Potential Surviving Effect of Cleome droserifolia Extract against Systemic Staphylococcus aureus Infection: Investigation of the Chemical Content of the Plant
Abstract
:1. Introduction
2. Results
2.1. Recognition of Different Phytochemical Contents of C. droserifolia by LC-ESI-MS/MS
2.2. Bacterial Isolates and Antibiotic Resistance
2.3. Susceptibility of S. aureus to CDE
2.4. Determination of Antibiofilm Potential by Crystal Violet Assay, SEM, and qRT-PCR
2.5. In Vivo Infection Model in Mice
2.6. Histopathological and Immunohistochemical Investigations
2.7. ELISA
3. Materials and Methods
3.1. Collection, Drying, and Extraction of the Plant Material
3.2. Exploration of the Plant’s Phytoconstituents by LC-ESI-MS/MS
3.3. Bacteria
3.4. Antibiotic Susceptibility Testing
3.5. Antibacterial Action of C. droserifolia Methanol Extract
3.6. Determination of the Minimum Inhibitory Concentration (MIC) of CDE
3.7. Biofilm Inhibition
3.8. Scanning Electron Microscope (SEM)
3.9. Gene Expression Measurement Using qRT-PCR
3.10. In Vivo Assay
3.11. ELISA
3.12. Histopathological Examination
3.13. Immunohistochemistry
3.14. Statistics
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Moustafa, A.A.; Mahmoud, M.A.K. Importance of Cleome droserifolia as an endangered medicinal plant species in the Sinai Peninsula and the need for its conservation. Adv. Med. Plant Res. 2023, 11, 43–51. [Google Scholar]
- Hegazy, A.K. Population ecology and implications for conservation of Cleome droserifolia: A threatened xerophyte. J. Arid Environ. 1990, 19, 269–282. [Google Scholar] [CrossRef]
- a Moustafa, A.R.; Alotaibi, M.O. Cleome droserifolia: An Egyptian natural heritage facing extinction. Asian J. Plant Sci. Res. 2019. [Google Scholar]
- Darbyshire, I.; Kordofani, M.; Farag, I.; Candiga, R.; Pickering, H. The Plants of Sudan and South Sudan: An Annotated Checklist; Royal Botanic Gardens: Kew, UK, 2015. [Google Scholar]
- Ghazanfar, S.A. An Annotated Catalogue of the Vascular Plants of Oman and Their Vernacular Names; Jardin Botanique National de Belgique: Meise, Belgium, 1992; Volume 2. [Google Scholar]
- Batanouny, K.; Aboutabl, E.; Shabana, M.; Soliman, F. Wild Medicinal Plants in Egypt; The Palm Press: Cairo, Egypt, 1999; Volume 154. [Google Scholar]
- Tackholm, V.; Boulos, L. Students’ Flora of Egypt; Cairo University: Cairo, Egypt, 1974. [Google Scholar]
- El-Askary, H.I. Terpenoids from Cleome droserifolia (Forssk.) Del. Molecules 2005, 10, 971–977. [Google Scholar] [CrossRef] [PubMed]
- Helal, E.G.; Khattab, A.M.; Abou Aouf, N.; Abdallah, I.Z. Hypoglycemic and antioxidant effects of Cleome droserifolia (Samwah) in Alloxan-induced diabetic rats. Egypt. J. Hosp. Med. 2015, 58, 39–47. [Google Scholar] [CrossRef]
- Seif El-Din, A.; Darwish, F.; Abou-Donia, A. Flavonoids from Cleome droserifolia (Forssk.) Del. Growing in Egypt. Egypt. J. Pharm. Sci. 1987, 28, 313. [Google Scholar]
- Abd El-Gawad, A.M.; El-Amier, Y.A.; Bonanomi, G. Essential oil composition, antioxidant and allelopathic activities of Cleome droserifolia (Forssk.) Delile. Chem. Biodivers. 2018, 15, e1800392. [Google Scholar] [CrossRef] [PubMed]
- Hashem, N.M.; Shehata, M.G. Antioxidant and antimicrobial activity of Cleome droserifolia (Forssk.) Del. and its biological effects on redox status, immunity, and gut microflora. Animals 2021, 11, 1929. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Latif, M.; Riad, A.; Soliman, R.A.; Elkhouly, A.M.; Nafae, H.; Gad, M.Z.; Motaal, A.A.; Youness, R.A. MALAT-1/p53/miR-155/miR-146a ceRNA circuit tuned by methoxylated quercitin glycoside alters immunogenic and oncogenic profiles of breast cancer. Mol. Cell. Biochem. 2022, 477, 1281–1293. [Google Scholar] [CrossRef]
- Nicola, W.; Ibrahim, K.; Mikhail, T.; Girgis, R.; Khadr, M. Role of the hypoglycemic plant extract cleome droserifolia in improving glucose and lipid metabolism and its relation to insulin resistance in fatty liver. Boll. Chim. Farm. 1996, 135, 507–517. [Google Scholar]
- Cave, R.; Misra, R.; Chen, J.; Wang, S.; Mkrtchyan, H.V. Whole genome sequencing revealed new molecular characteristics in multidrug resistant staphylococci recovered from high frequency touched surfaces in London. Sci. Rep. 2019, 9, 9637. [Google Scholar] [CrossRef]
- Cepas, V.; Soto, S.M. Relationship between virulence and resistance among gram-negative bacteria. Antibiotics 2020, 9, 719. [Google Scholar] [CrossRef]
- Cheung, G.Y.; Bae, J.S.; Otto, M. Pathogenicity and virulence of Staphylococcus aureus. Virulence 2021, 12, 547–569. [Google Scholar] [CrossRef]
