The Molecular Mouse System: A New Useful Tool for Guiding Antimicrobial Therapy in Critically Ill Septic Patients
Abstract
:1. Introduction
2. Results
2.1. Bacterial Identification
2.2. Resistance Genes
2.3. Antimicrobial Therapy
3. Discussion
4. Materials and Methods
4.1. Study Setting and Selection Criteria
4.2. Blood Culture Diagnostics Following Conventional Culture Methods
4.3. Molecular Mouse System
4.4. Impact of the Molecular Mouse System on the Setting of Antimicrobial Therapy
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cassini, A.; Högberg, L.D.; Plachouras, D.; Quattrocchi, A.; Hoxha, A.; Simonsen, G.S.; Colomb-Cotinat, M.; Kretzschmar, M.E.; Devleesschauwer, B.; Cecchini, M.; et al. Burden of AMR Collaborative Group. Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015, a population-level modelling analysis. Lancet Infect. Dis. 2019, 19, 56–66. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Martin-Loeches, I.; Pereira, J.G.; Teoh, T.K.; Barlow, G.; Dortet, L.; Carrol, E.D.; Olgemöller, U.; Boyd, S.E.; Textoris, J. Molecular antimicrobial susceptibility testing in sepsis. Future Microbiol. 2024, 19, 61–72. [Google Scholar] [CrossRef] [PubMed]
- Evans, L.; Rhodes, A.; Alhazzani, W.; Antonelli, M.; Coopersmith, C.M.; French, C.; Machado, F.R.; Mcintyre, L.; Ostermann, M.; Prescott, H.C.; et al. Surviving sepsis campaign: International guidelines for management of sepsis and septic shock 2021. Intensive Care Med. 2021, 47, 1181–1247. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Robineau, O.; Robert, J.; Rabaud, C.; Bedos, J.P.; Varon, E.; Péan, Y.; Gauzit, R.; Alfandari, S. Management and outcome of bloodstream infections: A prospective survey in 121 French hospitals (SPA-BACT survey). Infect. Drug Resist. 2018, 11, 1359–1368. [Google Scholar] [CrossRef] [PubMed]
- Russo, A.; Picciarella, A.; Russo, R.; d’Ettorre, G.; Ceccarelli, G. Time to effective therapy is an important determinant of survival in bloodstream infections caused by vancomycin-resistant Enterococcus spp. Int. J. Mol. Sci. 2022, 23, 11925. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bassetti, M.; Kanj, S.S.; Kiratisin, P.; Rodrigues, C.; Van Duin, D.; Villegas, M.V.; Yu, Y. Early appropriate diagnostics and treatment of MDR Gram-negative infections. JAC Antimicrob. Resist. 2022, 4, dlac089. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bonine, N.G.; Berger, A.; Altincatal, A.; Wang, R.; Bhagnani, T.; Gillard, P.; Lodise, T. Impact of delayed appropriate antibiotic therapy on patient outcomes by antibiotic resistance status from serious Gram-negative bacterial infections. Am. J. Med. Sci. 2019, 357, 103–110. [Google Scholar] [CrossRef] [PubMed]
- Elbehiry, A.; Marzouk, E.; Abalkhail, A.; El-Garawany, Y.; Anagreyyah, S.; Alnafea, Y.; Almuzaini, A.M.; Alwarhi, W.; Rawway, M.; Draz, A. The development of technology to prevent, diagnose, and manage antimicrobial resistance in healthcare-associated infections. Vaccines 2022, 10, 2100. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Timbrook, T.T.; Morton, J.B.; McConeghy, K.W.; Caffrey, A.R.; Mylonakis, E.; LaPlante, K.L. The effect of molecular rapid diagnostic testing on clinical outcomes in bloodstream infections: A systematic review and meta-analysis. Clin. Infect. Dis. 2017, 64, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Giacobbe, D.R.; Bassetti, M.; De Rosa, F.G.; Del Bono, V.; Grossi, P.; Menichetti, F.; Pea, F.; Rossolini, G.M.; Tumbarello, M.; Viale, P.; et al. Ceftolozane/tazobactam: Place in therapy. Expert Rev. Anti. Infect. Ther. 2018, 16, 307–320. [Google Scholar] [CrossRef] [PubMed]
