In Vitro Virucidal Activity of Different Essential Oils against Bovine Viral Diarrhea Virus Used as Surrogate of Human Hepatitis C Virus
Abstract
:1. Introduction
2. Results
2.1. Analytical Details of EOs
2.2. Cytotoxicity
2.3. Virucidal Activity
3. Discussion
4. Materials and Methods
4.1. Essential Oils
4.2. GC/MS
4.3. Cells and Virus
4.4. Cytotoxicity Assay
4.5. Virucidal Activity Assay
4.6. Viral Titration
4.7. Data Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Simmonds, P.; Becher, P.; Bukh, J.; Gould, E.A.; Meyers, G.; Monath, T.; Muerhoff, S.; Pletnev, A.; Rico-Hesse, R.; Smith, D.B.; et al. ICTV Virus Taxonomy Profile: Flaviviridae. J. Gen. Virol. 2017, 98, 2–3. [Google Scholar] [CrossRef]
- Internation Committee on Taxonomy of Viruses (ICTV). Available online: https://ictv.global/report/chapter/flaviviridae/flaviviridae (accessed on 22 April 2024).
- Ridpath, J.F. Bovine Viral Diarrhea Virus: Global Status. Vet. Clin. N. Am. Food Anim. Pract. 2010, 26, 105–121. [Google Scholar] [CrossRef]
- Zhao, P.; Malik, S.; Xing, S. Epigenetic Mechanisms Involved in HCV-Induced Hepatocellular Carcinoma (HCC). Front. Oncol. 2021, 11, 677926. [Google Scholar] [CrossRef]
- Ly, K.N.; Xing, J.; Klevens, R.M.; Jiles, R.B.; Holmberg, S.D. Causes of Death and Characteristics of Decedents with Viral Hepatitis, United States, 2010. Clin. Infect. Dis. 2014, 58, 40–49. [Google Scholar] [CrossRef]
- Asselah, T.; Boyer, N.; Saadoun, D.; Martinot-Peignoux, M.; Marcellin, P. Direct-acting Antivirals for the Treatment of Hepatitis C Virus Infection: Optimizing Current IFN-free Treatment and Future Perspectives. Liver Int. 2016, 36, 47–57. [Google Scholar] [CrossRef]
- Soria, M.E.; García-Crespo, C.; Martínez-González, B.; Vázquez-Sirvent, L.; Lobo-Vega, R.; de Ávila, A.I.; Gallego, I.; Chen, Q.; García-Cehic, D.; Llorens-Revull, M.; et al. Amino Acid Substitutions Associated with Treatment Failure for Hepatitis C Virus Infection. J. Clin. Microbiol. 2020, 58, e01985-20. [Google Scholar] [CrossRef]
- Das, D.; Pandya, M. Recent Advancement of Direct-Acting Antiviral Agents (DAAs) in Hepatitis C Therapy. Mini-Rev. Med. Chem. 2018, 18, 584–596. [Google Scholar] [CrossRef]
- Maggi, F.; Focosi, D.; Pistello, M. How Current Direct-Acting Antiviral and Novel Cell Culture Systems for HCV Are Shaping Therapy and Molecular Diagnosis of Chronic HCV Infection? Curr. Drug Targets 2017, 18, 811–825. [Google Scholar] [CrossRef]
- Billerbeck, E.; Wolfisberg, R.; Fahnøe, U.; Xiao, J.W.; Quirk, C.; Luna, J.M.; Cullen, J.M.; Hartlage, A.S.; Chiriboga, L.; Ghoshal, K.; et al. Mouse Models of Acute and Chronic Hepacivirus Infection. Science 2017, 357, 204–208. [Google Scholar] [CrossRef]
- Trivedi, S.; Murthy, S.; Sharma, H.; Hartlage, A.S.; Kumar, A.; Gadi, S.V.; Simmonds, P.; Chauhan, L.V.; Scheel, T.K.H.; Billerbeck, E.; et al. Viral Persistence, Liver Disease, and Host Response in a Hepatitis C–like Virus Rat Model. Hepatology 2018, 68, 435–448. [Google Scholar] [CrossRef]
- de Martinis, C.; Cardillo, L.; Esposito, C.; Viscardi, M.; Barca, L.; Cavallo, S.; D’Alessio, N.; Martella, V.; Fusco, G. First identification of bovine hepacivirus in wild boars. Sci. Rep. 2022, 12, 11678. [Google Scholar] [CrossRef]
