRef] [PubMed]
- Uchida-Fujii, E.; Niwa, H.; Kanai, K.; Kinoshita, Y.; Kuroda, T.; Nukada, T.; Ueno, T. Outbreak of methicillin-resistant Staphylococcus aureus sequence type 1, spa type t1784, in an equine hospital in Japan. Vet. Anim. Sci. 2022, 17, 100259. [Google Scholar] [CrossRef] [PubMed]
- Graveland, H.; Wagenaar, J.; Broekhuizen-Stins, M.; Oosting-Schothorst, I.; Schoormans, A.; Van Duijkeren, E.; Huijsdens, X.; Mevius, D.; Heederik, D. Methicillin-resistant Staphylococcus aureus (MRSA) in veal calf farmers and veal calves in The Netherlands. In Proceedings of the ASM Conference on Antimicrobial Resistance in Zoonotic Bacteria and Foodborne Pathogens, Washington, DC, USA, 15–18 June 2008; pp. 62–63. [Google Scholar]
- Kloos, W.E.; Bannerman, T.L. Update on clinical significance of coagulase-negative staphylococci. Clin. Microbiol. Rev. 1994, 7, 117–140. [Google Scholar] [CrossRef]
- Pyörälä, S.; Taponen, S. Coagulase-negative staphylococci—Emerging mastitis pathogens. Vet. Microbiol. 2009, 134, 3–8. [Google Scholar] [CrossRef]
- Burton, S.; Reid-Smith, R.; McClure, J.T.; Weese, J.S. Staphylococcus aureus colonization in healthy horses in Atlantic Canada. Can. Vet. J. 2008, 49, 797. [Google Scholar] [PubMed]
- Loeffler, A.; Lloyd, D.H. Companion animals: A reservoir for methicillin-resistant Staphylococcus aureus in the community? Epidemiol. Infect. 2010, 138, 595–605. [Google Scholar] [CrossRef] [PubMed]
- Tokateloff, N.; Manning, S.T.; Weese, J.S.; Campbell, J.; Rothenburger, J.; Stephen, C.; Bastura, V.; Gow, S.P.; Reid-Smith, R. Prevalence of methicillin-resistant Staphylococcus aureus colonization in horses in Saskatchewan, Alberta, and British Columbia. Can. Vet. J. 2009, 50, 1177. [Google Scholar] [PubMed]
- Cuny, C.; Witte, W. MRSA in equine hospitals and its significance for infections in humans. Vet. Microbiol. 2017, 200, 59–64. [Google Scholar] [CrossRef] [PubMed]
- De Lencastre, H.; De Jonge, B.; Matthews, P.R.; Tomasz, A. Molecular aspects of methicillin resistance in Staphylococcus aureus. J. Antimicrob. Chemother. 1994, 33, 7–24. [Google Scholar] [CrossRef] [PubMed]
- Leonard, F.; Markey, B. Meticillin-resistant Staphylococcus aureus in animals: A review. Vet. J. 2008, 175, 27–36. [Google Scholar] [CrossRef] [PubMed]
- Pallen, M.J.; Wren, B.W. Bacterial pathogenomics. Nature 2007, 449, 835–842. [Google Scholar] [CrossRef] [PubMed]
- Hartmann, F.A.; Trostle, S.S.; Klohnen, A. Isolation of methicillin-resistant Staphylococcus aureus from a postoperative wound infection in a horse. J. Am. Vet. Med. Assoc. 1997, 211, 590–592. [Google Scholar] [CrossRef]
- Seguin, J.C.; Walker, R.D.; Caron, J.P.; Kloos, W.E.; George, C.G.; Hollis, R.J.; Jones, R.N.; Pfaller, M.A. Methicillin-resistant Staphylococcus aureus outbreak in a veterinary teaching hospital: Potential human-to-animal transmission. J. Clin. Microbiol. 1999, 37, 1459–1463. [Google Scholar] [CrossRef]
- Weese, J.S.; DaCosta, T.; Button, L.; Goth, K.; Ethier, M.; Boehnke, K. Isolation of methicillin-resistant Staphylococcus aureus from the environment in a veterinary teaching hospital. J. Vet. Intern. Med. 2004, 18, 468–470. [Google Scholar]
- O’Mahony, R.; Abbott, Y.; Leonard, F.; Markey, B.; Quinn, P.; Pollock, P.; Fanning, S.; Rossney, A. Methicillin-resistant Staphylococcus aureus (MRSA) isolated from animals and veterinary personnel in Ireland. Vet. Microbiol. 2005, 109, 285–296. [Google Scholar] [CrossRef] [PubMed]
- Anzai, T.; Kamada, M.; Kanemaru, T.; Sugita, S.; Shimizu, A.; Higuchi, T. Isolation of methicillin-resistant Staphylococcus aureus (MRSA) from mares with metritis and its zooepidemiology. J. Equine Sci. 1996, 7, 7–11. [Google Scholar] [CrossRef]
- Cuny, C.; Kuemmerle, J.; Stanek, C.; Willey, B.; Strommenger, B.; Witte, W. Emergence of MRSA infections in horses in a veterinary hospital: Strain characterisation and comparison with MRSA from humans. Eurosurveillance 2006, 11, 13–14. [Google Scholar] [CrossRef]
- Busscher, J.; Van Duijkeren, E.; van Oldruitenborgh-Oosterbaan, M.S. The prevalence of methicillin-resistant staphylococci in healthy horses in the Netherlands. Vet. Microbiol. 2006, 113, 131–136. [Google Scholar] [CrossRef] [PubMed]
- Baptiste, K.E.; Williams, K.; Willams, N.J.; Wattret, A.; Clegg, P.D.; Dawson, S.; Corkill, J.E.; O’Neill, T.; Hart, C.A. Methicillin-resistant staphylococci in companion animals. Emerg. Infect. Dis. 2005, 11, 1942. [Google Scholar] [CrossRef] [PubMed]
- Vengust, M.; Anderson, M.; Rousseau, J.; Weese, J. Methicillin-resistant staphylococcal colonization in clinically normal dogs and horses in the community. Lett. Appl. Microbiol. 2006, 43, 602–606. [Google Scholar] [CrossRef] [PubMed]
- Weese, J.; Rousseau, J.; Willey, B.; Archambault, M.; McGeer, A.; Low, D. Methicillin-resistant Staphylococcus aureus in horses at a veterinary teaching hospital: Frequency, characterization, and association with clinical disease. J. Vet. Intern. Med. 2006, 20, 182–186. [Google Scholar] [CrossRef] [PubMed]
- Van den Eede, A.; Martens, A.; Lipinska, U.; Struelens, M.; Deplano, A.; Denis, O.; Haesebrouck, F.; Gasthuys, F.; Hermans, K. High occurrence of methicillin-resistant Staphylococcus aureus ST398 in equine nasal samples. Vet. Microbiol. 2009, 133, 138–144. [Google Scholar] [CrossRef]
- Anderson, M.E.; Lefebvre, S.L.; Weese, J.S. Evaluation of prevalence and risk factors for methicillin-resistant Staphylococcus aureus colonization in veterinary personnel attending an international equine veterinary conference. Vet. Microbiol. 2008, 129, 410–417. [Google Scholar] [CrossRef]
- Cuny, C.; Abdelbary, M.M.; Köck, R.; Layer, F.; Scheidemann, W.; Werner, G.; Witte, W. Methicillin-resistant Staphylococcus aureus from infections in horses in Germany are frequent colonizers of veterinarians but rare among MRSA from infections in humans. One Health 2016, 2, 11–17. [Google Scholar] [CrossRef]
- Weese, J.S.; van Duijkeren, E. Methicillin-resistant Staphylococcus aureus and Staphylococcus pseudintermedius in veterinary medicine. Vet. Microbiol. 2010, 140, 418–429. [Google Scholar] [CrossRef] [PubMed]
- De Neeling, A.; Van den Broek, M.; Spalburg, E.; van Santen-Verheuvel, M.; Dam-Deisz, W.; Boshuizen, H.; Van De Giessen, A.; Van Duijkeren, E.; Huijsdens, X. High prevalence of methicillin resistant Staphylococcus aureus in pigs. Vet. Microbiol. 2007, 122, 366–372. [Google Scholar] [CrossRef] [PubMed]
- Hollis, A.; Wilkins, P. Current controversies in equine antimicrobial therapy. Equine Vet. Educ. 2009, 21, 216–224. [Google Scholar] [CrossRef]
- Lu, W.-P.; Sun, Y.; Bauer, M.D.; Paule, S.; Koenigs, P.M.; Kraft, W.G. Penicillin-binding protein 2a from methicillin-resistant Staphylococcus aureus: Kinetic characterization of its interactions with β-lactams using electrospray mass spectrometry. Biochemistry 1999, 38, 6537–6546. [Google Scholar] [CrossRef]
- Gajdács, M. The Continuing Threat of Methicillin-Resistant Staphylococcus aureus. Antibiotics 2019, 8, 52. [Google Scholar] [CrossRef]
- Maddox, T.; Scantlebury, C.; Clegg, P.; Dawson, S.; Pinchbeck, G.; Williams, N. A review of the characteristics and treatment of methicillin-resistant Staphylococcus aureus (MRSA) in the horse and a case series of MRSA infection in four horses. Equine Vet. Educ. 2010, 22, 91–102. [Google Scholar] [CrossRef]
- Schwartz, M.; Boettcher, I.; Kramer, S.; Tipold, A. Two dogs with iatrogenic discospondylitis caused by meticillin-resistant Staphylococcus aureus. J. Small Anim. Pract. 2009, 50, 201–205. [Google Scholar] [CrossRef]
- Roudaud, M.; Allano, M.; Fairbrother, J.H.; Sauvé, F. A retrospective study on methicillin-resistant Staphylococcus spp. isolated from horses admitted to a Canadian veterinary teaching hospital between 2008 and 2018. Can. Vet. J. Rev. Vet. Can. 2020, 61, 1197–1202. [Google Scholar]
