Clinical Outcomes of Patients with AmpC-Beta-Lactamase-Producing Enterobacterales Bacteremia Treated with Carbapenems versus Non-Carbapenem Regimens: A Single-Center Study
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chaubey, V.P.; Pitout, J.D.D.; Dalton, B.; Gregson, D.B.; Ross, T.; Laupland, K.B. Clinical and microbiological characteristics of bloodstream infections due to AmpC β-lactamase producing Enterobacteriaceae: An active surveillance cohort in a large centralized Canadian region. BMC Infect. Dis. 2014, 14, 647. [Google Scholar] [CrossRef] [PubMed]
- Cheng, L.; Nelson, B.C.; Mehta, M.; Seval, N.; Park, S.; Giddins, M.J.; Shi, Q.; Whittier, S.; Gomez-Simmonds, A.; Uhlemann, A.C. Piperacillin-Tazobactam versus other antibacterial agents for treatment of bloodstream infections due to AmpC β-Lactamase-producing enterobacteriaceae. Antimicrob. Agents Chemother. 2017, 61, 5–7. [Google Scholar] [CrossRef] [PubMed]
- Mol, P.R.; Bindayna, K.M.; Shanthi, G. Evaluation of Two Phenotypic Methods for the Detection of Plasmid-Mediated AmpC β-Lactamases among Enterobacteriaceae Isolates. J. Lab. Physicians 2021, 13, 151–155. [Google Scholar] [CrossRef] [PubMed]
- Tamma, P.D.; Doi, Y.; Bonomo, R.A.; Johnson, J.K.; Simner, P.J. A Primer on AmpC β-Lactamases: Necessary Knowledge for an Increasingly Multidrug-resistant World. Clin. Infect. Dis. 2019, 69, 1446–1455. [Google Scholar] [CrossRef] [PubMed]
- Weber, D.A.; Sanders, C.C. Diverse potential of β-lactamase inhibitors to induce class I enzymes. Antimicrob. Agents Chemother. 1990, 34, 156–158. [Google Scholar] [CrossRef] [PubMed]
- Kohlmann, R.; Bähr, T.; Gatermann, S.G. Species-specific mutation rates for ampC derepression in Enterobacterales with chromosomally encoded inducible AmpC β-lactamase. J. Antimicrob. Chemother. 2018, 73, 1530–1536. [Google Scholar] [CrossRef] [PubMed]
- Jacoby, G.A. AmpC Β-Lactamases. Clin. Microbiol. Rev. 2009, 22, 161–182. [Google Scholar] [CrossRef]
- Tamma, P.D.; Girdwood, S.C.T.; Gopaul, R.; Tekle, T.; Roberts, A.A.; Harris, A.D.; Cosgrove, S.E.; Carroll, K.C. The use of cefepime for treating AmpC β-lactamase-producing enterobacteriaceae. Clin. Infect. Dis. 2013, 57, 781–788. [Google Scholar] [CrossRef]
- Dangelo, R.G.; Johnson, J.K.; Bork, J.T.; Heil, E.L. Treatment options for extended-spectrum beta-lactamase (ESBL) and AmpC-producing bacteria. Expert. Opin. Pharmacother. 2016, 17, 953–967. [Google Scholar] [CrossRef]
- Herrmann, L.; Kimmig, A.; Rödel, J.; Hagel, S.; Rose, N.; Pletz, M.W.; Bahrs, C. Early treatment outcomes for bloodstream infections caused by potential ampc beta-lactamase-producing enterobacterales with focus on piperacillin/tazobactam: A retrospective cohort study. Antibiotics 2021, 10, 665. [Google Scholar] [CrossRef]
- Meini, S.; Tascini, C.; Cei, M.; Sozio, E.; Rossolini, G.M. AmpC β-lactamase-producing Enterobacterales: What a clinician should know. Infection 2019, 47, 363–375. [Google Scholar] [CrossRef]