- Agnello, V.; Ábel, G.; Elfahal, M.; Knight, G.B.; Zhang, Q.-X. Hepatitis C Virus and Other Flaviviridae Viruses Enter Cells via Low Density Lipoprotein Receptor. Proc. Natl. Acad. Sci. USA 1999, 96, 12766–12771. [Google Scholar] [CrossRef]
- Buckwold, V.E.; Beer, B.E.; Donis, R.O. Bovine Viral Diarrhea Virus as a Surrogate Model of Hepatitis C Virus for the Evaluation of Antiviral Agents. Antivir. Res. 2003, 60, 1–15. [Google Scholar] [CrossRef]
- Zitzmann, N.; Mehta, A.S.; Carrouée, S.; Butters, T.D.; Platt, F.M.; McCauley, J.; Blumberg, B.S.; Dwek, R.A.; Block, T.M. Imino Sugars Inhibit the Formation and Secretion of Bovine Viral Diarrhea Virus, a Pestivirus Model of Hepatitis C Virus: Implications for the Development of Broad Spectrum Anti-Hepatitis Virus Agents. Proc. Natl. Acad. Sci. USA 1999, 96, 11878–11882. [Google Scholar] [CrossRef]
- Kindermann, J.; Karbiener, M.; Leydold, S.M.; Knotzer, S.; Modrof, J.; Kreil, T.R. Virus Disinfection for Biotechnology Applications: Different Effectiveness on Surface versus in Suspension. Biologicals 2020, 64, 1–9. [Google Scholar] [CrossRef]
- Pfaender, S.; Brinkmann, J.; Todt, D.; Riebesehl, N.; Steinmann, J.; Steinmann, J.; Pietschmann, T.; Steinmann, E. Mechanisms of Methods for Hepatitis C Virus Inactivation. Appl. Environ. Microbiol. 2015, 81, 1616–1621. [Google Scholar] [CrossRef]
- Reid, B.D. The Sterways Process: A New Approach to Inactivating Viruses Using Gamma Radiation. Biologicals 1998, 26, 125–130. [Google Scholar] [CrossRef]
- Pezantes-Orellana, C.; German Bermúdez, F.; Matías De la Cruz, C.; Montalvo, J.L.; Orellana-Manzano, A. Essential Oils: A Systematic Review on Revolutionizing Health, Nutrition, and Omics for Optimal Well-Being. Front. Med. 2024, 11, 1337785. [Google Scholar] [CrossRef]
- Zuzarte, M.; Salgueiro, L. Essential oils chemistry. In Bioactive Essential Oils and Cancer; de Sousa, D.P., Ed.; Springer International Publishing: Cham, Switzerland, 2015. [Google Scholar]
- Vassiliou, E.; Awoleye, O.; Davis, A.; Mishra, S. Anti-Inflammatory and Antimicrobial Properties of Thyme Oil and Its Main Constituents. Int. J. Mol. Sci. 2023, 24, 6936. [Google Scholar] [CrossRef]
- Serag, M.S.; Elfayoumy, R.A.; Mohesien, M.T. Essential Oils as Antimicrobial and Food Preservatives. In Essential Oils—Advances in Extractions and Biological Applications; Santana de Oliveira, M., Andrade, E.H.A., Eds.; Intechopen: Rijeka, Croatia, 2022. [Google Scholar] [CrossRef]
- da Silva, J.K.R.; Figueiredo, P.L.B.; Byler, K.G.; Setzer, W.N. Essential Oils as Antiviral Agents, Potential of Essential Oils to Treat SARS-CoV-2 Infection: An In-Silico Investigation. Int. J. Mol. Sci. 2020, 21, 3426. [Google Scholar] [CrossRef]
- Astani, A.; Reichling, J.; Schnitzler, P. Comparative Study on the Antiviral Activity of Selected Monoterpenes Derived from Essential Oils. Phytother. Res. 2010, 24, 673–679. [Google Scholar] [CrossRef]