- Dhama, K.; Karthik, K.; Tiwari, R.; Shabbir, M.Z.; Barbuddhe, S.; Malik, S.V.; Singh, R.K. Listeriosis in animals, its public health significance (food-borne zoonosis) and advances in diagnosis and control: A comprehensive review. Vet. Q. 2015, 35, 211–235. [Google Scholar] [CrossRef]
- Gudmundsdottir, K.; Svansson, V.; Gunnarsson, E.; Sigurdarson, S.; Aalbæk, B. Listeria monocytogenes in horses in Iceland. Vet. Rec. 2004, 155, 456–459. [Google Scholar] [CrossRef]
- Wilkins, P.A.; Marsh, P.S.; Acland, H.; Del Piero, F. Listeria monocytogenes septicemia in a Thoroughbred foal. J. Vet. Diagn. Investig. 2000, 12, 173–176. [Google Scholar] [CrossRef] [PubMed]
- Revold, T.; Abayneh, T.; Brun-Hansen, H.; Kleppe, S.L.; Ropstad, E.-O.; Hellings, R.A.; Sørum, H. Listeria monocytogenes associated kerato-conjunctivitis in four horses in Norway. Acta Vet. Scand. 2015, 57, 76. [Google Scholar] [CrossRef]
- Pirš, T.; Zdovc, I.; Gombač, M.; Švara, T.; Juntes, P.; Vengušt, M. Listeria monocytogenes septicaemia in a foal. Slov. Vet. Res. 2005, 42, 49–53. [Google Scholar]
- Nemeth, N.; Blas-Machado, U.; Hopkins, B.; Phillips, A.; Butler, A.; Sánchez, S. Granulomatous typhlocolitis, lymphangitis, and lymphadenitis in a horse infected with Listeria monocytogenes, Salmonella Typhimurium, and cyathostomes. Vet. Pathol. 2013, 50, 252–255. [Google Scholar] [CrossRef]
- Jula, C.; Buechner-Maxwell, V.; Southard, T.; LeCuyer, T. Listeria monocytogenes encephalitis in a donkey foal. Equine Vet. Educ. 2024, 36, e79–e84. [Google Scholar] [CrossRef]
- Clark, E.G.; Turner, A.S.; Boysen, B.G.; Rouse, B.T. Listeriosis in an Arabian foal with combined immunodeficiency. J. Am. Vet. Med. Assoc. 1978, 172, 363–366. [Google Scholar]
- Mason, R.; Brennan, R.; Corbould, A. Listeria monocytogenes abortion in a mare. Aust. Vet. J. 1981, 56, 613. [Google Scholar] [CrossRef]
- Welsh, R. Equine abortion caused by Listeria monocytogenes serotype 4. J. Am. Vet. Med. Assoc. 1983, 182, 291. [Google Scholar]
- Mayer, H.; Kinzler, M.; Sickel, E. Listeriose in einem Reitpferdebestand. Berl. Münch. Tierärztl. Wochenschr. 1976, 89, 209–211. [Google Scholar]
- Husu, J. Epidemiological studies on the occurrence of Listeria monocytogenes in the feces of dairy cattle. J. Vet. Med. Ser. B 1990, 37, 276–282. [Google Scholar] [CrossRef]
- Jose-Cunilleras, E.; Hinchcliff, K. Listeria monocytogenes septicaemia in foals. Equine Vet. J. 2001, 33, 519–522. [Google Scholar] [CrossRef] [PubMed]
- Vázquez-Boland, J.A.; Kuhn, M.; Berche, P.; Chakraborty, T.; Domínguez-Bernal, G.; Goebel, W.; González-Zorn, B.; Wehland, J.; Kreft, J. Listeria pathogenesis and molecular virulence determinants. Clin. Microbiol. Rev. 2001, 14, 584–640. [Google Scholar] [CrossRef]
- Low, J.; Donachie, W. A review of Listeria monocytogenes and listeriosis. Vet. J. 1997, 153, 9–29. [Google Scholar] [CrossRef]
- Rütten, M.; Lehner, A.; Pospischil, A.; Sydler, T. Cerebral listeriosis in an adult Freiberger gelding. J. Comp. Pathol. 2006, 134, 249–253. [Google Scholar] [CrossRef]
- Hirz, M.; Prenger-Berninghoff, E.; Förster, C.; Fey, K.; Herden, C. Listeria monocytogenes meningoencephalomyelitis most likely due to septic spread as a rare cause of neurological disease and fever in an adult horse. Vet. Rec. Case Rep. 2020, 8, e001028. [Google Scholar] [CrossRef]
- Mair, T.S.; Divers, T.J. Liver Diseases in Foals. In The Equine Acute Abdomen; John Wiley & Sons: Hoboken, NJ, USA, 2017; pp. 459–467. [Google Scholar] [CrossRef]
- Moura, A.; Leclercq, A.; Vales, G.; Tessaud-Rita, N.; Bracq-Dieye, H.; Thouvenot, P.; Madec, Y.; Charlier, C.; Lecuit, M. Phenotypic and genotypic antimicrobial resistance of Listeria monocytogenes: An observational study in France. Lancet Reg. Health Eur. 2024, 37, 100800. [Google Scholar] [CrossRef]
- Hansen, J.M.; Gerner-Smidt, P.; Bruun, B. Antibiotic susceptibility of Listeria monocytogenes in Denmark 1958–2001. Apmis 2005, 113, 31–36. [Google Scholar] [CrossRef]
- MacGowan, A.; Reeves, D.; McLauchlin, J. Antibiotic resistance of Listeria monocytogenes. Lancet 1990, 336, 513–514. [Google Scholar]
- Marco, F.; Almela, M.; Nolla-Salas, J.; Coll, P.; Gasser, I.; Ferrer, M.D.; de Simon, M. In vitro activities of 22 antimicrobial agents against Listeria monocytogenes strains isolated in Barcelona, Spain. The Collaborative Study Group of Listeriosis of Barcelona. Diagn. Microbiol. Infect. Dis. 2000, 38, 259–261. [Google Scholar] [CrossRef]
- Willis, A.T.; Magdesian, K.G.; Byrne, B.A.; Edman, J.M. Enterococcus infections in foals. Vet. J. 2019, 248, 42–47. [Google Scholar] [CrossRef] [PubMed]
- Hollis, A.; Wilkins, P.; Palmer, J.; Boston, R. Bacteremia in equine neonatal diarrhea: A retrospective study (1990–2007). J. Vet. Intern. Med. 2008, 22, 1203–1209. [Google Scholar] [CrossRef] [PubMed]
- Williams, N.J.; Slovis, N.M.; Browne, N.S.; Troedsson, M.H.; Giguėre, S.; Hernandez, J.A. Enterococcus durans infection and diarrhea in Thoroughbred foals. J. Vet. Intern. Med. 2022, 36, 2224–2229. [Google Scholar] [CrossRef] [PubMed]
- Theelen, M.J.P.; Wilson, W.D.; Edman, J.M.; Magdesian, K.G.; Kass, P.H. Temporal trends in prevalence of bacteria isolated from foals with sepsis: 1979–2010. Equine Vet. J. 2014, 46, 169–173. [Google Scholar] [CrossRef] [PubMed]
- Sukmawinata, E.; Sato, W.; Uemura, R.; Sueyoshi, M. Antimicrobial Resistant Enterococcus faecium, Enterococcus faecalis, and Other Enterococcus Species Isolated From Foal Feces in Japan. J. Equine Vet. Sci. 2018, 63, 51–54. [Google Scholar] [CrossRef]
- Marsh, P.S.; Palmer, J.E. Bacterial isolates from blood and their susceptibility patterns in critically ill foals: 543 cases (1991–1998). J. Am. Vet. Med. Assoc. 2001, 218, 1608–1610. [Google Scholar] [CrossRef] [PubMed]
- Magdesian, K.G. Neonatal foal diarrhea. Vet. Clin. Equine Pract. 2005, 21, 295–312. [Google Scholar] [CrossRef] [PubMed]
- Hollenbeck, B.L.; Rice, L.B. Intrinsic and acquired resistance mechanisms in enterococcus. Virulence 2012, 3, 421–569. [Google Scholar] [CrossRef] [PubMed]
- El Zowalaty, M.E.; Lamichhane, B.; Falgenhauer, L.; Mowlaboccus, S.; Zishiri, O.T.; Forsythe, S.; Helmy, Y.A. Antimicrobial resistance and whole genome sequencing of novel sequence types of Enterococcus faecalis, Enterococcus faecium, and Enterococcus durans isolated from livestock. Sci. Rep. 2023, 13, 18609. [Google Scholar] [CrossRef]
- Maddox, T.W.; Clegg, P.D.; Williams, N.J.; Pinchbeck, G.L. Antimicrobial resistance in bacteria from horses: Epidemiology of antimicrobial resistance. Equine Vet. J. 2015, 47, 756–765. [Google Scholar] [CrossRef]
- Singh, B.R. Prevalence of vancomycin resistance and multiple drug resistance in enterococci in equids in North India. J. Infect. Dev. Ctries. 2009, 3, 498–503. [Google Scholar] [CrossRef]
- Prescott, J. Epidomiology of Rhodococcus equi infection in horses. Vet. Microbiol. 1987, 14, 211–214. [Google Scholar] [CrossRef] [PubMed]
- Reuss, S.M.; Chaffin, M.K.; Cohen, N.D. Extrapulmonary disorders associated with Rhodococcus equi infection in foals: 150 cases (1987–2007). J. Am. Vet. Med. Assoc. 2009, 235, 855–863. [Google Scholar] [CrossRef]
- Giguère, S.; Cohen, N.D.; Keith Chaffin, M.; Slovis, N.M.; Hondalus, M.K.; Hines, S.A.; Prescott, J.F. Diagnosis, Treatment, Control, and Prevention of Infections Caused by Rhodococcus equi in Foals. J. Vet. Intern. Med. 2011, 25, 1209–1220. [Google Scholar] [CrossRef]
- Vengust, M.; Staempfli, H.; Prescott, J.F. Rhodococcus equi pleuropneumonia in an adult horse. Can. Vet. J. Rev. Vet. Can. 2002, 43, 706–708. [Google Scholar]