- Stewart, A.G.; Paterson, D.L.; Young, B.; Lye, D.C.; Davis, J.S.; Schneider, K.; Yilmaz, M.; Dinleyici, R.; Runnegar, N.; Henderson, A.; et al. Meropenem Versus Piperacillin-Tazobactam for Definitive Treatment of Bloodstream Infections Caused by AmpC β-Lactamase-Producing Enterobacter spp., Citrobacter freundii, Morganella morganii, Providencia spp., or Serratia marcescens: A Pilot Multicenter Randomized Controlled Trial (MERINO-2). Open Forum Infect. Dis. 2021, 8, ofab387. [Google Scholar]
- Tamma, P.D.; Aitken, S.L.; Bonomo, R.A.; Mathers, A.J.; van Duin, D.; Clancy, C.J. Infectious Diseases Society of America 2023 Guidance on the Treatment of Antimicrobial Resistant Gram-Negative Infections. Clin Infect Dis. 2023, ciad428. [Google Scholar] [CrossRef] [PubMed]
- Lim, C.L.; Spelman, D. Mortality impact of empirical antimicrobial therapy in ESBL- and AmpC-producing Enterobacteriaceae bacteremia in an Australian tertiary hospital. Infect. Dis. Health 2019, 24, 124–133. [Google Scholar] [CrossRef]
- Chow, J.W.; Fine, M.J.; Shlaes, D.M.; Quinn, J.P.; Hooper, D.C.; Johnson, M.P.; Ramphal, R.; Wagener, M.M.; Miyashiro, D.K.; Yu, V.L. Enterobacter bacteremia: Clinical features and emergence of antibiotic resistance during therapy. Ann. Intern. Med. 1991, 115, 585–590. [Google Scholar] [CrossRef] [PubMed]
- Kang, C.I.; Pai, H.; Kim, S.H.; Kim, H.B.; Kim, E.C.; Oh, M.D.; Choe, K.W. Cefepime and the inoculum effect in tests with Klebsiella pneumoniae producing plasmid-mediated AmpC-type β-lactamase. J. Antimicrob. Chemother. 2004, 54, 1130–1133. [Google Scholar] [CrossRef] [PubMed]
- Maillard, A.; Dortet, L.; Delory, T.; Lafaurie, M.; Bleibtreu, A.; group for the T of A producing E study. Mutation rate of AmpC-β-lactamase-producing Enterobacterales and treatment in clinical practice: A word of caution. Clin. Infect. Dis. 2024, 79, 52–55. [Google Scholar] [CrossRef] [PubMed]
- Ávila-Núñez, M.; Lima, O.; Sousa, A.; Represa, M.; Rubiñán, P.; Celestino, P.; Garrido-Ventín, M.; García-Formoso, L.; Vasallo-Vidal, F.; Martinez-Lamas, L.; et al. Carbapenem alternatives for treatment of bloodstream infections due to AmpC producing enterobacterales. Ann. Clin. Microbiol. Antimicrob. 2023, 22, 75. [Google Scholar] [CrossRef]
- Nisly, S.A.; McClain, D.L.; Fillius, A.G.; Davis, K.A. Oral antibiotics for the treatment of Gram-negative bloodstream infections: A retrospective comparison of three antibiotic classes. J. Glob. Antimicrob. Resist. 2020, 20, 74–77. [Google Scholar] [CrossRef]
- Tamma, P.D.; Conley, A.T.; Cosgrove, S.E.; Harris, A.D.; Lautenbach, E.; Amoah, J.; Avdic, E.; Tolomeo, P.; Wise, J.; Subudhi, S.; et al. Association of 30-Day Mortality with Oral Step-Down vs. Continued Intravenous Therapy in Patients Hospitalized with Enterobacteriaceae bacteremia. JAMA Intern. Med. 2019, 179, 316–323. [Google Scholar] [CrossRef]