- Catella, C.; Camero, M.; Lucente, M.S.; Fracchiolla, G.; Sblano, S.; Tempesta, M.; Martella, V.; Buonavoglia, C.; Lanave, G. Virucidal and Antiviral Effects of Thymus vulgaris Essential Oil on Feline Coronavirus. Res. Vet. Sci. 2021, 137, 44–47. [Google Scholar] [CrossRef]
- Pellegrini, F.; Camero, M.; Catella, C.; Fracchiolla, G.; Sblano, S.; Patruno, G.; Trombetta, C.M.; Galgano, M.; Pratelli, A.; Tempesta, M.; et al. Virucidal Activity of Lemon Essential Oil against Feline Calicivirus Used as Surrogate for Norovirus. Antibiotics 2023, 12, 322. [Google Scholar] [CrossRef]
- Schnitzler, P.; Schuhmacher, A.; Astani, A.; Reichling, J. Melissa officinalis Oil Affects Infectivity of Enveloped Herpesviruses. Phytomedicine 2008, 15, 734–740. [Google Scholar] [CrossRef]
- Behzadi, A.; Imani, S.; Deravi, N.; Mohammad Taheri, Z.; Mohammadian, F.; Moraveji, Z.; Shavysi, S.; Mostafaloo, M.; Soleimani Hadidi, F.; Nanbakhsh, S.; et al. Antiviral Potential of Melissa officinalis L.: A Literature Review. Nutr. Metab. Insights 2023, 16, 11786388221146683. [Google Scholar] [CrossRef]
- Lelešius, R.; Karpovaitė, A.; Mickienė, R.; Drevinskas, T.; Tiso, N.; Ragažinskienė, O.; Kubilienė, L.; Maruška, A.; Šalomskas, A. In Vitro Antiviral Activity of Fifteen Plant Extracts against Avian Infectious Bronchitis Virus. BMC Vet. Res. 2019, 15, 178. [Google Scholar] [CrossRef]
- Nadi, A.; Abbas Shiravi, A.; Mohammadi, Z.; Aslani, A.; Zeinalian, M. Thymus vulgaris, a natural pharmacy against COVID-19 and other similar infections: A molecular review. Zenodo 2020, 384, 1899. [Google Scholar] [CrossRef]
- Al-Megrin, W.A.; AlSadhan, N.A.; Metwally, D.M.; Al-Talhi, R.A.; El-Khadragy, M.F.; Abdel-Hafez, L.J.M. Potential antiviral agents of Rosmarinus officinalis extract against herpes viruses 1 and 2. Biosci. Rep. 2020, 40, BSR20200992. [Google Scholar] [CrossRef]
- Schnitzler, P.; Nolkemper, S.; Stintzing, F.C.; Reichling, J. Comparative in Vitro Study on the Anti-Herpetic Effect of Phytochemically Characterized Aqueous and Ethanolic Extracts of Salvia Officinalis Grown at Two Different Locations. Phytomedicine 2008, 15, 62–70. [Google Scholar] [CrossRef]
- Madeddu, S.; Marongiu, A.; Sanna, G.; Zannella, C.; Falconieri, D.; Porcedda, S.; Manzin, A.; Piras, A. Bovine Viral Diarrhea Virus (BVDV): A Preliminary Study on Antiviral Properties of Some Aromatic and Medicinal Plants. Pathogens 2021, 10, 403. [Google Scholar] [CrossRef]
- Krause, G.; Trepka, M.J.; Whisenhunt, R.S.; Katz, D.; Nainan, O.; Wiersma, S.T.; Hopkins, R.S. Nosocomial transmission of hepatitis C virus associated with the use of multidose saline vials. Infect. Control Hosp. Epidemiol. 2003, 24, 122–127. [Google Scholar] [CrossRef]
- Forns, X.; Martinez-Bauer, E.; Feliu, A.; García-Retortillo, M.; Martín, M.; Gay, E.; Navasa, M.; Sánchez-Tapias, J.M.; Bruguera, M.; Rodés, J. Nosocomial transmission of HCV in the liver unit of a tertiary care center. Hepatology 2005, 41, 115–122. [Google Scholar] [CrossRef]
- Silini, E.; Locasciulli, A.; Santoleri, L.; Gargantini, L.; Pinzello, G.; Montillo, M.; Foti, L.; Lisa, A.; Orfeo, N.; Magliano, E.; et al. Hepatitis C virus infection in a hematology ward: Evidence for nosocomial transmission and impact on hematologic disease outcome. Haematologica 2002, 87, 1200–1208. [Google Scholar]