- Weinstock, D.M.; Brown, A.E. Rhodococcus equi: An Emerging Pathogen. Clin. Infect. Dis. 2002, 34, 1379–1385. [Google Scholar] [CrossRef] [PubMed]
- Erol, E.; Locke, S.; Saied, A.; Penn, M.J.C.; Smith, J.; Fortner, J.; Carter, C. Antimicrobial susceptibility patterns of Rhodococcus equi from necropsied foals with rhodococcosis. Vet. Microbiol. 2020, 242, 108568. [Google Scholar] [CrossRef] [PubMed]
- Takai, S.; Fujimori, T.; Katsuzaki, K.; Tsubaki, S. Ecology of Rhodococcus equi in horses and their environment on horse-breeding farms. Vet. Microbiol. 1987, 14, 233–239. [Google Scholar] [CrossRef] [PubMed]
- Martens, R.J.; Takai, S.; Cohen, N.D.; Chaffin, M.K.; Liu, H.; Sakurai, K.; Sugimoto, H.; Lingsweiler, S.W. Association of disease with isolation and virulence of Rhodococcus equi from farm soil and foals with pneumonia. J. Am. Vet. Med. Assoc. 2000, 217, 220–225. [Google Scholar] [CrossRef]
- Muscatello, G.; Anderson, G.; Gilkerson, J.; Browning, G. Associations between the ecology of virulent Rhodococcus equi and the epidemiology of R. equi pneumonia on Australian thoroughbred farms. Appl. Environ. Microbiol. 2006, 72, 6152–6160. [Google Scholar] [CrossRef]
- Muscatello, G.; Gerbaud, S.; Kennedy, C.; Gilkerson, J.; Buckley, T.; Klay, M.; Leadon, D.; Browning, G. Comparison of concentrations of Rhodococcus equiand virulent R. equi in air of stables and paddocks on horse breeding farms in a temperate climate. Equine Vet. J. 2006, 38, 263–265. [Google Scholar] [CrossRef]
- Grimm, M.B.; Cohen, N.D.; Slovis, N.M.; Mundy, G.D.; Harrington, J.R.; Libal, M.C.; Takai, S.; Martens, R.J. Evaluation of fecal samples from mares as a source of Rhodococcus equi for their foals by use of quantitative bacteriologic culture and colony immunoblot analyses. Am. J. Vet. Res. 2007, 68, 63–71. [Google Scholar] [CrossRef]
- Kuskie, K.R.; Smith, J.L.; Wang, N.; Carter, C.N.; Chaffin, M.K.; Slovis, N.M.; Stepusin, R.S.; Cattoi, A.E.; Takai, S.; Cohen, N.D. Effects of location for collection of air samples on a farm and time of day of sample collection on airborne concentrations of virulent Rhodococcus equi at two horse breeding farms. Am. J. Vet. Res. 2011, 72, 73–79. [Google Scholar] [CrossRef] [PubMed]
- Cohen, N.D.; Carter, C.N.; Scott, H.M.; Chaffin, M.K.; Smith, J.L.; Grimm, M.B.; Kuskie, K.R.; Takai, S.; Martens, R.J. Association of soil concentrations of Rhodococcus equi and incidence of pneumonia attributable to Rhodococcus equi in foals on farms in central Kentucky. Am. J. Vet. Res. 2008, 69, 385–395. [Google Scholar] [CrossRef] [PubMed]
- Dawson, T.R.; Horohov, D.W.; Meijer, W.G.; Muscatello, G. Current understanding of the equine immune response to Rhodococcus equi. An immunological review of R. equi pneumonia. Vet. Immunol. Immunopathol. 2010, 135, 1–11. [Google Scholar] [CrossRef]
- Darrah, P.A.; Monaco, M.C.G.; Jain, S.; Hondalus, M.K.; Golenbock, D.T.; Mosser, D.M. Innate immune responses to Rhodococcus equi. J. Immunol. 2004, 173, 1914–1924. [Google Scholar] [CrossRef]
- Giguère, S.; Wilkie, B.N.; Prescott, J.F. Modulation of cytokine response of pneumonic foals by virulent Rhodococcus equi. Infect. Immun. 1999, 67, 5041–5047. [Google Scholar] [CrossRef]
- Arnold-Lehna, D.; Venner, M.; Berghaus, L.J.; Berghaus, R.; Giguère, S. Changing policy to treat foals with Rhodococcus equi pneumonia in the later course of disease decreases antimicrobial usage without increasing mortality rate. Equine Vet. J. 2020, 52, 531–537. [Google Scholar] [CrossRef]
- Coleman, M.C.; Blodgett, G.P.; Bevevino, K.E.; Ivanek, R.; Cummings, K.J.; Carter, G.K.; Cohen, N.D. Foal-Level Risk Factors Associated With Development of Rhodococcus equi Pneumonia at a Quarter Horse Breeding Farm. J. Equine Vet. Sci. 2019, 72, 89–96. [Google Scholar] [CrossRef]
- Ainsworth, D.M.; Eicker, S.W.; Yeagar, A.E.; Sweeney, C.R.; Viel, L.; Tesarowski, D.; Lavoie, J.-P.; Hoffman, A.; Paradis, M.R.; Reed, S.M. Associations between physical examination, laboratory, and radiographic findings and outcome and subsequent racing performance of foals with Rhodococcus equi infection: 115 cases (1984–1992). J. Am. Vet. Med. Assoc. 1998, 213, 510–515. [Google Scholar] [CrossRef] [PubMed]
- Takai, S.; Hidaka, D.; Fujii, M.; Shindoh, Y.; Murata, T.; Nakanishi, S.; Sasaki, Y.; Tsubaki, S.; Kamada, M. Serum antibody responses of foals to virulence-associated 15-to 17-kilodalton antigens of Rhodococcus equi. Vet. Microbiol. 1996, 52, 63–71. [Google Scholar] [CrossRef]
- Hietala, S.; Ardans, A.; Sansome, A. Detection of Corynebacterium equi-specific antibody in horses by enzyme-linked immunosorbent assay. Am. J. Vet. Res. 1985, 46, 13–15. [Google Scholar] [PubMed]
- Slovis, N.M.; McCracken, J.L.; Mundy, G. How to use thoracic ultrasound to screen foals for Rhodococcus equi at affected farms. In Proceedings of the 51st Annual Convention of the American Association of Equine Practitioners, Seattle, WA, USA, 3–7 December 2005. [Google Scholar]
- McCracken, J.L.; Slovis, N.M. Use of thoracic ultrasound for the prevention of Rhodococcus equi pneumonia on endemic farms. In Proceedings of the 55th Annual Convention of the American Association of Equine Practitioners, Las Vegas, NV, USA, 5–9 December 2009. [Google Scholar]
- Huber, L.; Giguère, S.; Slovis, N.M.; Carter, C.N.; Barr, B.S.; Cohen, N.D.; Elam, J.; Erol, E.; Locke, S.J.; Phillips, E.D. Emergence of resistance to macrolides and rifampin in clinical isolates of Rhodococcus equi from foals in central Kentucky, 1995 to 2017. Antimicrob. Agents Chemother. 2019, 63, e01714-18. [Google Scholar] [CrossRef]
- Muscatello, G. Rhodococcus equi pneumonia in the foal—Part 2: Diagnostics, treatment and disease management. Vet. J. 2012, 192, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Zúñiga, M.P.; Badillo, E.; Abalos, P.; Valencia, E.D.; Marín, P.; Escudero, E.; Galecio, J.S. Antimicrobial susceptibility of Rhodococcus equi strains isolated from foals in Chile. World J. Microbiol. Biotechnol. 2023, 39, 231. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, D.N.; Moellering, R.C.; Eliopoulos, G.M.; Sande, M.A. The Sanford Guide to Antimicrobial Therapy; Antimicrobial Therapy Inc.: Sperryville, VA, USA, 2007. [Google Scholar]
- De Bruijn, M.; Boschloo, H.; Fink-Gremmels, J. Clinical report: Gamithromycin treatment for Rhodococcus equi pneumonia in foals. In Proceedings of the European Veterinary Conference Voorjaarsdagen, Amsterdam, The Netherlands, 20 April 2013. [Google Scholar]
- Wilson, W.D. Rational selection of antimicrobials for use in horses. In Proceedings of the 47th Annual Convention of the AAEP, San Diego, CA, USA, 28 November 2001; pp. 75–93. [Google Scholar]
- Venner, M.; Credner, N.; Lämmer, M.; Giguère, S. Comparison of tulathromycin, azithromycin and azithromycin-rifampin for the treatment of mild pneumonia associated with Rhodococcus equi. Vet. Rec. 2013, 173, 397. [Google Scholar] [CrossRef] [PubMed]
- Yamshchikov, A.V.; Schuetz, A.; Lyon, G.M. Rhodococcus equi infection. Lancet Infect. Dis. 2010, 10, 350–359. [Google Scholar] [CrossRef] [PubMed]
- Cohen, N.D.; Slovis, N.M.; Giguère, S.; Baker, S.; Chaffin, M.K.; Bernstein, L.R. Gallium maltolate as an alternative to macrolides for treatment of presumed Rhodococcus equi pneumonia in foals. J. Vet. Intern. Med. 2015, 29, 932–939. [Google Scholar] [CrossRef] [PubMed]
- Álvarez-Narváez, S.; Giguère, S.; Cohen, N.; Slovis, N.; Vázquez-Boland, J.A. Spread of Multidrug-Resistant Rhodococcus equi, United States. Emerg. Infect. Dis. 2021, 27, 529–537. [Google Scholar] [CrossRef] [PubMed]
- Giguère, S.; Lee, E.; Williams, E.; Cohen, N.D.; Chaffin, M.K.; Halbert, N.; Martens, R.J.; Franklin, R.P.; Clark, C.C.; Slovis, N.M. Determination of the prevalence of antimicrobial resistance to macrolide antimicrobials or rifampin in Rhodococcus equi isolates and treatment outcome in foals infected with antimicrobial-resistant isolates of R equi. J. Am. Vet. Med. Assoc. 2010, 237, 74–81. [Google Scholar] [CrossRef]