- Gunter, S.G.; Barber, K.E.; Wagner, J.L.; Stover, K.R. Fluoroquinolone versus nonfluoroquinolone treatment of bloodstream infections caused by chromosomally mediated ampc-producing enterobacteriaceae. Antibiotics 2020, 9, 331. [Google Scholar] [CrossRef] [PubMed]
- Tan, S.H.; Ng, T.M.; Chew, K.L.; Yong, J.; Wu, J.E.; Yap, M.Y.; Heng, S.T.; Ng, W.H.W.; Wan, S.; Cheok, S.J.H.; et al. Outcomes of treating AmpC-producing Enterobacterales bacteraemia with carbapenems vs. non-carbapenems. Int. J. Antimicrob. Agents 2020, 55, 105860. [Google Scholar] [CrossRef] [PubMed]
- Sapozhnikov, J.; Huang, A.; Zeeck, K.; Gibble, A. Comparison of outcomes in urinary tract infections caused by AmpC-harboring organisms treated with AmpC stable versus AmpC susceptible agents. Diagn. Microbiol. Infect. Dis. 2021, 101, 115472. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.; Guglielmo, B.J. Diagnosis and treatment of extended-spectrum and AmpC beta-lactamase-producing organisms. Ann. Pharmacother. 2007, 41, 1427–1435. [Google Scholar] [CrossRef]
- Henderson, A.; Paterson, D.L.; Chatfield, M.D.; Tambyah, P.A.; Lye, D.C.; De, P.P.; Lin, R.T.P.; Chew, K.L.; Yin, M.; Lee, T.H.; et al. Association Between Minimum Inhibitory Concentration, Beta-lactamase Genes and Mortality for Patients Treated with Piperacillin/Tazobactam or Meropenem from the MERINO Study. Clin. Infect. Dis. 2021, 73, e3842-50. [Google Scholar] [CrossRef]
- Martinez, L.; Simonsen, G.S. The European Committee on Antimicrobial Susceptibility Testing. EUCAST Guidelines for Detection of Resistance Mechanisms and Specific Resistances of Clinical and/or Epidemiological Importance. 2017, pp. 1–43. Available online: http://www.eucast.org/resistance_mechanisms/ (accessed on 1 June 2024).
Parameter | All Patients (n = 120) | Empiric Carbapenems, n = 17 | Empiric Non-Carbapenem Regimens, n = 103 | p Value |
---|---|---|---|---|
Age (years), mean ± SD | 72.3 ± 14.9 | 67.5 ± 15.1 | 73.1 ± 14.8 | 0.15 |
Female, n (%) | 50 (41.7) | 9 (53) | 41 (40) | 0.4 |
Basic metabolic index (BMI) a, mean | 26.6 ± 5.2 | 25.2 ± 4 | 26.9 ± 5.3 | 0.2 |
Residence, n (%) Home/assisted living care home Nursing home | 103 (85.8) 17 (14.1) | 14 (82.4) 3 (17.7) | 89 (86.4) 14 (13.6) | 0.7 |
Department Medical Surgical Critical care | 95 (79.2) 19 (15.8) 6 (5) | 14 (82.3) 2 (11.8) 1 (5.9) | 81 (78.6) 17 (16.5) 5 (4.9) | 0.8 |
Charlson score, mean ± SD | 4.2 ± 2.7 | 3.4 ± 2.9 | 4.3 ± 2.6 | 0.7 |
Norton score, mean ± SD | 14.4 ± 4.8 | 15.8 ± 4.8 | 14.2 ± 4.8 | 0.2 |
Previous exposure to antimicrobial therapy (90 days) | 61 (50.8) | 10 (58.8) | 51 (49.5) | 0.6 |
Variable, n (%) | All Patients (n = 120) | Empiric Carbapenems, n = 17 | Empiric Non-Carbapenem Regimens, n = 103 | p Value |
---|---|---|---|---|
Pathogen Enterobacter cloacae complex Morganella morganii | 84 (70) 36 (30) | 13 (76.5) 4 (23.5) | 71 (68.9) 32 (31.1) | 0.6 |