- Lanave, G.; Cavalli, A.; Martella, V.; Fontana, T.; Losappio, R.; Tempesta, M.; Decaro, N.; Buonavoglia, D.; Camero, M. Ribavirin and Boceprevir Are Able to Reduce Canine Distemper Virus Growth in Vitro. J. Virol. Methods 2017, 248, 207–211. [Google Scholar] [CrossRef]
- Mahmood, A.; Mahmood, A.; Qureshi, R.A. Antimicrobial Activities of Three Species of Family Mimosaceae. Pak. J. Pharm. Sci. 2012, 25, 203–206. [Google Scholar]
- Alghamdi, H.A. A Need to Combat COVID-19; Herbal Disinfection Techniques, Formulations and Preparations of Human Health Friendly Hand Sanitizers. Saudi J. Biol. Sci. 2021, 28, 3943–3947. [Google Scholar] [CrossRef]
- Parra-Acevedo, V.; Ocazionez, R.E.; Stashenko, E.E.; Silva-Trujillo, L.; Rondón-Villarreal, P. Comparative Virucidal Activities of Essential Oils and Alcohol-Based Solutions against Enveloped Virus Surrogates: In Vitro and In Silico Analyses. Molecules 2023, 28, 4156. [Google Scholar] [CrossRef]
- Garozzo, A.; Timpanaro, R.; Stivala, A.; Bisignano, G.; Castro, A. Activity of Melaleuca alternifolia (Tea Tree) Oil on Influenza Virus A/PR/8: Study on the Mechanism of Action. Antivir. Res. 2011, 89, 83–88. [Google Scholar] [CrossRef]
- Patne, T.; Tomurke, P. Inhalation of Essential Oils: Could Be Adjuvant Therapeutic Strategy for COVID-19. Int. J. Pharm. Sci. Res. 2020, 11, 4095–4103. [Google Scholar] [CrossRef]
- Loizzo, M.R.; Saab, A.M.; Tundis, R.; Statti, G.A.; Menichini, F.; Lampronti, I.; Gambari, R.; Cinatl, J.; Doerr, H.W. Phytochemical Analysis and in Vitro Antiviral Activities of the Essential Oils of Seven Lebanon Species. Chem. Biodivers. 2008, 5, 461–470. [Google Scholar] [CrossRef]
- Bailey, E.S.; Curcic, M.; Biros, J.; Erdogmuş, H.; Bac, N.; Sacco, A. Essential Oil Disinfectant Efficacy Against SARS-CoV-2 Microbial Surrogates. Front. Public Health 2021, 9, 783832. [Google Scholar] [CrossRef]
- Bartenschlager, R.; Lohmann, V. Novel Cell Culture Systems for the Hepatitis C Virus. Antivir. Res. 2001, 52, 1–17. [Google Scholar] [CrossRef]
- Bartenschlager, R. Hepatitis C Virus Replicons: Potential Role for Drug Development. Nat. Rev. Drug Discov. 2002, 1, 911–916. [Google Scholar] [CrossRef]
- Zhong, J.; Gastaminza, P.; Cheng, G.; Kapadia, S.; Kato, T.; Burton, D.R.; Wieland, S.F.; Uprichard, S.L.; Wakita, T.; Chisari, F.V. Robust Hepatitis C Virus Infection In Vitro. Proc. Natl. Acad. Sci. USA 2005, 102, 9294–9299. [Google Scholar] [CrossRef]
- Tabarrini, O.; Manfroni, G.; Fravolini, A.; Cecchetti, V.; Sabatini, S.; De Clercq, E.; Rozenski, J.; Canard, B.; Dutartre, H.; Paeshuyse, J.; et al. Synthesis and Anti-BVDV Activity of Acridones As New Potential Antiviral Agents. J. Med. Chem. 2006, 49, 2621–2627. [Google Scholar] [CrossRef]
- Astani, A.; Reichling, J.; Schnitzler, P. Melissa officinalis extract inhibits attachment of herpes simplex virus in vitro. Chemotherapy 2012, 58, 70–77. [Google Scholar] [CrossRef]