- Kakoullis, L.; Papachristodoulou, E.; Chra, P.; Panos, G. Mechanisms of antibiotic resistance in important gram-positive and gram-negative pathogens and novel antibiotic solutions. Antibiotics 2021, 10, 415. [Google Scholar] [CrossRef] [PubMed]
- Saha, M.; Sarkar, A. Review on multiple facets of drug resistance: A rising challenge in the 21st century. J. Xenobiotics 2021, 11, 197–214. [Google Scholar] [CrossRef] [PubMed]
- Idrees, M.; Sawant, S.; Karodia, N.; Rahman, A. Staphylococcus aureus biofilm: Morphology, genetics, pathogenesis and treatment strategies. Int. J. Environ. Res. Public Health 2021, 18, 7602. [Google Scholar] [CrossRef] [PubMed]
- Yin, W.; Wang, Y.; Liu, L.; He, J. Biofilms: The microbial “protective clothing” in extreme environments. Int. J. Mol. Sci. 2019, 20, 3423. [Google Scholar] [CrossRef] [PubMed]
- Muteeb, G.; Rehman, M.T.; Shahwan, M.; Aatif, M. Origin of antibiotics and antibiotic resistance, and their impacts on drug development: A narrative review. Pharmaceuticals 2023, 16, 1615. [Google Scholar] [CrossRef]
- Siddiqui, S.A.; Khan, S.; Mehdizadeh, M.; Bahmid, N.A.; Adli, D.N.; Walker, T.R.; Perestrelo, R.; Câmara, J.S. Phytochemicals and bioactive constituents in food packaging: A systematic review. Heliyon 2023, 9, e21196. [Google Scholar] [CrossRef]
- Bittner Fialová, S.; Rendeková, K.; Mučaji, P.; Nagy, M.; Slobodníková, L. Antibacterial activity of medicinal plants and their constituents in the context of skin and wound infections, considering European legislation and folk medicine—A review. Int. J. Mol. Sci. 2021, 22, 10746. [Google Scholar] [CrossRef]
- Attallah, N.G.; Al-Fakhrany, O.M.; Elekhnawy, E.; Hussein, I.A.; Shaldam, M.A.; Altwaijry, N.; Alqahtani, M.J.; Negm, W.A. Anti-Biofilm and Antibacterial Activities of Cycas media R. Br Secondary Metabolites: In Silico, In Vitro, and In Vivo Approaches. Antibiotics 2022, 11, 993. [Google Scholar] [CrossRef] [PubMed]
- Alherz, F.A.; Negm, W.A.; Elekhnawy, E.; El-Masry, T.A.; Haggag, E.M.; Alqahtani, M.J.; Hussein, I.A. Silver Nanoparticles Prepared Using Encephalartos laurentianus De Wild Leaf Extract Have Inhibitory Activity against Candida albicans Clinical Isolates. J. Fungi 2022, 8, 1005. [Google Scholar] [CrossRef]
- Negm, W.A.; El-Aasr, M.; Attia, G.; Alqahtani, M.J.; Yassien, R.I.; Abo Kamer, A.; Elekhnawy, E. Promising Antifungal Activity of Encephalartos laurentianus de Wild against Candida albicans Clinical Isolates: In Vitro and In Vivo Effects on Renal Cortex of Adult Albino Rats. J. Fungi 2022, 8, 426. [Google Scholar] [CrossRef] [PubMed]
- Alqahtani, M.J.; Elekhnawy, E.; Negm, W.A.; Mahgoub, S.; Hussein, I.A. Encephalartos villosus Lem. Displays a strong in vivo and in vitro antifungal potential against Candida glabrata clinical isolates. J. Fungi 2022, 8, 521. [Google Scholar] [CrossRef] [PubMed]
- Motaal, A.A.; Ezzat, S.M.; Haddad, P. Determination of bioactive markers in Cleome droserifolia using cell-based bioassays for antidiabetic activity and isolation of two novel active compounds. Phytomedicine 2011, 19, 38–41. [Google Scholar] [CrossRef] [PubMed]
- Jarukas, L.; Kamarauskaitė, J.; Marksa, M.; Trumbeckaitė, S.; Banienė, R.; Ivanauskas, L. Bio-based succinic acid sample preparation and derivatization procedure optimisation for gas chromatography-mass spectrometry analysis. Sci. Pharm. Sci. 2018, 4, 9–13. [Google Scholar] [CrossRef]
- Vasilev, H.; Šmejkal, K.; Jusková, S.; Vaclavik, J.; Treml, J. Five New Tamarixetin Glycosides from Astragalus thracicus Griseb. Including Some Substituted with the Rare 3-Hydroxy-3-methylglutaric Acid and Their Collagenase Inhibitory Effects In Vitro. ACS Omega 2024, 9, 18023–18031. [Google Scholar] [CrossRef]
- Abela, L.; Spiegel, R.; Crowther, L.M.; Klein, A.; Steindl, K.; Papuc, S.M.; Joset, P.; Zehavi, Y.; Rauch, A.; Plecko, B. Plasma metabolomics reveals a diagnostic metabolic fingerprint for mitochondrial aconitase (ACO2) deficiency. PLoS ONE 2017, 12, e0176363. [Google Scholar] [CrossRef] [PubMed]
- Shahzad, M.N.; Ahmad, S.; Tousif, M.I.; Ahmad, I.; Rao, H.; Ahmad, B.; Basit, A. Profiling of phytochemicals from aerial parts of Terminalia neotaliala using LC-ESI-MS2 and determination of antioxidant and enzyme inhibition activities. PLoS ONE 2022, 17, e0266094. [Google Scholar] [CrossRef]
- Surendra, S.V.; Mahalingam, B.L.; Velan, M. Degradation of monoaromatics by Bacillus pumilus MVSV3. Braz. Arch. Biol. Technol. 2017, 60, e16160319. [Google Scholar] [CrossRef]