Likely source of bacteremia Urosepsis Abdominal Endovascular/CRBSI Bone and soft tissue Pneumonia Febrile neutropenia Other/undetermined a | 32 (26.7) 27 (22.5) 26 (21.7) 14 (11.7) 9 (7.5) 7 (5.8) 5 (4.2) | 4 (23.5) 7 (41.2) 4 (23.5) 0 0 2 (11.8) 0 | 28 (27.2) 20 (19.4) 22 (21.4) 14 (13.6) 9 (8.7) 5 (4.9) 5 (4.9) | 1 0.06 1 0.2 0.4 0.3 1 |
Source control | 57/83 (67.7) | 11/15 (73.3) | 46/68 (67.7) | 0.8 |
Systolic blood pressure < 90 mmHg | 44 (36.7) | 5 (29.4) | 32 (37.9) | 0.6 |
Inotropic support | 25/120 (20.8) | 4/17 (23.5) | 21/103 (20.4) | 0.8 |
Pitt bacteremia score, mean ± SD | 1.9 ± 2.4 | 1.9 ± 2.5 | 2 ± 2.4 | 0.9 |
White blood cell count < 4000/uL or >12,000/uL | 66 (55) | 10 (58.8) | 56 (54.4) | 0.8 |
C-reactive protein (mg/dL), mean ± SD b | 17.9 ± 9.7 | 17 ± 11.5 | 18 ± 9.5 | 0.7 |
Creatinine level c | 2.3 ± 2.3 | 1.8 ± 1.4 | 2.4 ± 2.4 | 0.6 |
Creatinine above 1.5 d | 52/115 (45.2) | 8/17 (47) | 44/98 (44.9) | 1 |
Lactate, mean ± SD e | 3.1 ± 2 | 2.7 ± 1.5 | 3.2 ± 2 | 0.5 |
Inappropriate empiric therapy f | 19 (15.8) | 2 (11.7) | 17 (16.5) | 1 |
Variable, n (%) | Empiric Carbapenems (n = 17) | Empiric Non-Carbapenem Regimens (n = 103) | p Value |
---|---|---|---|
Modification of empiric treatment * | 1 (5.9) | 72 (70) | <0.001 |
Length of stay ** | 15.5 ± 7.2 | 14.5 ± 7.6 | 0.6 |
Admission to ICU within 14 days | 2 (11.8) | 16 (15.5) | 1 |
Persistent bacteremia | 0 | 2 (2) | NA |
Recurrent bacteremia | 0 | 4 (3.9) | NA |
30-day mortality | 1 (5.9) | 14 (13.6) | 0.6 |
Variable, n (%) | Definitive Carbapenems, n = 41 | Definitive Non-Carbapenem Regimens, n = 79 | p Value |
---|---|---|---|
Pathogen Enterobacter cloacae complex Morganella morganii | 30 (0.73) 11 (26.8) | 54 (68.3) 25 (31.7) | 0.7 |
Likely source of bacteremia Urosepsis Abdominal Endovascular/CRBSI Bone and soft tissue Pneumonia Febrile neutropenia Undetermined a | 12 (29.3) 9 (22) 11 (26.8) 5 (12.2) 2 (4.9) 1 (2.4) 1 (2.4) | 20 (25.3) 18 (22.8) 15 (19) 9 (11.4) 7 (8.9) 6 (7.6) 4 (5) | 0.7 0.9 0.3 0.9 0.6 0.3 0.7 |
Source control | 23/30 (76.7) | 34/53 (64.2) | 0.3 |
Systolic blood pressure < 90 mmHg | 17 (41.5) | 27 (34.2) | 0.4 |
Inotropic support | 12 (29.3) | 13 (16.5) | 0.15 |
Pitt bacteremia score, mean ± SD | 2.7 ± 2.9 | 1.6 ± 2.1 | 0.02 |
White blood cell count < 4000/uL or >12,000/uL | 22 (53.7) | 44 (55.7) | 0.8 |
C-reactive protein (mg/dL), mean ± SD b | 20.6 ± 11.2 (n = 35) | 16.6 ± 8.7 (n = 70) | 0.04 |
Creatinine level c | 2.7 ± 2.3 | 2.1 ± 2.2 | 0.2 |
Creatinine above 1.5 d | 20/37 (38.5) | 32/78 (61.5) | 0.2 |
Lactate, mean ± SD e | 3.3 ± 2.5 (n = 25) | 3 ± 1.6 (n = 43) | 0.5 |
Ceftriaxone resistance | 14/41 (34%) | 11/68 (14%) | 0.016 |
Variable, n (%) | Definitive Carbapenems (n = 41) | Definitive Non-Carbapenem Regimens (n = 79) | p Value |
---|---|---|---|
Length of stay * | 15.7 ± 6.7 | 14.1 ± 7.9 | 0.3 |
Admission to ICU within 14 days | 9 (22) | 9 (11.4) | 0.18 |
Persistent bacteremia | 1 (2.4) | 1 (1.3) | 1 |
Recurrent bacteremia | 1 (2.4) | 3 (3.8) | 1 |