- Pourghanbari, G.; Nili, H.; Moattari, A.; Mohammadi, A.; Iraji, A. Antiviral Activity of the Oseltamivir and Melissa officinalis L. Essential Oil against Avian Influenza A Virus (H9N2). Virusdisease 2016, 27, 170–178. [Google Scholar] [CrossRef]
- Senthil Kumar, K.J.; Gokila Vani, M.; Wang, C.-S.; Chen, C.-C.; Chen, Y.-C.; Lu, L.-P.; Huang, C.-H.; Lai, C.-S.; Wang, S.-Y. Geranium and Lemon Essential Oils and Their Active Compounds Downregulate Angiotensin-Converting Enzyme 2 (ACE2), a SARS-CoV-2 Spike Receptor-Binding Domain, in Epithelial Cells. Plants 2020, 9, 770. [Google Scholar] [CrossRef]
- Reichling, J.; Schnitzler, P.; Suschke, U.; Saller, R. Essential Oils of Aromatic Plants with Antibacterial, Antifungal, Antiviral, and Cytotoxic Properties—An Overview. Complement. Med. Res. 2009, 16, 79–90. [Google Scholar] [CrossRef]
- Lanave, G.; Catella, C.; Catalano, A.; Lucente, M.S.; Pellegrini, F.; Fracchiolla, G.; Diakoudi, G.; Palmisani, J.; Trombetta, C.M.; Martella, V.; et al. Assessing the Virucidal Activity of essential oils against feline calicivirus, a non-enveloped virus used as surrogate of norovirus. Heliyon 2024, 10, e30492. [Google Scholar] [CrossRef]
- Kovač, K.; Diez-Valcarce, M.; Raspor, P.; Hernández, M.; Rodríguez-Lázaro, D. Natural Plant Essential Oils Do Not Inactivate Non-Enveloped Enteric Viruses. Food Environ. Virol. 2012, 4, 209–212. [Google Scholar] [CrossRef]
- Vanti, G.; Ntallis, S.G.; Panagiotidis, C.A.; Dourdouni, V.; Patsoura, C.; Bergonzi, M.C.; Lazari, D.; Bilia, A.R. Glycerosome of Melissa officinalis L. Essential Oil for Effective Anti-HSV Type 1. Molecules 2020, 25, 3111. [Google Scholar] [CrossRef]
- Astani, A.; Schnitzler, P. Antiviral Activity of Monoterpenes Beta-Pinene and Limonene against Herpes Simplex Virus in Vitro. Iran. J. Microbiol. 2014, 6, 149–155. [Google Scholar]
- Gómez, L.A.; Stashenko, E.; Ocazionez, R.E. Comparative Study on in Vitro Activities of Citral, Limonene and Essential Oils from Lippia Citriodora and L. Alba on Yellow Fever Virus. Nat. Prod. Commun. 2013, 8, 249–252. [Google Scholar] [CrossRef]
- Sienkiewicz, M.; Łysakowska, M.; Pastuszka, M.; Bienias, W.; Kowalczyk, E. The Potential of Use Basil and Rosemary Essential Oils as Effective Antibacterial Agents. Molecules 2013, 18, 9334–9351. [Google Scholar] [CrossRef]
- Sokolova, A.S.; Putilova, V.P.; Yarovaya, O.I.; Zybkina, A.V.; Mordvinova, E.D.; Zaykovskaya, A.V.; Shcherbakov, D.N.; Orshanskaya, I.R.; Sinegubova, E.O.; Esaulkova, I.L.; et al. Synthesis and Antiviral Activity of Camphene Derivatives against Different Types of Viruses. Molecules 2021, 26, 2235. [Google Scholar] [CrossRef]
- Nolkemper, S.; Reichling, J.; Stintzing, F.; Carle, R.; Schnitzler, P. Antiviral Effect of Aqueous Extracts from Species of the Lamiaceae Family against Herpes simplex Virus Type 1 and Type 2 in Vitro. Planta Med. 2006, 72, 1378–1382. [Google Scholar] [CrossRef]
- Rezatofighi, S.E.; Seydabadi, A.; Seyyed Nejad, S.M. Evaluating the Efficacy of Achillea Millefolium and Thymus vulgaris Extracts against Newcastle Disease Virus in Ovo. Jundishapur J. Microbiol. 2014, 7, e9016. [Google Scholar] [CrossRef]