- Mekky, R.H.; del Mar Contreras, M.; El-Gindi, M.R.; Abdel-Monem, A.R.; Abdel-Sattar, E.; Segura-Carretero, A. Profiling of phenolic and other compounds from Egyptian cultivars of chickpea (Cicer arietinum L.) and antioxidant activity: A comparative study. RSC Adv. 2015, 5, 17751–17767. [Google Scholar] [CrossRef]
- Mahrous, F.S.M.; Mohammed, H.; Sabour, R. LC-ESI-QTOF-MS/MS of Holoptelea integrifolia (Roxb.) Planch. leaves and In silico study of phenolic compounds’ antiviral activity against the HSV1 virus. Azhar Int. J. Pharm. Med. Sci. 2021, 1, 91–101. [Google Scholar] [CrossRef]
- Attallah, N.G.; Negm, W.A.; Elekhnawy, E.; Elmongy, E.I.; Altwaijry, N.; El-Haroun, H.; El-Masry, T.A.; El-Sherbeni, S.A. Elucidation of phytochemical content of Cupressus macrocarpa leaves: In Vitro and in vivo antibacterial effect against methicillin-resistant Staphylococcus aureus clinical isolates. Antibiotics 2021, 10, 890. [Google Scholar] [CrossRef]
- Simirgiotis, M.J.; Schmeda-Hirschmann, G. Direct identification of phenolic constituents in Boldo Folium (Peumus boldus Mol.) infusions by high-performance liquid chromatography with diode array detection and electrospray ionization tandem mass spectrometry. J. Chromatogr. A 2010, 1217, 443–449. [Google Scholar] [CrossRef]
- Huang, G.; Liang, J.; Chen, X.; Lin, J.; Wei, J.; Huang, D.; Zhou, Y.; Sun, Z.; Zhao, L. Isolation and identification of chemical constituents from zhideke granules by ultra-performance liquid chromatography coupled with mass spectrometry. J. Anal. Methods Chem. 2020, 2020, 8889607. [Google Scholar] [CrossRef]
- Li, W.; Sun, Y.; Liang, W.; Fitzloff, J.F.; van Breemen, R.B. Identification of caffeic acid derivatives in Actea racemosa (Cimicifuga racemosa, black cohosh) by liquid chromatography/tandem mass spectrometry. Rapid Commun. Mass Spectrom. 2003, 17, 978–982. [Google Scholar] [CrossRef]
- Ferreira, P.S.; Victorelli, F.D.; Fonseca-Santos, B.; Chorilli, M. A review of analytical methods for p-coumaric acid in plant-based products, beverages, and biological matrices. Crit. Rev. Anal. Chem. 2019, 49, 21–31. [Google Scholar] [CrossRef]
- Andini, S.; Dekker, P.; Gruppen, H.; Araya-Cloutier, C.; Vincken, J.-P. Modulation of glucosinolate composition in Brassicaceae seeds by germination and fungal elicitation. J. Agric. Food Chem. 2019, 67, 12770–12779. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, M.; Ou, Y.; Zeng, B.; Lou, X.; Wang, M.; Zhao, C. Metabolic profile of esculin in rats by ultra high performance liquid chromatography combined with Fourier transform ion cyclotron resonance mass spectrometry. J. Chromatogr. B 2016, 1020, 120–128. [Google Scholar] [CrossRef]
- Jaiswal, R.; Müller, H.; Müller, A.; Karar, M.G.E.; Kuhnert, N. Identification and characterization of chlorogenic acids, chlorogenic acid glycosides and flavonoids from Lonicera henryi L. (Caprifoliaceae) leaves by LC–MSn. Phytochemistry 2014, 108, 252–263. [Google Scholar] [CrossRef]
- Razgonova, M.; Zakharenko, A.; Pikula, K.; Manakov, Y.; Ercisli, S.; Derbush, I.; Kislin, E.; Seryodkin, I.; Sabitov, A.; Kalenik, T. LC-MS/MS Screening of Phenolic Compounds in Wild and Cultivated Grapes Vitis amurensis Rupr. Molecules 2021, 26, 3650. [Google Scholar] [CrossRef]
- El-Newary, S.A.; Abd Elkarim, A.S.; Abdelwahed, N.A.; Omer, E.A.; Elgamal, A.M.; ELsayed, W.M. Chenopodium murale Juice Shows Anti-Fungal Efficacy in Experimental Oral Candidiasis in Immunosuppressed Rats in Relation to Its Chemical Profile. Molecules 2023, 28, 4304. [Google Scholar] [CrossRef]
- Feketeová, L.; Barlow, C.K.; Benton, T.M.; Rochfort, S.J.; Richard, A. The formation and fragmentation of flavonoid radical anions. Int. J. Mass Spectrom. 2011, 301, 174–183. [Google Scholar] [CrossRef]
- Schütz, K.; Persike, M.; Carle, R.; Schieber, A. Characterization and quantification of anthocyanins in selected artichoke (Cynara scolymus L.) cultivars by HPLC–DAD–ESI–MSn. Anal. Bioanal. Chem. 2006, 384, 1511–1517. [Google Scholar] [CrossRef]
- Sánchez-Ilárduya, M.; Sánchez-Fernández, C.; Viloria-Bernal, M.; López-Márquez, D.; Berrueta, L.; Gallo, B.; Vicente, F. Mass spectrometry fragmentation pattern of coloured flavanol-anthocyanin and anthocyanin-flavanol derivatives in aged red wines of Rioja. Aust. J. Grape Wine Res. 2012, 18, 203–214. [Google Scholar] [CrossRef]