- Erol, E.; Shaffer, C.L.; Lubbers, B.V. Synergistic combinations of clarithromycin with doxycycline or minocycline reduce the emergence of antimicrobial resistance in Rhodococcus equi. Equine Vet. J. 2022, 54, 799–806. [Google Scholar] [CrossRef]
- Wetzig, M.; Venner, M.; Giguère, S. Efficacy of the combination of doxycycline and azithromycin for the treatment of foals with mild to moderate bronchopneumonia. Equine Vet. J. 2020, 52, 613–619. [Google Scholar] [CrossRef] [PubMed]
- Cywes-Bentley, C.; Rocha, J.N.; Bordin, A.I.; Vinacur, M.; Rehman, S.; Zaidi, T.S.; Meyer, M.; Anthony, S.; Lambert, M.; Vlock, D.R. Antibody to Poly-N-acetyl glucosamine provides protection against intracellular pathogens: Mechanism of action and validation in horse foals challenged with Rhodococcus equi. PLoS Pathog. 2018, 14, e1007160. [Google Scholar] [CrossRef] [PubMed]
- Madigan, J.; Hietala, S.; Muller, N. Protection against naturally acquired Rhodococcus equi pneumonia in foals by administration of hyperimmune plasma. J. Reprod. Fertility. Suppl. 1991, 44, 571–578. [Google Scholar]
- Martens, R.; Martens, J.G.; Fiske, R.; Hietala, S.K. Rhodococcus equi foal pneumonia: Protective effects of immune plasma in experimentally infected foals. Equine Vet. J. 1989, 21, 249–255. [Google Scholar] [CrossRef]
- Summer, E.; Liu, M.; Gill, J.; Grant, M.; Chan-Cortes, T.; Ferguson, L.; Janes, C.; Lange, K.; Bertoli, M.; Moore, C. Genomic and functional analyses of Rhodococcus equi phages ReqiPepy6, ReqiPoco6, ReqiPine5, and ReqiDocB7. Appl. Environ. Microbiol. 2011, 77, 669–683. [Google Scholar] [CrossRef]
- Coleman, M.; Kuskie, K.; Liu, M.; Chaffin, K.; Libal, M.; Giguère, S.; Bernstein, L.; Cohen, N. In vitro antimicrobial activity of gallium maltolate against virulent Rhodococcus equi. Vet. Microbiol. 2010, 146, 175–178. [Google Scholar] [CrossRef] [PubMed]
- Harrington, J.; Martens, R.; Cohen, N.; Bernstein, L. Antimicrobial activity of gallium against virulent Rhodococcus equiin vitro and in vivo. J. Vet. Pharmacol. Ther. 2006, 29, 121–127. [Google Scholar] [CrossRef]
- Sweeney, C.R.; Timoney, J.F.; Newton, J.R.; Hines, M.T. Streptococcus equi infections in horses: Guidelines for treatment, control, and prevention of strangles. J. Vet. Intern. Med. 2005, 19, 123–134. [Google Scholar] [CrossRef]
- Piche, C. Clinical observations on an outbreak of strangles. Can. Vet. J. 1984, 25, 7. [Google Scholar]
- Boyle, A.G.; Timoney, J.F.; Newton, J.R.; Hines, M.T.; Waller, A.S.; Buchanan, B.R. Streptococcus equi Infections in Horses: Guidelines for Treatment, Control, and Prevention of Strangles—Revised Consensus Statement. J. Vet. Intern. Med. 2018, 32, 633–647. [Google Scholar] [CrossRef]
- Ladlow, J.; Scase, T.; Waller, A. Canine strangles case reveals a new host susceptible to infection with Streptococcus equi. J. Clin. Microbiol. 2006, 44, 2664–2665. [Google Scholar] [CrossRef] [PubMed]
- Boyle, A. Streptococcus equi subspecies equi infection (strangles) in horses. Compend. Contin. Educ. Vet. 2011, 33, E1–E8. [Google Scholar] [PubMed]
- Sweeney, C.; Whitlock, R.; Meirs, D.; Whitehead, S.; Barningham, S. Complications associated with Streptococcus equi infection on a horse farm. J. Am. Vet. Med. Assoc. 1987, 191, 1446–1448. [Google Scholar] [PubMed]
- Yelle, M.T. Clinical aspects of Streptococcus equi infection. Equine Vet. J. 1987, 19, 158–162. [Google Scholar] [CrossRef] [PubMed]
- Sweeney, C.; Benson, C.; Whitlock, R.; Meirs, D.; Barningham, S.; Whitehead, S.; Cohen, D. Description of an epizootic and persistence of Streptococcus equi infections in horses. J. Am. Vet. Med. Assoc. 1989, 194, 1281–1286. [Google Scholar] [PubMed]
- Tscheschlok, L.; Venner, M.; Steward, K.; Böse, R.; Riihimäki, M.; Pringle, J. Decreased clinical severity of strangles in weanlings associated with restricted seroconversion to optimized Streptococcus equi ssp equi assays. J. Vet. Intern. Med. 2018, 32, 459–464. [Google Scholar] [CrossRef] [PubMed]
- Duffee, L.R.; Stefanovski, D.; Boston, R.C.; Boyle, A.G. Predictor variables for and complications associated with Streptococcus equi subsp equi infection in horses. J. Am. Vet. Med. Assoc. 2015, 247, 1161–1168. [Google Scholar] [CrossRef] [PubMed]
- Wilson, W.D. Streptococcus equi infections (strangles) in horses. Equine Pract. 1990, 10, 12–25. [Google Scholar]
- Reile, L.; Genetzky, R. Equine strangles: A brief overview. Iowa State Univ. Vet. 1983, 45, 16–19. [Google Scholar]
- Fonseca, J.D.; Mavrides, D.E.; Morgan, A.L.; Na, J.G.; Graham, P.A.; McHugh, T.D. Antibiotic resistance in bacteria associated with equine respiratory disease in the United Kingdom. Vet. Rec. 2020, 187, 189. [Google Scholar] [CrossRef]
- Pedersen, K.; Pedersen, K.; Jensen, H.; Finster, K.; Jensen, V.F.; Heuer, O.E. Occurrence of antimicrobial resistance in bacteria from diagnostic samples from dogs. J. Antimicrob. Chemother. 2007, 60, 775–781. [Google Scholar] [CrossRef] [PubMed]
- Pinho, M.; Matos, S.; Pomba, C.; Lübke-Becker, A.; Wieler, L.; Preziuso, S.; Melo-Cristino, J.; Ramirez, M. Multilocus sequence analysis of Streptococcus canis confirms the zoonotic origin of human infections and reveals genetic exchange with Streptococcus dysgalactiae subsp. equisimilis. J. Clin. Microbiol. 2013, 51, 1099–1109. [Google Scholar] [CrossRef] [PubMed]
- Haenni, M.; Hourquet, C.; Saras, E.; Madec, J.-Y. Genetic determinants of antimicrobial resistance in Streptococcus canis in France. J. Glob. Antimicrob. Resist. 2015, 3, 142–143. [Google Scholar] [CrossRef] [PubMed]
- Tsuyuki, Y.; Kurita, G.; Murata, Y.; Goto, M.; Takahashi, T. Identification of group G streptococcal isolates from companion animals in Japan and their antimicrobial resistance patterns. Jpn. J. Infect. Dis. 2017, 70, 394–398. [Google Scholar] [CrossRef] [PubMed]
- Erol, E.; Locke, S.J.; Donahoe, J.K.; Mackin, M.A.; Carter, C.N. Beta-hemolytic Streptococcus spp. from horses: A retrospective study (2000–2010). J. Vet. Diagn. Investig. 2012, 24, 142–147. [Google Scholar] [CrossRef] [PubMed]
- George, J.; Reif, J.; Shideler, R.; Small, C.; Ellis, R.; Snyder, S.; McChesney, A. Identification of carriers of Streptococcus equi in a naturally infected herd. J. Am. Vet. Med. Assoc. 1983, 183, 80–84. [Google Scholar] [PubMed]
- Dalgleish, R.; Love, S.; Pirie, H.; Pirie, M.; Taylor, D.; Wright, N. An outbreak of strangles in young ponies. Vet. Rec. 1993, 132, 528–531. [Google Scholar] [CrossRef]
- Timoney, J.F. Shedding and maintenance of Streptococcus equi in typical and atypical strangles. In Equine Infectious Diseases V; The University Press of Kentuck: Lexington, KT, USA, 1988; pp. 28–33. [Google Scholar]
- Jorm, L. Laboratory studies on the survival of Streptococcus equi subspecies equi on surfaces. In Proceedings of the Equine Infectious Diseases VI: Proceedings of the Sixth International Conference, Cambridge, UK, 7–11 July 1991. [Google Scholar]
- Newton, J.; Wood, J.; Dunn, K.; DeBrauwere, M.; Chanter, N. Naturally occurring persistent and asymptomatic infection of the guttural pouches of horses with Streptococcus equi. Vet. Rec. 1997, 140, 84–90. [Google Scholar] [CrossRef]
- Newton, J.; Wood, J.; DeBrauwere, M.; Chanter, N.; Verheyen, K.; Mumford, J. Detection and treatment of asymptomatic carriers of Streptococcus equi following strangles outbreaks in the UK. In Proceedings of the Equine Infectious Diseases VIII, Dubai, United Arab Emirates, 23–26 March 1999. [Google Scholar]
- Timoney, J. The pathogenic equine streptococci. Vet. Res. 2004, 35, 397–409. [Google Scholar] [CrossRef]