- Shirley, M. Ceftazidime-avibactam: A review in the treatment of serious Gram-negative bacterial infections. Drugs 2018, 78, 675–692. [Google Scholar] [CrossRef] [PubMed]
- Zhanel, G.G.; Lawrence, C.K.; Adam, H.; Schweizer, F.; Zelenitsky, S.; Zhanel, M.; Lagacé-Wiens, P.R.S.; Walkty, A.; Denisuik, A.; Golden, A.; et al. Imipenem–relebactam and meropenem–vaborbactam: Two novel carbapenem-beta-lactamase inhibitor combinations. Drugs 2018, 78, 65–98. [Google Scholar] [CrossRef] [PubMed]
- Ong’uti, S.; Czech, M.; Robilotti, E.; Holubar, M. Cefiderocol: A new cephalosporin stratagem against multidrug-resistant Gram-negative bacteria. Clin. Infect. Dis. 2022, 74, 1303–1312. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hamrick, J.C.; Docquier, J.D.; Uehara, T.; Myers, C.L.; Six, D.A.; Chatwin, C.L.; John, K.J.; Vernacchio, S.F.; Cusick, S.M.; Trout, R.E.L.; et al. VNRX-5133 (Taniborbactam), a broad-spectrum inhibitor of serine- and metallo-β-lactamases, restores activity of cefepime in Enterobacterales and Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2020, 64, e01963-19. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Karlowsky, J.A.; Hackel, M.A.; Wise, M.G.; Six, D.A.; Uehara, T.; Daigle, D.M.; Cusick, S.M.; Pevear, D.C.; Moeck, G.; Sahm, D.F. In vitro activity of cefepime-taniborbactam and comparators against clinical isolates of Gram-negative bacilli from 2018 to 2020, results from the Global Evaluation of Antimicrobial Resistance via Surveillance (GEARS) Program. Antimicrob. Agents Chemother. 2023, 67, e01281-22. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Carvalhaes, C.G.; Sader, H.S.; Streit, J.M.; Castanheira, M.; Mendes, R.E. Activity of oritavancin against Gram-positive pathogens causing bloodstream infections in the United States over 10 Years: Focus on drug-resistant enterococcal subsets (2010–2019). Antimicrob. Agents Chemother. 2022, 66, e0166721. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhanel, G.G.; Love, R.; Adam, H.; Golden, A.; Zelenitsky, S.; Schweizer, F.; Gorityala, B.; Lagacé-Wiens, P.R.; Rubinstein, E.; Walkty, A.; et al. Tedizolid: A novel oxazolidinone with potent activity against multidrug-resistant gram-positive pathogens. Drugs 2015, 75, 253–270. [Google Scholar] [CrossRef] [PubMed]
- WHO Regional Office for Europe and European Centre for Disease Prevention and Control. Surveillance of Antimicrobial Resistance in Europe, 2022 Data: Executive Summary; WHO Regional Office for Europe: Copenhagen, Denmark, 2023. [Google Scholar]
- Iacchini, S.; Boros, S.; Pezzotti, P.; Caramia, A.; Errico, G.; Del Grosso, M.; Camilli, R.; Giufrè, M.; Pantosti, A.; Maraglino, F.; et al. AR-ISS: Sorveglianza Nazionale Dell’antibiotico-Resistenza; Dati 2022; Istituto Superiore di Sanità: Rome, Italy, 2023; (Rapporti ISS Sorveglianza RIS-4/2023). [Google Scholar]
- European Centre for Disease Prevention and Control. Antimicrobial Resistance in the EU/EEA (EARS-Net); Country summaries 2022; ECDC: Stockholm, Sweden, 2023. [Google Scholar]