- Abdl Aziz, F.T.; Temraz, A.S.; Hassan, M.A. Metabolites profiling by LC-ESI-MS/MS technique and in-vitro antioxidant activity of Bauhinia madagascariensis Desv. and Bauhinia purpurea L. aerial parts cultivated in Egypt: A comparative study. Azhar Int. J. Pharm. Med. Sci. 2024, 4, 169–188. [Google Scholar] [CrossRef]
- Siger, A.; Czubinski, J.; Dwiecki, K.; Kachlicki, P.; Nogala-Kalucka, M. Identification and antioxidant activity of sinapic acid derivatives in Brassica napus L. seed meal extracts. Eur. J. Lipid Sci. Technol. 2013, 115, 1130–1138. [Google Scholar] [CrossRef]
- Asen, S.; Plimmer, J.R. 4,6,4′-Trihydroxyaurone and other flavonoids from Limonium. Phytochemistry 1972, 11, 2601–2603. [Google Scholar] [CrossRef]
- Mizuno, T.; Uchiyama, N.; Tanaka, S.; Nakane, T.; Devkota, H.P.; Fujikawa, K.; Kawahara, N.; Iwashina, T. Flavonoids from Sedum japonicum subsp. oryzifolium (Crassulaceae). Molecules 2022, 27, 7632. [Google Scholar] [CrossRef]
- Hu, Q.; Sun, Y.; Mu, X.; Wang, Y.; Tang, H. Reliable quantification of citrate isomers and isobars with direct-infusion tandem mass spectrometry. Talanta 2023, 259, 124477. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, P.; Brantner, A.; Wang, H.; Shu, X.; Yang, J.; Si, N.; Han, L.; Zhao, H.; Bian, B. Chemical profiling analysis of Maca using UHPLC-ESI-Orbitrap MS coupled with UHPLC-ESI-QqQ MS and the neuroprotective study on its active ingredients. Sci. Rep. 2017, 7, 44660. [Google Scholar] [CrossRef]
- Ablajan, K.; Tuoheti, A. Fragmentation characteristics and isomeric differentiation of flavonol O-rhamnosides using negative ion electrospray ionization tandem mass spectrometry. Rapid Commun. Mass Spectrom. 2013, 27, 451–460. [Google Scholar] [CrossRef]
- Rini Vijayan, K.P.; Raghu, A. Tentative characterization of phenolic compounds in three species of the genus Embelia by liquid chromatography coupled with mass spectrometry analysis. Spectrosc. Lett. 2019, 52, 653–670. [Google Scholar] [CrossRef]
- Brito, A.; Areche, C.; Sepúlveda, B.; Kennelly, E.J.; Simirgiotis, M.J. Anthocyanin characterization, total phenolic quantification and antioxidant features of some Chilean edible berry extracts. Molecules 2014, 19, 10936–10955. [Google Scholar] [CrossRef]
- Abd-El-Aziz, N.M.; Hifnawy, M.S.; Lotfy, R.A.; Younis, I.Y. LC/MS/MS and GC/MS/MS metabolic profiling of Leontodon hispidulus, in vitro and in silico anticancer activity evaluation targeting hexokinase 2 enzyme. Sci. Rep. 2024, 14, 6872. [Google Scholar] [CrossRef]
- Kaur, J.; Dhiman, V.; Bhadada, S.; Katare, O.; Ghoshal, G. LC/MS guided identification of metabolites of different extracts of Cissus quadrangularis. Food Chem. Adv. 2022, 1, 100084. [Google Scholar] [CrossRef]
- Brito, A.; Ramirez, J.E.; Areche, C.; Sepúlveda, B.; Simirgiotis, M.J. HPLC-UV-MS profiles of phenolic compounds and antioxidant activity of fruits from three citrus species consumed in Northern Chile. Molecules 2014, 19, 17400–17421. [Google Scholar] [CrossRef]
- Choi, S.S.; Lee, S.H.; Lee, K.A. A Comparative Study of Hesperetin, Hesperidin and Hesperidin Glucoside: Antioxidant, Anti-Inflammatory, and Antibacterial Activities In Vitro. Antioxidants 2022, 11, 1618. [Google Scholar] [CrossRef]
- Wu, W.; Liu, Z.; Song, F.; Liu, S. Structural analysis of selected characteristic flavones by electrospray tandem mass spectrometry. Anal. Sci. 2004, 20, 1103–1105. [Google Scholar] [CrossRef]
- Fabre, N.; Rustan, I.; de Hoffmann, E.; Quetin-Leclercq, J. Determination of flavone, flavonol, and flavanone aglycones by negative ion liquid chromatography electrospray ion trap mass spectrometry. J. Am. Soc. Mass Spectrom. 2001, 12, 707–715. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, Z.; Huang, Y.; Wen, X.; Wu, Y.; Zhao, Y.; Ni, Y. Extraction, purification, and hydrolysis behavior of apigenin-7-O-Glucoside from Chrysanthemum Morifolium tea. Molecules 2018, 23, 2933. [Google Scholar] [CrossRef] [PubMed]
- Prasain, J.K.; Jones, K.; Kirk, M.; Wilson, L.; Smith-Johnson, M.; Weaver, C.; Barnes, S. Profiling and quantification of isoflavonoids in kudzu dietary supplements by high-performance liquid chromatography and electrospray ionization tandem mass spectrometry. J. Agric. Food Chem. 2003, 51, 4213–4218. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, A.A.; dos Santos, L.R.; de Freitas, J.S.; de Sousa, R.P.; de Farias, R.R.S.; Vieira Júnior, G.M.; Rai, M.; Chaves, M.H. First report of flavonoids from leaves of Machaerium acutifolium by DI-ESI-MS/MS. Arab. J. Chem. 2022, 15, 103765. [Google Scholar] [CrossRef]