30-day mortality | 7 (19.5) | 8 (12.7) | 0.38 |
Univariate Analysis | Multivariate Analysis | |||||
---|---|---|---|---|---|---|
Term | OR | 95% CI | p Value | OR | 95% CI | p Value |
Age | 1.02 | 0.98–1.06 | 0.36 | |||
Female gender (Yes/No) | 1.3 | 0.4–3.7 | 0.68 | |||
Previous 90 d admission (Yes/No) | 1.9 | 0.57–6.4 | 0.3 | |||
Previous antimicrobial therapy | 1.1 | 0.38–3.3 | 0.8 | |||
Charlson score | 1.2 | 0.97–1.4 | 0.1 | |||
Norton score | 0.97 | 0.86–1.09 | 0.6 | |||
Cognitive impairment (Yes/No) | 0.3 | 0.04–2.4 | 0.3 | |||
Pitt bacteremia score | 1.4 | 1.2–1.7 | 0.0005 | 1.4 | 1.2–1.8 | 0.0006 |
Inotropic support (Yes/No) | 5.9 | 1.9–18.4 | 0.002 | |||
WBC > 12,000 or <5000 | 2.5 | 0.75–8.4 | 0.1 | |||
CRP | 1.05 | 0.99–1.1 | 0.12 | |||
Kidney injury * | 0.8 | 0.26–2.4 | 0.7 | |||
Lactate above 4 (n = 68) | 1.5 | 0.3–6.6 | 0.6 | |||
Ceftriaxone resistance | 0.94 | 0.25–3.6 | 0.9 | |||
Empiric carbapenems vs. non-carbapenem regimens | 0.4 | 0.05–3.2 | 0.4 | |||
Definitive carbapenems vs. non-carbapenem regimens | 1.8 | 0.6–5.5 | 0.28 | |||
Definitive treatment with carbapenems vs. ciprofloxacin ** | 0.6 | 0.17–2 | 0.53 | |||
Inappropriate empiric antimicrobial therapy (based on in vitro AST) | 1.4 | 0.4–6.5 | 0.4 | |||
Mean time to definite therapy | 1.3 | 0.9–1.8 | 0.13 | |||
Enterobacter sp. (versus Morganella morganii) | 0.4 | 0.15–1.3 | 0.14 | |||
Ceftriaxone resistance | 0.94 | 0.25–3.6 | 0.93 | |||
Non-urinary source infection | 5.9 | 0.74–46.6 | 0.09 | 7.3 | 0.8–64.7 | 0.08 |
Source control | 0.9 | 0.2–3.9 | 0.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shalabi, O.; Kashat, L.; Murik, O.; Zevin, S.; Assous, M.V.; Ben-Chetrit, E. Clinical Outcomes of Patients with AmpC-Beta-Lactamase-Producing Enterobacterales Bacteremia Treated with Carbapenems versus Non-Carbapenem Regimens: A Single-Center Study. Antibiotics 2024, 13, 709. https://doi.org/10.3390/antibiotics13080709
Shalabi O, Kashat L, Murik O, Zevin S, Assous MV, Ben-Chetrit E. Clinical Outcomes of Patients with AmpC-Beta-Lactamase-Producing Enterobacterales Bacteremia Treated with Carbapenems versus Non-Carbapenem Regimens: A Single-Center Study. Antibiotics. 2024; 13(8):709. https://doi.org/10.3390/antibiotics13080709
Chicago/Turabian StyleShalabi, Orjowan, Livnat Kashat, Omer Murik, Shoshana Zevin, Marc V. Assous, and Eli Ben-Chetrit. 2024. "Clinical Outcomes of Patients with AmpC-Beta-Lactamase-Producing Enterobacterales Bacteremia Treated with Carbapenems versus Non-Carbapenem Regimens: A Single-Center Study" Antibiotics 13, no. 8: 709. https://doi.org/10.3390/antibiotics13080709
APA StyleShalabi, O., Kashat, L., Murik, O., Zevin, S., Assous, M. V., & Ben-Chetrit, E. (2024). Clinical Outcomes of Patients with AmpC-Beta-Lactamase-Producing Enterobacterales Bacteremia Treated with Carbapenems versus Non-Carbapenem Regimens: A Single-Center Study. Antibiotics, 13(8), 709. https://doi.org/10.3390/antibiotics13080709