- Wittenbrink, M.M.; Hoelzle, K.; Hoelzle, L.E. What’s new in bacteriology of the mare’s genital tract. In Proceedings of the Fifth International Conference on Equine Reproductive Medicine, Leipzig, Germany, 24–25 November 2008; pp. 53–55. [Google Scholar]
- Awosile, B.B.; Heider, L.C.; Saab, M.E.; McClure, J. Antimicrobial resistance in bacteria isolated from horses from the Atlantic Provinces, Canada (1994 to 2013). Can. Vet. J. 2018, 59, 951. [Google Scholar]
- Malo, A.; Cluzel, C.; Labrecque, O.; Beauchamp, G.; Lavoie, J.-P.; Leclere, M. Evolution of in vitro antimicrobial resistance in an equine hospital over 3 decades. Can. Vet. J. 2016, 57, 747. [Google Scholar]
- Johns, I.; Adams, E.L. Trends in antimicrobial resistance in equine bacterial isolates: 1999–2012. Vet. Rec. 2015, 176, 334. [Google Scholar] [CrossRef] [PubMed]
- Clark, C.; Greenwood, S.; Boison, J.O.; Chirino-Trejo, M.; Dowling, P.M. Bacterial isolates from equine infections in western Canada (1998–2003). Can. Vet. J. 2008, 49, 153. [Google Scholar]
- Coculescu, B.-I. Antimicrobial resistance induced by genetic changes. J. Med. Life 2009, 2, 114. [Google Scholar]
- Collignon, P.; Beggs, J.J. Socioeconomic enablers for contagion: Factors impelling the antimicrobial resistance epidemic. Antibiotics 2019, 8, 86. [Google Scholar] [CrossRef]
- Abdelaziz, S.M.; Aboshanab, K.M.; Yahia, I.S.; Yassien, M.A.; Hassouna, N.A. Correlation between the antibiotic resistance genes and susceptibility to antibiotics among the carbapenem-resistant gram-negative pathogens. Antibiotics 2021, 10, 255. [Google Scholar] [CrossRef] [PubMed]
- Saleem, M.; Deters, B.; de la Bastide, A.; Korzen, M. Antibiotics overuse and bacterial resistance. Ann. Microbiol. Res. 2019, 3, 93. [Google Scholar]
- Iramiot, J.S.; Kajumbula, H.; Bazira, J.; Kansiime, C.; Asiimwe, B.B. Antimicrobial resistance at the human–animal interface in the Pastoralist Communities of Kasese District, South Western Uganda. Sci. Rep. 2020, 10, 14737. [Google Scholar] [CrossRef] [PubMed]
- Malik, B.; Bhattacharyya, S. Antibiotic drug-resistance as a complex system driven by socio-economic growth and antibiotic misuse. Sci. Rep. 2019, 9, 9788. [Google Scholar] [CrossRef]
- Reygaert, W.C. An overview of the antimicrobial resistance mechanisms of bacteria. AIMS Microbiol. 2018, 4, 482. [Google Scholar] [CrossRef]
- Sandner-Miranda, L.; Vinuesa, P.; Cravioto, A.; Morales-Espinosa, R. The genomic basis of intrinsic and acquired antibiotic resistance in the genus Serratia. Front. Microbiol. 2018, 9, 353013. [Google Scholar] [CrossRef] [PubMed]
- Kidd, T.J.; Gibson, J.S.; Moss, S.; Greer, R.M.; Cobbold, R.N.; Wright, J.D.; Ramsay, K.A.; Grimwood, K.; Bell, S.C. Clonal complex Pseudomonas aeruginosa in horses. Vet. Microbiol. 2011, 149, 508–512. [Google Scholar] [CrossRef] [PubMed]
- Blanchard, T.L.; Kenney, R.M.; Timoney, P.J. Venereal disease. Vet. Clin. N. Am. Equine Pract. 1992, 8, 191–203. [Google Scholar] [CrossRef] [PubMed]
- Samper, J.C.; Tibary, A. Disease transmission in horses. Theriogenology 2006, 66, 551–559. [Google Scholar] [CrossRef]
- Troedsson, M.H. Uterine clearance and resistance to persistent endometritis in the mare. Theriogenology 1999, 52, 461–471. [Google Scholar] [CrossRef] [PubMed]
- Omar, H.; Hambidge, M.; Firmanes, B.; Shabandri, A.M.; Wilsher, S. Bacteria Isolated from Equine Uteri in The United Arab Emirates: A Retrospective Study. J. Equine Vet. Sci. 2022, 115, 104029. [Google Scholar] [CrossRef] [PubMed]
- Pottier, M.; Castagnet, S.; Gravey, F.; Leduc, G.; Sévin, C.; Petry, S.; Giard, J.C.; Le Hello, S.; Léon, A. Antimicrobial Resistance and Genetic Diversity of Pseudomonas aeruginosa Strains Isolated from Equine and Other Veterinary Samples. Pathogens 2022, 12, 64. [Google Scholar] [CrossRef] [PubMed]
- Léon, A.; Castagnet, S.; Maillard, K.; Paillot, R.; Giard, J.-C. Evolution of In Vitro Antimicrobial Susceptibility of Equine Clinical Isolates in France between 2016 and 2019. Animals 2020, 10, 812. [Google Scholar] [CrossRef]
- Azam, M.W.; Khan, A.U. Updates on the pathogenicity status of Pseudomonas aeruginosa. Drug Discov. Today 2019, 24, 350–359. [Google Scholar] [CrossRef]
- Kest, H.; Kaushik, A. Vancomycin-resistant Staphylococcus aureus: Formidable threat or silence before the storm. J. Infect. Dis. Epidemiol. 2019, 5, 93. [Google Scholar]
- Keller, R.L.; Hendrix, D.V.H. Bacterial isolates and antimicrobial susceptibilities in equine bacterial ulcerative keratitis (1993–2004). Equine Vet. J. 2005, 37, 207–211. [Google Scholar] [CrossRef] [PubMed]
- Mahmoud, S.F.; Fayez, M.; Swelum, A.A.; Alswat, A.S.; Alkafafy, M.; Alzahrani, O.M.; Alsunaini, S.J.; Almuslem, A.; Al Amer, A.S.; Yusuf, S. Genetic Diversity, Biofilm formation, and antibiotic resistance of Pseudomonas aeruginosa isolated from cow, camel, and mare with clinical endometritis. Vet. Sci. 2022, 9, 239. [Google Scholar] [CrossRef] [PubMed]
- Schulman, M.L.; May, C.E.; Keys, B.; Guthrie, A.J. Contagious equine metritis: Artificial reproduction changes the epidemiologic paradigm. Vet. Microbiol. 2013, 167, 2–8. [Google Scholar] [CrossRef] [PubMed]
- Timoney, P. Horse species symposium: Contagious equine metritis: An insidious threat to the horse breeding industry in the United States. J. Anim. Sci. 2011, 89, 1552–1560. [Google Scholar] [CrossRef] [PubMed]
- Timoney, P.J. Contagious equine metritis. Comp. Immunol. Microbiol. Infect. Dis. 1996, 19, 199–204. [Google Scholar] [CrossRef] [PubMed]
- Hughes, J.P. Contagious Equine Metritis: A review. Theriogenology 1979, 11, 209–216. [Google Scholar] [CrossRef] [PubMed]
- Ricketts, S.; Crowhurst, J.; Newton, R.; Gibbens, N. Contagious equine metritis organism confirmed in Gloucestershire. Vet. Rec. 2012, 170, 398. [Google Scholar] [CrossRef]
- Kristula, M.A.; Smith, B.I. Diagnosis and treatment of four stallions, carriers of the contagious metritis organism—Case report. Theriogenology 2004, 61, 595–601. [Google Scholar] [CrossRef] [PubMed]
- May, C.; Schulman, M.; Gerstenberg, C.; Grobler, A.; Mphele, A.; Guthrie, A. Confirmation of the first outbreak of contagious equine metritis in South Africa. J. Equine Vet. Sci. 2012, 10, S77. [Google Scholar] [CrossRef]
- Luddy, S.; Kutzler, M.A. Contagious equine metritis within the United States: A review of the 2008 outbreak. J. Equine Vet. Sci. 2010, 30, 393–400. [Google Scholar] [CrossRef]
- Taylor, C.E.D.; Rosenthal, R.O.; Brown, D.F.J.; Lapage, S.P.; Hill, L.R.; Legros, R.M. The Causative Organism of Contagious Equine Metritis 1977: Proposal for a New Species to be known as Haemophilus equigenitalis. Equine Vet. J. 1978, 10, 136–144. [Google Scholar] [CrossRef] [PubMed]
- Holden, C. Outbreak of equine VD stirs fear in Kentucky. Science 1978, 200, 181–185. [Google Scholar] [CrossRef] [PubMed]
- Swerczek, T. Contagious equine metritis in the USA. Vet. Rec. 1978, 102, 512–513. [Google Scholar] [CrossRef] [PubMed]
- Knowles, R. Epidemiologic and regulatory aspects of contagious equine metritis (CEM). In Proceedings of the 24th Annual Convention of the American Association of Equine Practitioners, St. Louis, MO, USA, 2–6 December 1979; pp. 287–290. [Google Scholar]
- Fales, W.; Blackburn, B.; Youngquist, R.; Braun, W.; Schlater, L.; Morehouse, L. Laboratory methodology for the diagnosis of contagious equine metritis in Missouri. In Proceedings of the 23rd Annual Meeting of the American Association of Veterinary Laboratory Diagnosticians, Louisville, KT, USA, 2–4 November 1981; pp. 187–197. [Google Scholar]
- USDA. Contagious Equine Metritis. Available online: https://www.aphis.usda.gov/livestock-poultry-disease/equine/contagious-equine-metritis (accessed on 11 June 2024).