- Sayed, D.; Afifi, A.; Temraz, A.; Ahmed, A. Metabolic Profiling of Mimusops elengi Linn. Leaves extract and in silico anti-inflammatory assessment targeting NLRP3 inflammasome. Arab. J. Chem. 2023, 16, 104753. [Google Scholar] [CrossRef]
- Tsugawa, H.; Cajka, T.; Kind, T.; Ma, Y.; Higgins, B.; Ikeda, K.; Kanazawa, M.; VanderGheynst, J.; Fiehn, O.; Arita, M. MS-DIAL: Data-independent MS/MS deconvolution for comprehensive metabolome analysis. Nat. Methods 2015, 12, 523–526. [Google Scholar] [CrossRef]
- Shibabaw, A.; Abebe, T.; Mihret, A. Antimicrobial susceptibility pattern of nasal Staphylococcus aureus among Dessie Referral Hospital health care workers, Dessie, Northeast Ethiopia. Int. J. Infect. Dis. 2014, 25, 22–25. [Google Scholar] [CrossRef] [PubMed]
- Alotaibi, B.; El-Masry, T.A.; Elekhnawy, E.; El-Kadem, A.H.; Saleh, A.; Negm, W.A.; Abdelkader, D.H. Aqueous core epigallocatechin gallate PLGA nanocapsules: Characterization, antibacterial activity against uropathogens, and in vivo reno-protective effect in cisplatin induced nephrotoxicity. Drug Deliv. 2022, 29, 1848–1862. [Google Scholar] [CrossRef]
- Abbas, H.A.; Atallah, H.; El-Sayed, M.A.; El-Ganiny, A.M. Diclofenac mitigates virulence of multidrug-resistant Staphylococcus aureus. Arch. Microbiol. 2020, 202, 2751–2760. [Google Scholar] [CrossRef]
- Binsuwaidan, R.; Sultan, A.A.; Negm, W.A.; Attallah, N.G.; Alqahtani, M.J.; Hussein, I.A.; Shaldam, M.A.; El-Sherbeni, S.A.; Elekhnawy, E. Bilosomes as nanoplatform for oral delivery and modulated in vivo antimicrobial activity of lycopene. Pharmaceuticals 2022, 15, 1043. [Google Scholar] [CrossRef]
- Stepanović, S.; Vuković, D.; Hola, V.; Bonaventura, G.D.; Djukić, S.; Ćirković, I.; Ruzicka, F. Quantification of biofilm in microtiter plates: Overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci. APMIS 2007, 115, 891–899. [Google Scholar] [CrossRef]
- Khayat, M.T.; Abbas, H.A.; Ibrahim, T.S.; Khayyat, A.N.; Alharbi, M.; Darwish, K.M.; Elhady, S.S.; Khafagy, E.-S.; Safo, M.K.; Hegazy, W.A. Anti-Quorum Sensing Activities of Gliptins against Pseudomonas aeruginosa and Staphylococcus aureus. Biomedicines 2022, 10, 1169. [Google Scholar] [CrossRef]
- Schmittgen, T.D. Real-Time Quantitative PCR; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY, USA, 2001. [Google Scholar]
- Nejabatdoust, A.; Zamani, H.; Salehzadeh, A. Functionalization of ZnO nanoparticles by glutamic acid and conjugation with thiosemicarbazide alters expression of efflux pump genes in multiple drug-resistant Staphylococcus aureus strains. Microb. Drug Resist. 2019, 25, 966–974. [Google Scholar] [CrossRef] [PubMed]
- Mastoor, S.; Nazim, F.; Rizwan-ul-Hasan, S.; Ahmed, K.; Khan, S.; Ali, S.N.; Abidi, S.H. Analysis of the antimicrobial and anti-biofilm activity of natural compounds and their analogues against Staphylococcus aureus isolates. Molecules 2022, 27, 6874. [Google Scholar] [CrossRef]
- Zhang, S.; Qu, X.; Tang, H.; Wang, Y.; Yang, H.; Yuan, W.; Yue, B. Diclofenac Resensitizes Methicillin-Resistant Staphylococcus aureus to β-Lactams and Prevents Implant Infections. Adv. Sci. 2021, 8, 2100681. [Google Scholar] [CrossRef] [PubMed]
- Stackhouse, R.R.; Faith, N.G.; Kaspar, C.W.; Czuprynski, C.J.; Wong, A.C.L. Survival and virulence of Salmonella enterica serovar enteritidis filaments induced by reduced water activity. Appl. Environ. Microbiol. 2012, 78, 2213–2220. [Google Scholar] [CrossRef]
- Al-Kuraishy, H.M.; Al-Gareeb, A.I.; Albogami, S.M.; Jean-Marc, S.; Nadwa, E.H.; Hafiz, A.A.; A. Negm, W.; Kamal, M.; Al-Jouboury, M.; Elekhnawy, E.; et al. Potential Therapeutic Benefits of Metformin Alone and in Combination with Sitagliptin in the Management of Type 2 Diabetes Patients with COVID-19. Pharmaceuticals 2022, 15, 1361. [Google Scholar] [CrossRef]
- Bancroft, J.D.; Gamble, M. Theory and Practice of Histological Techniques; Elsevier Health Sciences: Philadelphia, PA, USA, 2008. [Google Scholar]
- Miotto, A.; Lins, T.A.; Montero, E.; Oshima, C.; Alonso, L.G.; Perfeito, J.A. Immunohistochemical analysis of the COX-2 marker in acute pulmonary injury in rats. Ital. J. Anat. Embryol. Arch. Ital. Anat. Embriol. 2009, 114, 193–199. [Google Scholar]
- Anand, U.; Jacobo-Herrera, N.; Altemimi, A.; Lakhssassi, N. A comprehensive review on medicinal plants as antimicrobial therapeutics: Potential avenues of biocompatible drug discovery. Metabolites 2019, 9, 258. [Google Scholar] [CrossRef]