- Bartoletti, M.; Tedeschi, S.; Scudeller, L.; Pascale, R.; Rosselli Del Turco, E.; Trapani, F.; Tumietto, F.; Virgili, G.; Marconi, L.; Ianniruberto, S.; et al. Impact on mortality of a bundle for the management of enterococcal bloodstream infection. Open Forum Infect. Dis. 2019, 6, ofz473. [Google Scholar] [CrossRef] [PubMed]
- DiazGranados, C.A.; Zimmer, S.M.; Klein, M.; Jernigan, J.A. Comparison of mortality associated with vancomycin-resistant and vancomycin-susceptible enterococcal bloodstream infections: A meta-analysis. Clin. Infect. Dis. 2005, 41, 327–333. [Google Scholar] [CrossRef]
- Bassetti, M.; Peghin, M.; Vena, A.; Giacobbe, D.R. Treatment of infections due to MDR Gram-negative bacteria. Front. Med. 2019, 6, 74. [Google Scholar] [CrossRef]
- Falcone, M.; Bassetti, M.; Tiseo, G.; Giordano, C.; Nencini, E.; Russo, A.; Graziano, E.; Tagliaferri, E.; Leonildi, A.; Barnini, S.; et al. Time to appropriate antibiotic therapy is a predictor of outcome in patients with bloodstream infection caused by KPC-producing Klebsiella pneumoniae. Crit. Care 2020, 24, 29. [Google Scholar] [CrossRef] [PubMed]
- Giacobbe, D.R.; Giani, T.; Bassetti, M.; Marchese, A.; Viscoli, C.; Rossolini, G.M. Rapid microbiological tests for bloodstream infections due to multidrug resistant Gram-negative bacteria: Therapeutic implications. Clin. Microbiol. Infect. 2020, 26, 713–722. [Google Scholar] [CrossRef] [PubMed]
- Zilberberg, M.D.; Nathanson, B.H.; Sulham, K.; Fan, W.; Shorr, A.F. Multidrug resistance, inappropriate empiric therapy, and hospital mortality in Acinetobacter baumannii pneumonia and sepsis. Crit. Care 2016, 20, 221. [Google Scholar] [CrossRef]
- Zilberberg, M.D.; Nathanson, B.H.; Sulham, K.; Fan, W.; Shorr, A.F. Carbapenem resistance, inappropriate empiric treatment and outcomes among patients hospitalized with Enterobacteriaceae urinary tract infection, pneumonia and sepsis. BMC Infect. Dis. 2017, 17, 279. [Google Scholar] [CrossRef]
- Bassetti, M.; Vena, A.; Sepulcri, C.; Giacobbe, D.R.; Peghin, M. Treatment of bloodstream infections due to Gram-negative bacteria with difficult-to-treat resistance. Antibiotics 2020, 9, 632. [Google Scholar] [CrossRef] [PubMed]
- Lodise, T.P.; Berger, A.; Altincatal, A.; Wang, R.; Bhagnani, T.; Gillard, P.; Bonine, N.G. Antimicrobial resistance or delayed appropriate therapy-does one influence outcomes more than the other among patients with serious infections due to carbapenem-resistant versus carbapenem-susceptible Enterobacteriaceae? Open Forum Infect. Dis. 2019, 6, ofz194. [Google Scholar] [CrossRef]
- Iacchini, S.; D’Ancona, F.; Pezzotti, P.; Pantosti, A.; Iannazzo, S. CPE, Sorveglianza Nazionale Delle Batteriemie da Enterobatteri Produttori di Carbapenemasi; I dati 2018; Istituto Superiore di Sanità: Rome, Italy, 2019; CPE: Rapporto N. 1-I dati 2018. [Google Scholar]
- Iacchini, S.; D’Ancona, F.; Bizzotti, V.; Giannitelli, S.; Monaco, M.; Errico, G.; Bellino, S.; Pezzotti, P.; Pantosti, A.; Iannazzo, S. CPE: Sorveglianza Nazionale Delle Batteriemie da Enterobatteri Produttori di Carbapenemasi; Dati 2019; Istituto Superiore di Sanità: Rome, Italy, 2019; Rapporti ISS Sorveglianza RIS2/2020. [Google Scholar]
- Iacchini, S.; D’Ancona, F.; Pezzotti, P.; Sisi, S.; Monaco, M.; Errico, G.; Bellino, S.; Pantosti, A.; Sabbatucci, M.; Parodi, P. CRE: Sorveglianza Nazionale Delle Batteriemie da Enterobatteri Resistenti ai Carbapenemi; Dati 2020; Istituto Superiore di Sanità: Rome, Italy, 2021; Rapporti ISS Sorveglianza RIS-2/2021. [Google Scholar]