- Hayna, J.; Syverson, C.; Dobrinsky, J. 155 embryo transfer success during concurrent contagious equine metritis infection. Reprod. Fertil. Dev. 2008, 20, 157–158. [Google Scholar] [CrossRef]
- Erdman, M.M.; Creekmore, L.H.; Fox, P.E.; Pelzel, A.M.; Porter-Spalding, B.A.; Aalsburg, A.M.; Cox, L.K.; Morningstar-Shaw, B.R.; Crom, R.L. Diagnostic and epidemiologic analysis of the 2008–2010 investigation of a multi-year outbreak of contagious equine metritis in the United States. Prev. Vet. Med. 2011, 101, 219–228. [Google Scholar] [CrossRef] [PubMed]
- Schulman, M.; May, C.E.; Joone, C.; Monyai, M.S.; Gerstenberg, C.; Naidoo, R.; Pienaar, J.; Guthrie, A.J. A PCR-based screening program to assess the prevalence of Taylorella equigenitalis in breeding stallions in South Africa. J. Equine Vet. Sci. 2012, 32(10), S72. [Google Scholar] [CrossRef]
- Weese, J.S.; Baptiste, K.E.; Baverud, V.; Toutain, P.L. Guidelines for antimicrobial use in horses. In Guide to Antimicrobial Use in Animals; Blackwell Publishing: Oxford, UK, 2008; pp. 161–182. [Google Scholar]
- Causey, R.C. Infertility caused by bacterial uterine infections inflicts majorlosses ofbreeding. In Current Therapy in Equine Reproduction; Elsevier Health Sciences: Amsterdam, The Netherlands, 2006; p. 105. [Google Scholar]
- Hallowell, K.L.; Hepworth-Warren, K.L.; Dembek, K. An updated description of bacterial pneumonia in adult horses and factors associated with death. J. Vet. Intern. Med. 2024. [Google Scholar] [CrossRef]
- Kikuchi, N.; Iguchi, I.; Hiramune, T. Capsule types of Klebsiella pneumoniae isolated from the genital tract of mares with metritis, extra-genital sites of healthy mares and the genital tract of stallions. Vet. Microbiol. 1987, 15, 219–228. [Google Scholar] [CrossRef] [PubMed]
- Kamada, M.; Senba, H.; Ohishi, H.; Imagawa, H.; Kumanomido, T. Isolation of Klebsiella pneumoniae, capsule type 1, from foals with diarrhea in a horse-breeding area of Japan. Bull. Equine Res. Inst. 1985, 1985, 43–47. [Google Scholar]
- Estell, K.E.; Young, A.; Kozikowski, T.; Swain, E.A.; Byrne, B.A.; Reilly, C.M.; Kass, P.H.; Aleman, M. Pneumonia Caused by Klebsiella spp. in 46 Horses. J. Vet. Intern. Med. 2016, 30, 314–321. [Google Scholar] [CrossRef]
- Gillespie, S.H. 7—Gram-negative bacilli. In Medical Microbiology Illustrated; Gillespie, S.H., Ed.; Butterworth-Heinemann: Oxford, UK, 1994; pp. 82–91. [Google Scholar] [CrossRef]
- Venturini, C.; Bowring, B.; Partridge Sally, R.; Ben Zakour Nouri, L.; Fajardo-Lubian, A.; Lopez Ayala, A.; Qin, J.; Totsika, M.; van Galen, G.; Norris, J.; et al. Co-Occurrence of Multidrug Resistant Klebsiella pneumoniae Pathogenic Clones of Human Relevance in an Equine Pneumonia Case. Microbiol. Spectr. 2022, 10, e02158-21. [Google Scholar] [CrossRef] [PubMed]
- Ferrer, M.S.; Palomares, R. Aerobic uterine isolates and antimicrobial susceptibility in mares with post-partum metritis. Equine Vet. J. 2018, 50, 202–207. [Google Scholar] [CrossRef] [PubMed]
- Pisello, L.; Rampacci, E.; Stefanetti, V.; Beccati, F.; Hyatt, D.R.; Coletti, M.; Passamonti, F. Temporal efficacy of antimicrobials against aerobic bacteria isolated from equine endometritis: An Italian retrospective analysis (2010–2017). Vet. Rec. 2019, 185, 598. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Antimicrobial Resistance: Global Report on Surveillance; World Health Organization: Geneva, Switzerland, 2014.
- Centers for Disease Control Prevention. Antibiotic Resistance Threats in the United States, 2019; US Department of Health and Human Services, Centers for Disease Control and Prevention: Atlanta, GA, USA, 2019.
- McDanel, J.; Schweizer, M.; Crabb, V.; Nelson, R.; Samore, M.; Khader, K.; Blevins, A.E.; Diekema, D.; Chiang, H.-Y.; Nair, R. Incidence of extended-spectrum β-lactamase (ESBL)-producing Escherichia coli and Klebsiella infections in the United States: A systematic literature review. Infect. Control. Hosp. Epidemiol. 2017, 38, 1209–1215. [Google Scholar] [CrossRef]
- Sukmawinata, E.; Uemura, R.; Sato, W.; Thu Htun, M.; Sueyoshi, M. Multidrug-Resistant ESBL/AmpC-Producing Klebsiella pneumoniae Isolated from Healthy Thoroughbred Racehorses in Japan. Animals 2020, 10, 369. [Google Scholar] [CrossRef]
- Rathbone, P.; Arango-Sabogal, J.C.; De Mestre, A.M.; Scott, C.J. Antimicrobial resistance of endometrial bacterial isolates collected from UK Thoroughbred mares between 2014 and 2020. Vet. Rec. 2023, 192, e2591. [Google Scholar] [CrossRef]
- Köhne, M.; Hegger, A.; Tönissen, A.; Heusinger, A.; Hader, C.; Görgens, A.; Sieme, H. Frequency of potentially pathogenic bacterial and fungal isolates among 28,887 endometrial samples from mares, with an emphasis on multi-drug resistant bacteria in Germany (2018–2022). J. Equine Vet. Sci. 2024, 133, 105008. [Google Scholar] [CrossRef]
- Giles, R.C.; Donahue, J.M.; Hong, C.B.; Tuttle, P.A.; Petrites-Murphy, M.B.; Poonacha, K.B.; Roberts, A.W.; Tramontin, R.R.; Smith, B.; Swerczek, T.W. Causes of abortion, stillbirth, and perinatal death in horses: 3527 cases (1986–1991). J. Am. Vet. Med. Assoc. 1993, 203, 1170–1175. [Google Scholar] [CrossRef]
- Donahue, J.M.; Williams, N.M. Emergent causes of placentitis and abortion. Vet. Clin. N. Am. Equine Pract. 2000, 16, 443–456. [Google Scholar] [CrossRef]
- Carter, C.; Erol, E.; Cohen, N.; Smith, J. Diagnostic epidemiology of nocardioform placentitis and abortion in Kentucky, 1991–2015. J. Equine Vet. Sci. 2016, 39, S59–S60. [Google Scholar] [CrossRef]
- Christensen, B.W.; Roberts, J.F.; Pozor, M.A.; Giguere, S.; Sells, S.F.; Donahue, J.M. Nocardioform placentitis with isolation of Amycolatopsis spp in a Florida-bred mare. J. Am. Vet. Med. Assoc. 2006, 228, 1234–1239. [Google Scholar] [CrossRef]
- Gomes, V.; Del Piero, F.; Langohr, I.; De Aguiar, L.; Anderson, A.; Sones, J.L.; Pinto, C. Equine focal mucopurulent placentitis associated with Stenotrophomonas maltophilia. Equine Vet. Educ. 2020, 33, e292–e297. [Google Scholar] [CrossRef]
- Volkmann, D.H.; Williams, J.H.; Henton, J.H.; Donahue, J.M.; Williams, N.M. The first reported case of equine nocardioform placentitis in South Africa. J. S. Afr. Vet. Assoc. 2001, 72, 235–238. [Google Scholar] [CrossRef]
- Cattoli, G.; Vascellari, M.; Corrò, M.; Capua, I.; Mutinelli, F.; Sells, S.; Donahue, J. First case of equine nocardioform placentitis caused by Crossiela equi in Europe. Vet. Rec. 2004, 154, 730–731. [Google Scholar] [CrossRef]
- Chopin, J.; Muscatello, G.; Goswami, P.; Begg, A. Nocardioform placentitis from Australia with implications for EAFL and MRLS. In Proceedings of the Australian College of Veterinary Scientist 2010 Annual Conference, Gold Coast, Australia, 1–3 July 2010. [Google Scholar]
- Hanlon, D.W.; McLachlan, A.D.; Gibson, I. The first reported case of equine Nocardioform placentitis in New Zealand. N. Z. Vet. J. 2016, 64, 198–199. [Google Scholar] [CrossRef]
- Van Heule, M.; Monteiro, H.F.; Bazzazan, A.; Scoggin, K.; Rolston, M.; El-Sheikh Ali, H.; Weimer, B.C.; Ball, B.; Daels, P.; Dini, P. Characterization of the equine placental microbial population in healthy pregnancies. Theriogenology 2023, 206, 60–70. [Google Scholar] [CrossRef]
- Canisso, I.F.; Ball, B.A.; Erol, E.; Claes, A.; Scoggin, K.E.; McDowell, K.J.; Williams, N.M.; Dorton, A.R.; Wolfsdorf, K.E.; Squires, E.L.; et al. Attempts to induce nocardioform placentitis (Crossiela equi) experimentally in mares. Equine Vet. J. 2015, 47, 91–95. [Google Scholar] [CrossRef]