- Miethke, M.; Pieroni, M.; Weber, T.; Brönstrup, M.; Hammann, P.; Halby, L.; Arimondo, P.B.; Glaser, P.; Aigle, B.; Bode, H.B. Towards the sustainable discovery and development of new antibiotics. Nat. Rev. Chem. 2021, 5, 726–749. [Google Scholar] [CrossRef]
- Min, C.; Wang, H.; Xia, F.; Tang, M.; Li, J.; Hu, Y.; Dou, Q.; Zou, M. Characteristics of Staphylococcus aureus small colony variants isolated from wound specimen of a tertiary care hospital in China. J. Clin. Lab. Anal. 2022, 36, e24121. [Google Scholar] [CrossRef]
- Sapkota, J.; Sharma, M.; Jha, B.; Bhatt, C.P. Prevalence of Staphylococcus aureus isolated from clinical samples in a tertiary care hospital: A descriptive cross-sectional study. JNMA J. Nepal. Med. Assoc. 2019, 57, 398. [Google Scholar] [CrossRef]
- Idrees, M.M.; Saeed, K.; Shahid, M.A.; Akhtar, M.; Qammar, K.; Hassan, J.; Khaliq, T.; Saeed, A. Prevalence of mecA- and mecC-associated methicillin-resistant Staphylococcus aureus in clinical specimens, Punjab, Pakistan. Biomedicines 2023, 11, 878. [Google Scholar] [CrossRef]
- Chew, C.H.; Yeo, C.C.; Che Hamzah, A.M.; Al-Trad, E.a.I.; Jones, S.U.; Chua, K.H.; Puah, S.M. Multidrug-Resistant Methicillin-Resistant Staphylococcus aureus Associated with Hospitalized Newborn Infants. Diagnostics 2023, 13, 1050. [Google Scholar] [CrossRef]
- Steinig, E.J.; Duchene, S.; Robinson, D.A.; Monecke, S.; Yokoyama, M.; Laabei, M.; Slickers, P.; Andersson, P.; Williamson, D.; Kearns, A. Evolution and global transmission of a multidrug-resistant, community-associated methicillin-resistant Staphylococcus aureus lineage from the Indian subcontinent. mBio 2019, 10, 1–20. [Google Scholar] [CrossRef]
- Raut, S.; Bajracharya, K.; Adhikari, J.; Pant, S.S.; Adhikari, B. Prevalence of methicillin resistant Staphylococcus aureus in Lumbini medical college and teaching hospital, Palpa, Western Nepal. BMC Res. Notes 2017, 10, 187. [Google Scholar] [CrossRef]
- Muhaidat, R.; Al-Qudah, M.A.; Samir, O.; Jacob, J.H.; Hussein, E.; Al-Tarawneh, I.N.; Bsoul, E.; Orabi, S.T.A. Phytochemical investigation and in vitro antibacterial activity of essential oils from Cleome droserifolia (Forssk.) Delile and C. trinervia Fresen. (Cleomaceae). S. Afr. J. Bot. 2015, 99, 21–28. [Google Scholar] [CrossRef]
- Tatsimo, S.J.N.; Tamokou, J.d.D.; Havyarimana, L.; Csupor, D.; Forgo, P.; Hohmann, J.; Kuiate, J.-R.; Tane, P. Antimicrobial and antioxidant activity of kaempferol rhamnoside derivatives from Bryophyllum pinnatum. BMC Res. Notes 2012, 5, 158. [Google Scholar] [CrossRef]
- Rho, H.S.; Ghimeray, A.K.; Yoo, D.S.; Ahn, S.M.; Kwon, S.S.; Lee, K.H.; Cho, D.H.; Cho, J.Y. Kaempferol and kaempferol rhamnosides with depigmenting and anti-inflammatory properties. Molecules 2011, 16, 3338–3344. [Google Scholar] [CrossRef]
- Kalai, F.Z.; Boulaaba, M.; Ferdousi, F.; Isoda, H. Effects of isorhamnetin on diabetes and its associated complications: A review of in vitro and in vivo studies and a post hoc transcriptome analysis of involved molecular pathways. Int. J. Mol. Sci. 2022, 23, 704. [Google Scholar] [CrossRef] [PubMed]
- Faleye, O.S.; Lee, J.-H.; Lee, J. Selected flavonoids exhibit antibiofilm and antibacterial effects against Vibrio by disrupting membrane integrity, virulence and metabolic activities. Biofilm 2023, 6, 100165. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Chen, J.; Wang, Y.; Zheng, F.; Qu, M.; Huang, Z.; Yan, J.; Bao, F.; Li, X.; Sun, C. Cyanidin-3-O-glucoside extracted from the Chinese bayberry (Myrica rubra Sieb. et Zucc.) alleviates antibiotic-associated diarrhea by regulating gut microbiota and down-regulating inflammatory factors in NF-κB pathway. Front. Nutr. 2022, 9, 970530. [Google Scholar] [CrossRef]
- Frountzas, M.; Karanikki, E.; Toutouza, O.; Sotirakis, D.; Schizas, D.; Theofilis, P.; Tousoulis, D.; Toutouzas, K.G. Exploring the Impact of Cyanidin-3-Glucoside on Inflammatory Bowel Diseases: Investigating New Mechanisms for Emerging Interventions. Int. J. Mol. Sci. 2023, 24, 9399. [Google Scholar] [CrossRef]
- Kalia, V.C.; Patel, S.K.; Lee, J.-K. Bacterial biofilm inhibitors: An overview. Ecotoxicol. Environ. Saf. 2023, 264, 115389. [Google Scholar] [CrossRef]
- Sharma, D.; Misba, L.; Khan, A.U. Antibiotics versus biofilm: An emerging battleground in microbial communities. Antimicrob. Resist. Infect. Control 2019, 8, 76. [Google Scholar] [CrossRef]
- Sedarat, Z.; Taylor-Robinson, A.W. Biofilm formation by pathogenic bacteria: Applying a Staphylococcus aureus model to appraise potential targets for therapeutic intervention. Pathogens 2022, 11, 388. [Google Scholar] [CrossRef]