- Vimalanathan, S.; Hudson, J.B. Anti-Influenza Virus Activity of Essential Oils and Vapors. Am. J. Essent. Oils Nat. Prod. 2014, 2, 47–53. [Google Scholar]
- Kaewprom, K.; Chen, Y.-H.; Lin, C.-F.; Chiou, M.-T.; Lin, C.-N. Antiviral Activity of Thymus vulgaris and Nepeta Cataria Hydrosols against Porcine Reproductive and Respiratory Syndrome Virus. Thai J. Vet. Med. 2017, 47, 25–33. [Google Scholar] [CrossRef]
- Rosato, A.; Carocci, A.; Catalano, A.; Clodoveo, M.L.; Franchini, C.; Corbo, F.; Carbonara, G.G.; Carrieri, A.; Fracchiolla, G. Elucidation of the Synergistic Action of Mentha Piperita Essential Oil with Common Antimicrobials. PLoS ONE 2018, 13, e0200902. [Google Scholar] [CrossRef]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectroscopy, 4th ed.; Allured Pub. Corp.: Carol Stream, IL, USA, 2007; Volume 16, pp. 65–120. [Google Scholar]
- Koo, I.; Kim, S.; Zhang, X. Comparative Analysis of Mass Spectral Matching-Based Compound Identification in Gas Chromatography–Mass Spectrometry. J. Chromatogr. A 2013, 1298, 132–138. [Google Scholar] [CrossRef]
- Wan, K.X.; Vidavsky, I.; Gross, M.L. Comparing Similar Spectra: From Similarity Index to Spectral Contrast Angle. J. Am. Soc. Mass Spectrom. 2002, 13, 85–88. [Google Scholar] [CrossRef]
- Reed, L.J.; Muench, H. A simple method of estimating fifty per cent endpoints. Am. J. Epidemiol. 1938, 27, 493–497. [Google Scholar] [CrossRef]
N | Components | LRI | AI | Salvia officinalis | |
---|---|---|---|---|---|
Area ± SEM | SI/MS | ||||
1 | α-pinene | 930 | 931 | 9.5 ± 1 | 97 |
2 | camphene | 952 | 950 | 8.8 ± 1 | 97 |
3 | β-pinene | 982 | 981 | 8.4 ± 0.7 | 97 |
4 | β-myrcene | 990 | 991 | 1.5 ± 0.4 | 96 |
5 | eucalyptol | 1023 | 1022 | 29 ± 2 | 99 |
6 | γ- terpinene | 1062 | 1064 | 0.60 ± 0.1 | 97 |
7 | isoterpinolene | 1086 | 1087 | 0.13 ± 0.04 | 98 |
8 | β-linalool | 1100 | 1101 | 3.2 ± 0.8 | 96 |
9 | camphor | 1145 | 1146 | 23 ± 1 | 98 |
10 | endo-borneol | 1166 | 1167 | 2.5 ± 0.7 | 97 |
11 | terpinen-4-ol | 1171 | 1171 | 0.2 ± 0.04 | 96 |
12 | α-terpineol | 1178 | 1179 | 2 ± 0.3 | 91 |
13 | γ- terpineol | 1195 | 1198 | 0.4 ± 0.1 | 94 |
14 | linalyl acetate | 1256 | 1258 | 5 ± 0.4 | 91 |
15 | bornyl acetate | 1288 | 1289 | 2 ± 0.4 | 99 |
16 | caryophyllene | 1415 | 1415 | 1.5 ± 0.8 | 99 |
17 | humulene | 1452 | 1451 | 0.3 ± 0.04 | 95 |
% Characterized | / | / | 98.03 | / | |
Others | / | / | 1.97 | / |
N | Components | LRI | AI | Melissa officinalis | |
---|---|---|---|---|---|
Area ± SEM | SI/MS | ||||
1 | α-pinene | 930 | 931 | 0.34 ± 0.04 | 96 |
2 | camphene | 952 | 952 | 0.52 ± 0.05 | 96 |
3 | β-thujene | 968 | 968 | 0.20 ± 0.01 | 94 |
4 | β-pinene | 982 | 980 | 0.65 ± 0.05 | 91 |
5 | eucalyptol | 1023 | 1023 | 1.2 ± 0.5 | 98 |
6 | limonene | 1030 | 1032 | 4.3 ± 1 | 94 |
7 | 4-nonanone | 1052 | 1053 | 0.3 ± 0.01 | 91 |
8 | β-linalool | 1100 | 1101 | 0.96 ± 0.25 | 97 |
9 | citronellale | 1168 | 1170 | 0.55 ± 0.05 | 93 |
10 | α−terpineol | 1178 | 1179 | 0.3 ± 0.01 | 80 |
11 | citronellol | 1220 | 1221 | 0.34 ± 0.04 | 95 |
12 | citral | 1240 | 1240 | 43 ± 3 | 96 |
13 | geraniol | 1253 | 1254 | 2 ± 1 | 97 |
14 | α−cubebene | 1347 | 1348 | 0.40 ± 0.02 | 98 |