- Erol, E.; Williams, N.M.; Sells, S.F.; Kennedy, L.; Locke, S.J.; Donahue, J.M.; Carter, C.N. Antibiotic susceptibility patterns of Crossiella equi and Amycolatopsis species causing nocardioform placentitis in horses. J. Vet. Diagn. Investig. 2012, 24, 1158–1161. [Google Scholar] [CrossRef]
- Ribeiro, M.G.; Salerno, T.; Mattos-Guaraldi, A.L.d.; Camello, T.C.F.; Langoni, H.; Siqueira, A.K.; Paes, A.C.; Fernandes, M.C.; Lara, G.H.B. Nocardiosis: An overview and additional report of 28 cases in cattle and dogs. Rev. Inst. Med. Trop. São Paulo 2008, 50, 177–185. [Google Scholar] [CrossRef]
- Rossdale, P.; Hopes, R.; Digby, N. Epidemiological study of wastage among racehorses 1982 and 1983. Vet. Rec. 1985, 116, 66–69. [Google Scholar] [CrossRef]
- Egenvall, A.; Tranquille, C.; Lönnell, A.; Bitschnau, C.; Oomen, A.; Hernlund, E.; Montavon, S.; Franko, M.; Murray, R.; Weishaupt, M.A. Days-lost to training and competition in relation to workload in 263 elite show-jumping horses in four European countries. Prev. Vet. Med. 2013, 112, 387–400. [Google Scholar] [CrossRef] [PubMed]
- Pérez Fraile, A.; González-Cubero, E.; Martínez-Flórez, S.; Olivera, E.R.; Villar-Suárez, V. Regenerative Medicine Applied to Musculoskeletal Diseases in Equines: A Systematic Review. Vet. Sci. 2023, 10, 666. [Google Scholar] [CrossRef]
- Rifici, C.; Attili, A.R.; De Biase, D.; Gonçalves Dos Santos, R.; Seyffert, N.; De Paula Castro, T.L.; Pereira Figueiredo, H.C.; Scaramozzino, C.; Reale, S.; Paciello, O.; et al. Atypical Multibacterial Granulomatous Myositis in a Horse: First Report in Italy. Vet. Sci. 2020, 7, 47. [Google Scholar] [CrossRef]
- Moore, R.M.; Schneider, R.K.; Kowalski, J.; Bramlage, L.R.; Mecklenburg, L.M.; Kohn, C.W. Antimicrobial susceptibility of bacterial isolates from 233 horses with musculoskeletal infection during 1979–1989. Equine Vet. J. 1992, 24, 450–456. [Google Scholar] [CrossRef]
- Thomassian, A. Afecções do aparelho locomotor: Ossos e articulações. In Enfermidades dos Cavalos, 4th ed.; Varela: Sao Paulo, Brazil, 2005; pp. 97–136. [Google Scholar]
- Trotter, G. Osteomyelitis. In Equine Fracture Repair; WB Saunders Co.: Philadelphia, PA, USA, 1996; pp. 359–366. [Google Scholar]
- Motta, R.G.; Martins, L.S.; Motta, I.G.; Guerra, S.T.; Paula, C.L.d.; Bolanos, C.A.D.; Silva, R.C.d.; Ribeiro, M.G. Multidrug resistant bacteria isolated from septic arthritis in horses. Pesqui. Vet. Bras. 2017, 37, 325–330. [Google Scholar] [CrossRef]
- Goodrich, L.R. Osteomyelitis in Horses. Vet. Clin. N. Am. Equine Pract. 2006, 22, 389–417. [Google Scholar] [CrossRef] [PubMed]
- South, V. Clostridial diseases of the horse. Practice 2014, 36, 27–33. [Google Scholar] [CrossRef]
- Galey, F.D. Botulism in the horse. Vet. Clin. N. Am. Equine Pract. 2001, 17, 579–588. [Google Scholar] [CrossRef] [PubMed]
- Johnson, A.L.; McAdams, S.C.; Whitlock, R.H. Type A botulism in horses in the United States: A review of the past ten years (1998–2008). J. Vet. Diagn. Investig. 2010, 22, 165–173. [Google Scholar] [CrossRef]
- Uzal, F.A.; Navarro, M.A.; Asin, J.; Henderson, E.E. Clostridial diseases of horses: A review. Vaccines 2022, 10, 318. [Google Scholar] [CrossRef]
- Snyder, J.R.; Pascoe, J.R.; Hirsh, D.C. Antimicrobial susceptibility of microorganisms isolated from equine orthopedic patients. Vet. Surg. 1987, 16, 197–201. [Google Scholar] [CrossRef]
- Rosin, E. Empirical selection of antibiotics in small animal surgery. Compend. Contin. Educ. Pract. Vet. 1990, 12, 231–232. [Google Scholar]
- Hirsh, D.C.; Jang, S.S. Antimicrobic susceptibility of bacterial pathogens from horses. Vet. Clin. N. Am. Equine Pract. 1987, 3, 181–190. [Google Scholar] [CrossRef]
- Frank, L.A. Clinical pharmacology of rifampin. J. Am. Vet. Med. Assoc. 1990, 197, 114–117. [Google Scholar] [CrossRef] [PubMed]
- Menz, B.D.; Charani, E.; Gordon, D.L.; Leather, A.J.M.; Moonesinghe, S.R.; Phillips, C.J. Surgical Antibiotic Prophylaxis in an Era of Antibiotic Resistance: Common Resistant Bacteria and Wider Considerations for Practice. Infect. Drug Resist. 2021, 14, 5235–5252. [Google Scholar] [CrossRef]
- Morton, A.J. Diagnosis and treatment of septic arthritis. Vet. Clin. Equine Pract. 2005, 21, 627–649. [Google Scholar] [CrossRef] [PubMed]
- Tyler, C.; Davis, R.; Begg, A.; Hutchins, D.; Hodgson, D. A survey of neurological diseases in horses. Aust. Vet. J. 1993, 70, 445–449. [Google Scholar] [CrossRef] [PubMed]
- Toth, B.; Aleman, M.; Nogradi, N.; Madigan, J.E. Meningitis and meningoencephalomyelitis in horses: 28 cases (1985–2010). J. Am. Vet. Med. Assoc. 2012, 240, 580–587. [Google Scholar] [CrossRef] [PubMed]
- Pellegrini-Masini, A.; Bentz, A.I.; Johns, I.C.; Parsons, C.S.; Beech, J.; Whitlock, R.H.; Flaminio, M.J.B. Common variable immunodeficiency in three horses with presumptive bacterial meningitis. J. Am. Vet. Med. Assoc. 2005, 227, 114–122. [Google Scholar] [CrossRef]
- Snyder, R.D. Bacterial meningitis: Diagnosis and treatment. Curr. Neurol. Neurosci. Rep. 2003, 3, 461–469. [Google Scholar] [CrossRef]
- Santschi, E.; Foreman, J. Equine bacterial meningitis-part 1. Compend. Contin. Educ. Pract. Vet. 1989, 11, 479–483. [Google Scholar]
- Fu, D.-J.; Ramachandran, A.; Miller, C. Streptococcus pluranimalium meningoencephalitis in a horse. J. Vet. Diagn. Investig. 2021, 33, 956–960. [Google Scholar] [CrossRef]
- Russo, T.A.; Johnson, J.R. Medical and economic impact of extraintestinal infections due to Escherichia coli: Focus on an increasingly important endemic problem. Microbes Infect. 2003, 5, 449–456. [Google Scholar] [CrossRef]
- Smith, J.J.; Provost, P.J.; Paradis, M.R. Bacterial meningitis and brain abscesses secondary to infectious disease processes involving the head in horses: Seven cases (1980–2001). J. Am. Vet. Med. Assoc. 2004, 224, 739–742. [Google Scholar] [CrossRef] [PubMed]
- Rumbaugh, G. Disseminated septic meningitis in a mare. J. Am. Vet. Med. Assoc. 1977, 171, 452–454. [Google Scholar] [PubMed]
- Viu, J.; Monreal, L.; Jose-Cunilleras, E.; Cesarini, C.; Añor, S.; Armengou, L. Clinical findings in 10 foals with bacterial meningoencephalitis. Equine Vet. J. 2012, 44, 100–104. [Google Scholar] [CrossRef]
- Barclay, W.P.; deLahunta, A. Cryptococcal meningitis in a horse. J. Am. Vet. Med. Assoc. 1979, 174, 1236–1238. [Google Scholar]
- Ford, J.; Lokai, M. Complications of Streptococcus equi infection. Equine Pract. 1981, 2, 41–44. [Google Scholar]
- Foreman, J.; Santschi, E. Equine bacterial meningitis-Part II. Compend. Contin. Educ. Pract. Vet. 1989, 11, 640–644. [Google Scholar]
- Pellegrini-Masini, A.; Livesey, L.C. Meningitis and Encephalomyelitis in Horses. Vet. Clin. N. Am. Equine Pract. 2006, 22, 553–589. [Google Scholar] [CrossRef]
- Sinner, S.W.; Tunkel, A.R. Antimicrobial agents in the treatment of bacterial meningitis. Infect. Dis. Clin. 2004, 18, 581–602. [Google Scholar]
- Bach, F.S.; Bodo, G.; Kuemmerle, J.M.; Bienert-Zeit, A.; Hainisch, E.K.; Simhofer, H. Bacterial Meningitis After Sinus Surgery in Five Adult Horses. Vet. Surg. 2014, 43, 697–703. [Google Scholar] [CrossRef]
- Schott, H. Urinary tract infections. In Equine Internal Medicine; Elsevier: Amsterdam, The Netherlands, 2004; pp. 1253–1258. [Google Scholar]
- Frye, M.A. Pathophysiology, Diagnosis, and Management of Urinary Tract Infection in Horses. Vet. Clin. N. Am. Equine Pract. 2006, 22, 497–517. [Google Scholar] [CrossRef]