- Haddad, O.; Merghni, A.; Elargoubi, A.; Rhim, H.; Kadri, Y.; Mastouri, M. Comparative study of virulence factors among methicillin resistant Staphylococcus aureus clinical isolates. BMC Infect. Dis. 2018, 18, 560. [Google Scholar] [CrossRef]
- Vlachou, M.; Karalis, V. An in vitro–in vivo simulation approach for the prediction of bioequivalence. Materials 2021, 14, 555. [Google Scholar] [CrossRef]
- Hou, K.; Wu, Z.-X.; Chen, X.-Y.; Wang, J.-Q.; Zhang, D.; Xiao, C.; Zhu, D.; Koya, J.B.; Wei, L.; Li, J. Microbiota in health and diseases. Signal Transduct. Target. Ther. 2022, 7, 135. [Google Scholar] [CrossRef]
- Jang, D.-i.; Lee, A.-H.; Shin, H.-Y.; Song, H.-R.; Park, J.-H.; Kang, T.-B.; Lee, S.-R.; Yang, S.-H. The role of tumor necrosis factor alpha (TNF-α) in autoimmune disease and current TNF-α inhibitors in therapeutics. Int. J. Mol. Sci. 2021, 22, 2719. [Google Scholar] [CrossRef] [PubMed]
- Alomair, B.M.; Al-Kuraishy, H.M.; Al-Buhadily, A.K.; Al-Gareeb, A.I.; De Waard, M.; Elekhnawy, E.; Batiha, G.E.-S. Is sitagliptin effective for SARS-CoV-2 infection: False or true prophecy? Inflammopharmacology 2022, 30, 2411–2415. [Google Scholar] [CrossRef] [PubMed]
- Kaneko, N.; Kurata, M.; Yamamoto, T.; Morikawa, S.; Masumoto, J. The role of interleukin-1 in general pathology. Inflamm. Regen. 2019, 39, 12. [Google Scholar] [CrossRef] [PubMed]
- Batiha, G.E.-S.; Al-Gareeb, A.I.; Elekhnawy, E.; Al-Kuraishy, H.M. Potential role of lipoxin in the management of COVID-19: A narrative review. Inflammopharmacology 2022, 30, 1993–2001. [Google Scholar] [CrossRef] [PubMed]
- Hirano, T. IL-6 in inflammation, autoimmunity and cancer. Int. Immunol. 2021, 33, 127–148. [Google Scholar] [CrossRef] [PubMed]
- Nadwa, E.H.; Al-Kuraishy, H.M.; Al-Gareeb, A.I.; Elekhnawy, E.; Albogami, S.M.; Alorabi, M.; Batiha, G.E.-S.; De Waard, M. Cholinergic dysfunction in COVID-19: Frantic search and hoping for the best. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2023, 396, 453–468. [Google Scholar] [CrossRef]
- Al-Kuraishy, H.M.; Al-Gareeb, A.I.; Elekhnawy, E.; Batiha, G.E.-S. Dipyridamole and adenosinergic pathway in COVID-19: A juice or holy grail. Egypt. J. Med. Hum. Genet. 2022, 23, 140. [Google Scholar] [CrossRef]
RT (min) | Compound Name | Precursor m/z | Error ppm | Formula | MS/MS | Ontology | Reference | |
---|---|---|---|---|---|---|---|---|
1 | 0.821 | Succinic acid | 117.0192 [M − H]− | −0.2 | C4H6O4 | 73.21, 100.00, 117.07 | Dicarboxylic acids and derivatives | [30] |
2 | 0.821 | 3-Hydroxy-3-Methylglutaric acid (Meglutol) | 161.0471 [M − H]− | −7.8 | C6H10O5 | 56.85, 113.05, 131.03, 143.04, 161.02 | Hydroxy fatty acids | [31] |
3 | 0.860 | cis-Aconitate | 173.0816 [M − H]− | 0.4 | C6H6O6 | 111.43, 129.12, 173.02 | Tricarboxylic acids derivatives | [32] |
4 | 0.912 | D-(-)-Quinic acid | 191.0553 [M − H]− | 3.2 | C7H12O6 | 111.02, 155.02, 164.02, 173.02, 191.77 | Quinic acids and derivatives | [33] |
5 | 0.939 | Catechol | 109.0291 [M − H]− | 0.8 | C6H6O2 | 53.03, 65.00, 81.03, 91.02, 109.02 | Catechols | [34] |
6 | 0.940 | 3,4-dihydroxy benzoic acid | 153.0191 [M − H]− | 0.1 | C7H6O4 | 53.03, 79.95, 108.12, 153.01 | Hydroxybenzoic acid derivatives | [35] |
7 | 9.581 | 3, 5, 7-trihydroxy-4′-methoxyflavone (kaempferide) | 299.0563 [M − H]− | 0.2 | C16H12O6 | 64.02, 107.00, 151.09, 164.12, 253.63, 284.53, 299.01 | Flavonols | [36] |
8 | 1.006 | Maleic acid | 115.0388 [M − H]− | 7.4 | C4H4O4 | 69.03, 71.04, 115.04 | Dicarboxylic acids and derivatives | [37] |
9 | 1.256 | Isorhamnetin | 315.0754 [M − H]− | −8.9 | C16H12O7 | 56.01, 135.02, 109.03, 151.04, 163.04,255.42, 271.12, 300.23, 315.16 | Flavonol | [38] |
10 | 1.138 | Mannitol | 181.0728 [M − H]− | −4.4 | C6H14O6 | 59.02, 71.32, 89. 14, 101.05, 163.05, 181.99 | Sugar alcohols | [39] |
11 | 1.152 | Caffeic acid | 179.0567 [M − H]− | −2.2 | C9H8O4 | 77.70, 89.03,117.10, 134.09, 161.05, 179.06 | Hydroxycinnamic acids | [40] |
12 | 3.321 | p-Coumaric acid | 163.0401 [M − H]− | −0.7 | C9H8O3 | 65.97, 91.03, 107.03, 119.04, 163.04 | Hydroxycinnamic acids | [41] |
13 | 3.346 | (R)-2-hydroxy-3-butenyl glucosinolate | 388.0759 [M − H]− | −3.4 | C11H19NO10S2 | 195.02, 241.14, 259.00, 290.97, 388.03 | Alkyl glucosinolates | [42] |
14 | 4.432 | Esculin | 339.0709 [M − H]− | 0.4 | C15H16O9 | 69.01, 121.09, 178.84, 320.10, 339.34 | Coumarin glycosidesNIST | [43] |