- Iacchini, S.; Caramia, A.; Fadda, G.; Monaco, M.; Errico, G.; Del Grosso, M.; Giufrè, M.; Pantosti, A.; Sabbatucci, M.; Maraglino, F.; et al. CRE: Sorveglianza Nazionale Delle Batteriemie da Enterobatteri Resistenti ai Carbapenemi; Dati 2021; Istituto Superiore di Sanità: Rome, Italy, 2022; Rapporti ISS Sorveglianza RIS-2/2022. [Google Scholar]
- Iacchini, S.; Caramia, A.; Fadda, G.; Giannitelli, S.; Monaco, M.; Errico, G.; Del Grosso, M.; Giufrè, M.; Pantosti, A.; Sabbatucci, M.; et al. CRE: Sorveglianza Nazionale Delle Batteriemie da Enterobatteri Resistenti ai Carbapenemi; Dati 2022; Istituto Superiore di Sanità: Rome, Italy, 2023; Rapporti ISS Sorveglianza RIS-3/2023. [Google Scholar]
- Di Popolo, A.; Giannouli, M.; Triassi, M.; Brisse, S.; Zarrilli, R. Molecular epidemiological investigation of multidrug-resistant Acinetobacter baumannii strains in four Mediterranean countries with a multilocus sequence typing scheme. Clin. Microbiol. Infect. 2011, 17, 197–201. [Google Scholar] [CrossRef]
- Principe, L.; Piazza, A.; Giani, T.; Bracco, S.; Caltagirone, M.S.; Arena, F.; Nucleo, E.; Tammaro, F.; Rossolini, G.M.; Pagani, L.; et al. AMCLI-CRAb Survey Participants. Epidemic diffusion of OXA-23-producing Acinetobacter baumannii isolates in Italy: Results of the first cross-sectional countrywide survey. J. Clin. Microbiol. 2014, 52, 3004–3010. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- D’Arezzo, S.; Principe, L.; Capone, A.; Petrosillo, N.; Petrucca, A.; Visca, P. Changing carbapenemase gene pattern in an epidemic multidrug resistant Acinetobacter baumannii lineage causing multiple outbreaks in central Italy. J. Antimicrob. Chemother. 2011, 66, 54–61. [Google Scholar] [CrossRef]
- Migliavacca, R.; Espinal, P.; Principe, L.; Drago, M.; Fugazza, G.; Roca, I.; Nucleo, E.; Bracco, S.; Vila, J.; Pagani, L.; et al. Characterization of resistance mechanisms and genetic relatedness of carbapenem-resistant Acinetobacter baumannii isolated from blood, Italy. Diagn. Microbiol. Infect. Dis. 2013, 75, 180–186. [Google Scholar] [CrossRef]
- Mezzatesta, M.L.; D’Andrea, M.M.; Migliavacca, R.; Giani, T.; Gona, F.; Nucleo, E.; Fugazza, G.; Pagani, L.; Rossolini, G.M.; Stefani, S. Epidemiological characterization and distribution of carbapenem-resistant Acinetobacter baumannii clinical isolates in Italy. Clin. Microbiol. Infect. 2012, 18, 160–166. [Google Scholar] [CrossRef] [PubMed]
- Mugnier, P.D.; Poirel, L.; Naas, T.; Nordmann, P. Worldwide dissemination of the blaO-XA-23 carbapenemase gene of Acinetobacter baumannii. Emerg. Infect. Dis. 2010, 16, 35–40. [Google Scholar] [CrossRef] [PubMed]
- EUCAST Disk Diffusion Method for Antimicrobial Susceptibility Testing Version 11.0. January 2023. Available online: http://www.eucast.org (accessed on 1 February 2024).
- EUCAST Disk Diffusion Method for Antimicrobial Susceptibility Testing Version 12.0. January 2024. Available online: http://www.eucast.org (accessed on 1 February 2024).
- The European Committee on Antimicrobial Susceptibility Testing. Breakpoint Tables for Interpretation of MICs and Zone Diameters. Version 13.1. 2023. Available online: http://www.eucast.org (accessed on 1 February 2024).
- The European Committee on Antimicrobial Susceptibility Testing. Breakpoint Tables for Interpretation of MICs and Zone Diameters. Version 14.0. 2024. Available online: http://www.eucast.org (accessed on 1 February 2024).