15 | eugenol | 1358 | 1359 | 0.15 ± 0.01 | 93 |
16 | β−ylangene | 1367 | 1368 | 0.13 ± 0.01 | 93 |
17 | α−copaene | 1374 | 1375 | 0.9 ± 0.1 | 99 |
18 | geranyl aceate | 1384 | 1385 | 2 ± 0.10 | 91 |
19 | β−elemene (-) | 1394 | 1394 | 0.2 ± 0.01 | 83 |
20 | caryophyllene | 1415 | 1415 | 25 ± 1 | 99 |
21 | trans-isoeugenol | 1426 | 1427 | 0.3 ± 0.01 | 95 |
22 | α−bergamotene | 1431 | 1430 | 0.14 ± 0.01 | 87 |
23 | humulene | 1452 | 1451 | 4.4 ± 0.9 | 97 |
24 | alloaromadendrene | 1458 | 1458 | 0.2 ± 0.01 | 90 |
25 | α-amorphene | 1483 | 1484 | 0.9 ± 0.1 | 97 |
26 | α−farnesene | 1509 | 1508 | 0.13 ± 0.01 | 93 |
27 | caryophyllene oxyde | 1596 | 1592 | 2.2 ± 0.9 | 91 |
% Characterized | / | / | 91.71 | / | |
Others | / | / | 8.29 | / |
N | Components | LRI | AI | Citrus lemon | |
---|---|---|---|---|---|
Area ± SEM | SI/MS | ||||
1 | ethyl propanoate | 714 | 714 | 0.1 ± 0.010 | 91 |
2 | α-pinene | 930 | 931 | 2.4 ± 0.5 | 95 |
3 | β-thujene | 968 | 968 | 2 ± 0.2 | 86 |
4 | β-pinene | 982 | 980 | 14.5 ± 1 | 94 |
5 | limonene | 1030 | 1032 | 53 ± 5 | 93 |
6 | γ-terpinene | 1062 | 1064 | 5.9 ± 1 | 94 |
7 | terpinolene | 1083 | 1085 | 0.2 ± 0.020 | 96 |
8 | β-linalool | 1100 | 1101 | 0.2 ± 0.020 | 91 |
9 | limonene oxide, cis- | 1130 | 1131 | 1 ± 0.3 | 96 |
10 | limonene oxide, trans- | 1138 | 1138 | 0.7 ± 0.08 | 91 |
11 | α-terpineol | 1178 | 1179 | 0.3 ± 0.020 | 80 |
12 | cis-carveol | 1222 | 1222 | 0.3 ± 0.020 | 96 |
13 | citral | 1240 | 1240 | 3.8 ± 0.9 | 96 |
14 | Δ-carvone | 1242 | 1242 | 0.15 ± 0.01 | 93 |
15 | nerol acetate | 1363 | 1364 | 0.8 ± 0.05 | 91 |
16 | geranyl aceate | 1384 | 1385 | 0.9 ± 0.06 | 91 |
17 | caryophyllene | 1415 | 1415 | 0.15 ± 0.01 | 99 |
18 | α-bergamotene | 1431 | 1430 | 0.2 ± 0.02 | 87 |
19 | β-bisabolene | 1504 | 1506 | 0.6 ± 0.04 | 95 |
20 | caryophyllene oxyde | 1596 | 1592 | 0.6 ± 0.05 | 91 |
% Characterized | / | / | 87.8 | / | |
Others | / | / | 12.2 | / |
N | Components | LRI | AI | Rosmarinus officinalis L. | |
---|---|---|---|---|---|
Area ± SEM | SI/MS | ||||
1 | tricyclene | 920 | 919 | 0.5 ± 0.1 | 96 |
2 | α-pinene | 930 | 931 | 20 ± 2 | 97 |
3 | camphene | 952 | 952 | 8 ± 1 | 97 |
4 | β-pinene | 982 | 980 | 4 ± 0.3 | 97 |
7 | β-myrcene | 990 | 991 | 2.2 ± 0.1 | 96 |
8 | α-phellandrene | 1002 | 1003 | 0.34 ± 0.1 | 95 |
9 | α-terpinene | 1014 | 1014 | 0.4 ± 0.1 | 98 |
10 | 3-carene | 1015 | 1016 | 0.5 ± 0.1 | 96 |
11 | o-cymene | 1021 | 1021 | 3.5 ± 0.4 | 95 |
12 | eucalyptol | 1023 | 1022 | 23 ± 2 | 99 |
13 | γ- terpinene | 1062 | 1064 | 0.54 ± 0.1 | 97 |
14 | terpinolene | 1083 | 1085 | 0.6 ± 0.1 | 98 |
15 | β-linalool | 1100 | 1101 | 1 ± 0.1 | 96 |
16 | camphor | 1145 | 1146 | 20 ± 1 | 98 |
17 | endo-borneol | 1166 | 1167 | 4 ± 0.7 | 97 |
18 | terpinen-4-ol | 1171 | 1171 | 0.8 ± 0.1 | 96 |
19 | α-terpineol | 1178 | 1179 | 2.5 ± 0.3 | 96 |
20 | verbenone | 1204 | 1204 | 1.8 ± 0.8 | 98 |
21 | bornyl acetate | 1288 | 1289 | 1.3 ± 0.2 | 98 |
22 | ylangene | 1367 | 1368 | 0.13 ± 0.02 | 97 |
23 | caryophyllene | 1415 | 1415 | 2.1 ± 0.5 | 99 |
24 | humulene | 1452 | 1451 | 0.5 ± 0.03 | 96 |