- Robinson, J.A.; Allen, G.; Green, E.M.; Fales, W.; Loch, W.; Wilkerson, C.G. A prospective study of septicaemia in colostrum-deprived foals. Equine Vet. J. 1993, 25, 214–219. [Google Scholar] [CrossRef]
- Wada, S.; Yoshinari, M.; Katayama, Y.; Anzai, T.; Wada, R.; Akuzawa, M. Nonulcerative keratouveitis as a manifestation of Leptospiral infection in a horse. Vet. Ophthalmol. 2003, 6, 191–195. [Google Scholar] [CrossRef]
- Dowling, P.M. Antimicrobial therapy. In Equine Clinical Pharmacology; Elsevier: Amsterdam, The Netherlands, 2004; pp. 13–47. [Google Scholar]
- Kagan, B.M. Antimicrobial Therapy, 2nd ed.; WB Saunders Co.: Philadelphia, PA, USA, 1974. [Google Scholar]
- Van Spijk, J.N.; Schmitt, S.; Schoster, A. Infections caused by multidrug-resistant bacteria in an equine hospital (2012–2015). Equine Vet. Educ. 2019, 31, 653–658. [Google Scholar] [CrossRef]
- Dierikx, C.M.; van Duijkeren, E.; Schoormans, A.H.W.; van Essen-Zandbergen, A.; Veldman, K.; Kant, A.; Huijsdens, X.W.; van der Zwaluw, K.; Wagenaar, J.A.; Mevius, D.J. Occurrence and characteristics of extended-spectrum-β-lactamase- and AmpC-producing clinical isolates derived from companion animals and horses. J. Antimicrob. Chemother. 2012, 67, 1368–1374. [Google Scholar] [CrossRef] [PubMed]
- Scala, E.; van Galen, G.; Skärlina, E.M.; Durie, I. Do post-surgical multiresistant urinary infections occur in horses? Case of unilateral pyelonephritis caused by extended-spectrum beta-lactamase-producing bacteria as a complication of cystotomy. Vet. Med. Sci. 2023, 9, 2042–2052. [Google Scholar] [CrossRef] [PubMed]
Antimicrobial Class | Example Drugs | Bacteria | Disease in Horse | Side Effects | Use in Other Hosts | AMR Reports |
---|---|---|---|---|---|---|
Penicillin | Benzyl Penicillin/Penicillin G | S. equi sub. zooepidemicus; Staphylococcus, Actinobacillus, Clostridium perfringens, Corynebacterium pseudotuberculosis, Listeria monocytogenes, Dermatophilus congolensis | Bacterial pneumonia, Lung abscess, Guttural Pouch Empyema, Pleuropneumonia, Strangles, Clostridial myositis, Pigeon fever, Stromal abscess, Cystitis, Pyelonephritis, Endometritis, Placentitis, Mastitis, Dermatophilosis | Excitement, seizure-like activity, muscle soreness, focal myositis, respiratory difficulty, diarrhea, head shaking, teeth grinding, salivation, lacrimation, high borborygmus, mild colic, passage of soft feces, and colitis. | Birds, Cattle, Camels, Goats, Rabbits, Sheep, Pigs, Fish, Human |
|
Aminopenicillin | Ampicillin, Amoxicillin | Salmonella, E. coli, Proteus, Pseudomonas, Klebsiella, Enterobacter, Streptococcus, Staphylococcus | Salmonellosis, Cystitis, Pyelonephritis, Endometritis | Irritation and antimicrobial-associated colitis [116]. | Birds, Cattle, Camels, Goats, Rabbits, Sheep, Pigs, Fish, Human | |
Aminopenicillins in combination with beta-lactamase inhibitors | Amoxicillin-clavulanate | Streptococcus spp., Pasteurella spp., Actinobacillus spp., Escherichia coli, Klebsiella spp., Pseudomonas aeruginosa, Clostridium spp. | Bacterial Pneumonia, Pleuropneumonia, Neonatal Sepsis, Joint Infections, Urinary Tract Infections, Skin and Soft Tissue Infections, Endometritis, Enterocolitis | Birds, Cattle, Camels, Goats, Rabbits, Sheep, Pigs, Fish, Human | ||
3rd and 4th generation cephalosporins | Ceftiofur, Cefovecin, Cefquinome | Staphylococcus, E. coli | Cellulitis, Folliculitis, furunculosis, Endometritis | May cause discomfort, irritation, diarrhea, and colitis. | Cattle, Goats, Sheep, Pigs, Rabbits, Birds, Human |
|
Aminoglycosides | Gentamicin, Streptomycin, Neomycin, Amikacin | Bordetella bronchiseptica, Streptococcus, Salmonella, Staphylococcus, E. coli, Actinobacillus, R. equi, Brucella abortus, Taylorella equigenitalis | Guttural Pouch Empyema, Salmonellosis, Septic arthritis, Fistulous withers, Septic tenosynovitis, Endometritis, Placentitis, Contagious equine metritis (CEM), Seminal vesiculitis | Nephrotoxicity, ototoxicity, and muscle irritation reported in horse | Birds, Cattle, Goats, Rabbits, Sheep, Pigs, Bees, Fish, Camel, Human |
|
Amphenicols | Chloramphenicol Florfenicol | Streptococci, R. equi, E. coli | Liver abscess, Brain abscess | Anemia and pancytopenia | Birds, Cattle, Goats, Rabbits, Sheep, Fish, Pigs, Horses |
|
Fluroquinolones | Enrofloxacin, Marbofloxacin | Staph. aureus, Streptococcus, Actinobacillus | Folliculitis and furunculosis, Otitis interna-media | Noninflammatory arthropathy, weakening and rupture of tendons, ataxia, severe oral ulceration, colitis, and neurologic behaviors. | Dogs, Cats, Poultry |
|
Macrolides | Erythromycin, Tylosin, Azithromycin | R. equi, Streptococcus spp. | Rhodococcal Pneumonia, Chronic Respiratory Disease | Colitis, diarrhea, fever, and hepatobiliary toxicity. | Bee, Birds, Cattle, Goats, Rabbits, Sheep, Fish, Pigs, Horses |
|
Sulphonamides and pontentiated sulphonamides | Sulfamethoxazole + trimethoprim | Streptococcus, R. equi, Corynebacterium pseudotuberculosis, Salmonella, E. coli, Proteus, Pseudomonas, Klebsiella, Enterobacter, Staphylococcus, Actinobacillus | Abdominal abscess, Salmonellosis, Stromal abscess, Pyelonephritis, Cystitis, Brain abscess, Spinal abscess, Otitis interna-media, Liver abscess, Nocardioform placentitis, Placentitis, Vaginitis, Folliculitis and furunculosis, Pastern dermatitis, Staphylococcal pyoderma | Dysbiosis, colitis and diarrhea occasionally, tremor, excitement, ataxia, collapse, dysrhythmia, and hypotension. | Dogs, Cats, Horses, Cattle, Poultry | |
Tetracyclines | Doxycycline, oxytetracycline | S. equi sub. Zooepidemicus, Staphylococcus, Actinobacillus, E. coli | Pneumonia, Proliferative enteropathy, Wound | Renal tubular necrosis, hypotension, and antimicrobial-associated colitis. | Birds, Cattle, Goats, Rabbits, Sheep, Pigs, Fish, Camel, Bees, Horses |
|
Nitroimidazoles | Metronidazole | C. difficile, C. perfringens, C.tetani | Clostridium difficile associated diarrhoea, Clostridium perfringens-associated diarrhoea, Proximal enteritis, Tetanus | Depression, weakness, ataxia, vestibular signs, seizures, peripheral neuropathy, and anorexia. | Dogs, Cats |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kabir, A.; Lamichhane, B.; Habib, T.; Adams, A.; El-Sheikh Ali, H.; Slovis, N.M.; Troedsson, M.H.T.; Helmy, Y.A. Antimicrobial Resistance in Equines: A Growing Threat to Horse Health and Beyond—A Comprehensive Review. Antibiotics 2024, 13, 713. https://doi.org/10.3390/antibiotics13080713
Kabir A, Lamichhane B, Habib T, Adams A, El-Sheikh Ali H, Slovis NM, Troedsson MHT, Helmy YA. Antimicrobial Resistance in Equines: A Growing Threat to Horse Health and Beyond—A Comprehensive Review. Antibiotics. 2024; 13(8):713. https://doi.org/10.3390/antibiotics13080713
Chicago/Turabian StyleKabir, Ajran, Bibek Lamichhane, Tasmia Habib, Alexis Adams, Hossam El-Sheikh Ali, Nathan M. Slovis, Mats H. T. Troedsson, and Yosra A. Helmy. 2024. "Antimicrobial Resistance in Equines: A Growing Threat to Horse Health and Beyond—A Comprehensive Review" Antibiotics 13, no. 8: 713. https://doi.org/10.3390/antibiotics13080713
APA StyleKabir, A., Lamichhane, B., Habib, T., Adams, A., El-Sheikh Ali, H., Slovis, N. M., Troedsson, M. H. T., & Helmy, Y. A. (2024). Antimicrobial Resistance in Equines: A Growing Threat to Horse Health and Beyond—A Comprehensive Review. Antibiotics, 13(8), 713. https://doi.org/10.3390/antibiotics13080713