Antimicrobial Agent | Beta-Lactamase-Producing Enterobacterales | Non-Fermenting Gram-Negatives | ||||
---|---|---|---|---|---|---|
ESBL | KPC | MBL | OXA-48 | DTR-PA | CRAB | |
Ceftolozane/tazobactam | Yes | No | No | No | +/− a | No |
Ceftazidime/avibactam | Yes | Yes | No | Yes | +/− a | No |
Meropenem/vaborbactam | Yes | Yes | No | No | No | No |
Imipenem/relebactam | Yes | Yes | No | No | +/− a | No |
Cefiderocol | Yes | Yes | Yes | Yes | Yes | Yes |
Cefepime/taniborbactam | Yes | Yes | Yes | Yes | Yes | No |
Gram-Negative (n = 62) | Gram-Positive, Excluding Staphylococci (n = 26) |
---|---|
Escherichia coli/Shigella spp. (n = 32) Klebsiella pneumoniae (n = 12) Pseudomonas aeruginosa (n = 7) Enterobacteriaceae a (n = 3) Haemophilus influenzae (n = 2) Klebsiella aerogenes (n = 2) Acinetobacter baumannii (n = 1) Klebsiella oxytoca (n = 1) Proteus mirabilis (n = 1) Serratia marcescens (n = 1) | Enterococcus faecium (n = 11) Streptococcus spp. b (n = 6) Streptococcus pneumoniae (n = 3) Enterococcus faecalis (n = 2) Streptococcus agalactiae (n = 2) Streptococcus pyogenes (n = 1) Enterococcus spp. c (n = 1) |
Molecular Mouse System | Routine Culture Method |
---|---|
E. cloacae, E. faecium | E. cloacae, E. faecium |
E. coli/Shigella spp., E. faecium | E. coli, E. faecium |
E. coli/Shigella spp., E. faecium | E. coli, E. faecalis, E. faecium, Streptococcus viridans group |
E. faecalis, K. oxytoca | E. faecalis, K. oxytoca, P. aeruginosa |
E. faecalis, K. oxytoca, P. mirabilis | E. faecalis, K. oxytoca, P. mirabilis |
E. faecium, K. oxytoca | E. faecium, K. oxytoca |
P. aeruginosa, Streptococcus spp. | P. aeruginosa, Streptococcus viridans group |
Molecular Mouse System | Routine Culture Method |
---|---|
E. faecium, vanA (n = 11) | Vancomycin-resistant E. faecium |
E. coli/Shigella spp. CTX-M-1/9 groups (n = 11) | ESBL-producing E. coli |
K. pneumoniae SHV (n = 6) | Wild-type K. pneumoniae |
K. pneumoniae CTX-M-1/9 groups, SHV (n = 5) | ESBL-producing K. pneumoniae |
E. coli/Shigella spp. CTX-M-1/9 groups, CMY-2 (n = 1) | ESBL-producing E. coli |
K. pneumoniae CTX-M-1/9 groups, SHV, OXA-48 (n = 1) | Carbapenem-resistant K. pneumoniae (OXA-48 enzyme) |
Empirical Therapy | Total | No Therapy Change | Therapy Set or Adjusted b |
---|---|---|---|
β-lactam agent + inhibitor | 28 | 15 | 13 |
Antimicrobial combination therapy | 24 | 9 | 15 |
Therapeutic window a | 15 | 0 | 15 |
Third generation cephalosporin | 13 | 6 | 7 |
Carbapenem (meropenem) | 7 | 5 | 2 |
Glycopeptide (vancomycin) | 4 | 2 | 2 |
Fluoroquinolone (ciprofloxacin) | 2 | 0 | 2 |
Aminoglycoside (gentamicin) | 1 | 0 | 1 |
Lincosamide (clindamycin) | 1 | 0 | 1 |
Total | 95 | 37 | 58 |
Molecular Mouse Result | No Therapy Change | Set Up Targeted Therapy a | Therapy Changed or Optimized | |
---|---|---|---|---|
Organism-Based | Gene-Based | |||
Enterobacterales (n = 52) | 24 | 8 | 5 | 15 |
Enterococci (n = 14) | 3 | 1 | 1 | 9 |
Streptococci (n = 12) | 5 | 5 | 2 | 0 |
P. aeruginosa (n = 7) | 3 | 1 | 3 | 0 |
H. influenzae (n = 2) | 1 | 1 | 0 | 0 |