25 | caryophyllene oxyde | 1596 | 1592 | 0.2 ± 0.02 | 90 |
% Characterized | / | / | 97.91 | / | |
Others | / | / | 2.09 | / |
N | Components | LRI | AI | Thymus vulgaris | |
---|---|---|---|---|---|
Area ± SEM | SI/MS | ||||
1 | propanoic acid, ethyl ester | 714 | 714 | 0.10 ± 0.09 | 86 |
2 | α-tricyclene | 915 | 919 | 0.13 ± 0.10 | 94 |
3 | α-thujene | 925 | 926 | 1.2 ± 0.98 | 97 |
4 | α-pinene | 930 | 931 | 2 ± 0.11 | 95 |
5 | camphene | 949 | 952 | 2 ± 0.70 | 96 |
6 | sabinene | 977 | 977 | 0.1 ± 0.3 | 93 |
7 | β-pinene | 978 | 978 | 0.6 ± 0.03 | 94 |
8 | β-myrcene | 985 | 991 | 1.4 ± 0.25 | 86 |
9 | α-phellandrene | 1001 | 1003 | 0.15 ± 0.01 | 91 |
10 | p-cymene | 1024 | 1024 | 20 ± 2.50 | 95 |
11 | limonene | 1033 | 1027 | 0.6 ± 0.01 | 91 |
12 | eucalyptol | 1023 | 1031 | 0.9 ± 0.07 | 99 |
13 | cis-β-terpineol | 1145 | 1147 | 0.13 ± 0.01 | 90 |
14 | γ-terpinene | 1063 | 1059 | 9 ± 0.9 | 94 |
15 | α-terpinolene | 1085 | 1089 | 0.12 ± 0.01 | 81 |
16 | β-linalool | 1097 | 1098 | 4 ± 1 | 97 |
17 | camphor | 1145 | 1146 | 1.7 ± 0.8 | 98 |
18 | borneol | 1166 | 1167 | 1.9 ± 0.9 | 97 |
19 | terpinen-4-ol | 1172 | 1174 | 1.8 ± 0.9 | 96 |
20 | α-terpineol | 1189 | 1190 | 0.12 ± 0.01 | 86 |
21 | methyl thymol, ether | 1235 | 1235 | 0.4 ± 0.2 | 90 |
22 | isothymol methyl ether | NA | 1244 | 0.4 ± 0.2 | 94 |
23 | thymol | 1290 | 1290 | 47 ± 2 | 94 |
24 | caryophyllene | 1417 | 1418 | 2 ± 0.9 | 99 |
25 | caryophyllene oxide | 1581 | 1592 | 0.6 ± 0.1 | 91 |
% Characterized | / | / | 98.35 | / | |
Others | / | / | 1.65 | / |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lanave, G.; Pellegrini, F.; Triggiano, F.; De Giglio, O.; Lucente, M.S.; Diakoudi, G.; Catella, C.; Gentile, A.; Tardugno, R.; Fracchiolla, G.; et al. In Vitro Virucidal Activity of Different Essential Oils against Bovine Viral Diarrhea Virus Used as Surrogate of Human Hepatitis C Virus. Antibiotics 2024, 13, 514. https://doi.org/10.3390/antibiotics13060514
Lanave G, Pellegrini F, Triggiano F, De Giglio O, Lucente MS, Diakoudi G, Catella C, Gentile A, Tardugno R, Fracchiolla G, et al. In Vitro Virucidal Activity of Different Essential Oils against Bovine Viral Diarrhea Virus Used as Surrogate of Human Hepatitis C Virus. Antibiotics. 2024; 13(6):514. https://doi.org/10.3390/antibiotics13060514
Chicago/Turabian StyleLanave, Gianvito, Francesco Pellegrini, Francesco Triggiano, Osvalda De Giglio, Maria Stella Lucente, Georgia Diakoudi, Cristiana Catella, Arturo Gentile, Roberta Tardugno, Giuseppe Fracchiolla, and et al. 2024. "In Vitro Virucidal Activity of Different Essential Oils against Bovine Viral Diarrhea Virus Used as Surrogate of Human Hepatitis C Virus" Antibiotics 13, no. 6: 514. https://doi.org/10.3390/antibiotics13060514
APA StyleLanave, G., Pellegrini, F., Triggiano, F., De Giglio, O., Lucente, M. S., Diakoudi, G., Catella, C., Gentile, A., Tardugno, R., Fracchiolla, G., Martella, V., & Camero, M. (2024). In Vitro Virucidal Activity of Different Essential Oils against Bovine Viral Diarrhea Virus Used as Surrogate of Human Hepatitis C Virus. Antibiotics, 13(6), 514. https://doi.org/10.3390/antibiotics13060514