A. baumannii (n = 1) | 0 | 0 | 1 | 0 |
Polymicrobial samples (n = 7) | 1 | 0 | 4 | 2 |
Total (n = 95) | 37 | 16 | 16 | 26 |
Carbapenemases | 2018 | 2019 | 2020 | 2021 | 2022 |
---|---|---|---|---|---|
KPC | 93.1% | 85.9% | 83.7% | 80.1% | 82.5% |
OXA-48 | 2.2% | 1.3% | 1.8% | 2.2% | 4.6% |
MBL | 3.4% | 11.4% | 7.4% | 13.1% | 8.4% |
NDM | na | na | 4.8% | 10.6% | 7.2% |
IMP | na | na | na | 1.9% | 0.8% |
VIM | na | na | 2.0% | 0.1% | 0.1% |
Double carbapenemases | 0.6% | 0.5% | 4.4% | 3.2% | 2.6% |
Not interpretable | 0.6% | 1.0% | 2.7% | 1.4% | 1.9% |
Gram-Negative Bacteria Identification | Gram-Negative Bacteria Resistance | Gram-Positive Bacteria, Excluding Staphylococci | Gram-Positive Bacteria Staphylococci | Yeast |
---|---|---|---|---|
Acinetobacter baumannii Enterobacteriaceae Klebsiella aerogenes Enterobacter cloacae Escherichia coli/Shigella spp. Haemophilus influenzae Klebsiella oxytoca Klebsiella pneumoniae Neisseria meningitidis Proteus spp. Proteus mirabilis Pseudomonas aeruginosa Salmonella typhi Serratia marcescens Stenotrophomonas maltophilia | KPC VIM NDM IMP OXA-23-like OXA-48-like SHV SHV ESBL CTX-M-1/9 groups CTX-M-2/8 groups CMY-2 mcr-1 mcr-2 | Bacillus subtilis Enterococcus spp. Enterococcus faecalis Enterococcus faecium Listeria monocytogenes Streptococcus spp. Streptococcus agalactiae Streptococcus anginosus Streptococcus pneumoniae Streptococcus pyogenes vanA vanB vanC1 vanC2/3 | Staphylococcus spp. Staphylococcus aureus Staphylococcus epidermidis Staphylococcus haemolyticus Staphylococcus lugdunensis Staphylococcus sciuri Staphylococcus hominis Staphylococcus simulans Staphylococcus saprophyticus Staphylococcus xylosus mecA mecC SCCmec-orfX vanA and vanB | Candida albicans Candida glabrata Candida krusei Candida parapsilosis Candida tropicalis Candida auris Candida lusitaniae Candida dubliniensis Candida guilliermondii |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mauri, C.; Consonni, A.; Briozzo, E.; Giubbi, C.; Meroni, E.; Tonolo, S.; Luzzaro, F. The Molecular Mouse System: A New Useful Tool for Guiding Antimicrobial Therapy in Critically Ill Septic Patients. Antibiotics 2024, 13, 517. https://doi.org/10.3390/antibiotics13060517
Mauri C, Consonni A, Briozzo E, Giubbi C, Meroni E, Tonolo S, Luzzaro F. The Molecular Mouse System: A New Useful Tool for Guiding Antimicrobial Therapy in Critically Ill Septic Patients. Antibiotics. 2024; 13(6):517. https://doi.org/10.3390/antibiotics13060517
Chicago/Turabian StyleMauri, Carola, Alessandra Consonni, Elena Briozzo, Chiara Giubbi, Elisa Meroni, Silvia Tonolo, and Francesco Luzzaro. 2024. "The Molecular Mouse System: A New Useful Tool for Guiding Antimicrobial Therapy in Critically Ill Septic Patients" Antibiotics 13, no. 6: 517. https://doi.org/10.3390/antibiotics13060517
APA StyleMauri, C., Consonni, A., Briozzo, E., Giubbi, C., Meroni, E., Tonolo, S., & Luzzaro, F. (2024). The Molecular Mouse System: A New Useful Tool for Guiding Antimicrobial Therapy in Critically Ill Septic Patients. Antibiotics, 13(6), 517. https://doi.org/10.3390/antibiotics13060517