15 | 5.318 | Chlorogenic acid | 353.0841 [M − H]− | 7.2 | C16H18O9 | 135.02, 161.02, 179.11, 191.06, 353.20 | Quinic acids and derivatives | [44] |
16 | 5.460 | Isoquercitrin | 463.0854 257; 229; 201; 150; 155 | 4.6 | C21H20O12 | 65.00, 150.99, 229.95, 257.04, 463.04 | Flavonoid-3-O-glycosides | [45] |
17 | 5.5115 | Luteolin | 285.1688 [M − H]− | 4.4 | C15H10O6 | 216.98, 199.04, 175.04, 151.01, 285.03 | Flavones | [46] |
18 | 5.798 | Kaempferol-3-O-(6-p-coumaroyl)-glucoside | 593.1558 [M − H]− | −6.5 | C30H26O13 | 56.04, 447.11, 430.91, 307.21, 285.18 | Flavonoid 3-O-p-coumaroyl glycosides | [46] |
19 | 5.987 | Syringetin-3-O-glucoside | 507.1159 [M − H]− | −2.2 | C23H24O13 | 112.98, 302.89, 329.94, 345.08, 507.01 | Flavonoid-3-O-glycosides | [47] |
20 | 6.101 | Delphinidin-3-O-β-glucopyranoside (Myrtillin A) | 463.0253 [M − 2H]− | −1.7 | C21H21O12 | 125.02, 271.018, 300.05, 301.02, 463.03 | Anthocyanidin-3-O-glycosides | [48] |
21 | 6.254 | Cyanidin-3-glucoside | 447.0908 [M − H]− | 4.4 | C21H21O11 | 147.05, 227.00, 256.20, 285.42, 447.07 | Anthocyanidin-3-O-glycosides | [48,49] |
22 | 6.329 | Luteolin-3′, 7-di-O-glucoside | 609.1434 [M − H]− | 3.2 | C27H30O16 | 112.97, 253.00, 285.14, 399.05, 447.144, 489.02, 609.13 | Flavonoid-7-O-glycosides | [50] |
23 | 6.374 | 3-(4-hydroxy-3,5- dimethoxyphenol)-2-propenoic acid sinapic acid or sinapinic acid | 223.0618 [M − H]− | −2 | C11H12O5 | 59.01, 175.03, 207.04, 223.13 | Hydroxycinnamic acids | [51] |
24 | 6.601 | Quercitrin | 447.1836 [M − H]− | 3.9 | C21H20O11 | 152.11, 300.18, 301.12, 447.12 | Flavonoid-3-O-glycosides | [52] |
25 | quercetin-3′-methoxy-3O-(4″-acetylrhamnoside)-7-O-rhamnoside | 665.165 [M − H]− | C30H50O16 | 315.16, 461.01, 519.32, 665.21 | Flavonoid-3-O-glycosides | [53] | ||
26 | 6.614 | Isocitrate | 191.0334 [M − H]− | 4.3 | C6H8O7 | 76.03, 107.01, 149.02, 191.02 | Tricarboxylic acids and derivatives | [54] |
27 | 6.764 | Benzyl glucosinolate | 407.0401 [M − H]− | −0.7 | C14H18NO9S2 | 212.03, 240.99, 259.00, 274.01, 328.07, 407.04 | Hydroxy cinnamic acids | [42,55] |
28 | 6.891 | Kaempferol-3-O-α-L-rhamnoside | 431.099 [M − H]− | −0.7 | C21H20O10 | 89.05, 285.13, 313.12, 395.03, 430.96, 431.45 | Flavonoid-3-O-glycosides | [56] |
29 | 7.013 | Isorhamnetin-3-O-rutinoside | 623.163 [M − H]− | −1.1 | C28H32O16 | 151.00, 165.01, 315.23, 623.72 | Flavonoid-3-O-glycosides | [57] |
30 | 7.025 | Peonidin-3,5-O-di- β-glucopyranoside | 623.0959 [M − 2H]− | −3 | C28H33O16 | 59.01, 301.01, 463.11, 623.16 | Anthocyanidin-5-O-glycosides | [58] |
31 | 7.062 | Delphinidin-3-O-(6″-O-alpha-rhamnopyranosyl-beta-glucopyranoside) | 609.2933 [M − 2H]− | −7.1 | C27H31O16 | 125.01, 300.03, 301.01, 447.16, 462.91, 609.13 | Anthocyanidin-3-O-glycosides | [46,48] |
32 | 7.515 | Kaempferol-3,7-O-bis-α-L-rhamnoside | 577.1559 [M − H]− | 0.7 | C27H30O14 | 285.0405, 431.0969, 577.43 | Flavonoid-7-O-glycosides | [46] |
33 | 7.552 | Kaempferol-3-O-α-L-arabinoside | 417.0826 [M − H]− | −1.9 | C20H18O10 | 258.43, 285.32, 313.02, 417.33 | Flavonoid-3-O-glycosides | [59] |
34 | kaempferol-4′-methoxy-3,7- dirhamnoside | 591.24 [M − H]− | C28H32O14 | 285.02, 299.21, 445.02, 591.11 | Flavonoid-3-O-glycosides | [60] | ||
35 | isorhamnetin-3-O-β-d-glucoside | 477.23 [M − H]− | 269.98, 300.52, 315.03, 477.03 | Flavonoid-3-O-glycosides | [59,61] | |||
36 | 7.564 | Hesperetin | 301.1482 174.92, 255.22, 301.06 [M − 2H]− | −2.9 | C16H14O6 | 153.10, 177.61, 273.13, 273.06, 301.00 | 4′-O-methylated flavonoids | [62] |
37 | 7.626 | Apigenin | 269.1399 [M − H]− | 0.3 | C15H10O5 | 149.01, 151.09, 183.12, 225.05, 241.00, 269.06 | Flavones | [63] |
38 | 7.851 | Naringenin | 271.0617 [M − H]− | 0.7 | C15H12O5 | 63.02, 151.00, 177. 227.08, 227.06, 271.06 | Flavanones | [64] |
39 | 8.009 | apigenin-7-O-glucoside | 431.0987 [M − H]− | −0.6 | C21H20O10 | 268.14, 269.09, 310.88, 431.02 | Flavonoid-7-O-glycosides | [65] |
40 | 8.136 | Peonidine-3-O-glucoside | 461.1121 [M − 2H]− | −4.2 | C22H23O11 | 71.01, 79.05, 89.02, 301.98, 461.30 | Anthocyanidin-3-O-glycosides | [48,58] |
41 | 8.274 | Daidzein-8-C-glucoside | 415.1986 [M − H]− | −1.2 | C21H20O9 | 249.14, 267.03, 295.16, 325.20, 379.23, 415.87 | Isoflavonoid C-glycosides | [66,67] |
42 | 8.999 | Syringaldehyde | 181.051 [M − H]− | 0.8 | C9H10O4 | 99.97, 136.00, 151.02, 166.04 181.09 | Methoxy phenols | [36] |
43 | 10.301 | Maritimetin-6-O-glucoside | 447.2719 [M − H]− | 1.8 | C21H20O11 | 57.03, 132.71, 151.03, 285.05, 447.32 | Aurone O-glycosides | [46] |
44 | 13.88 | Acacetin | 283.0594 [M − H]− | 5.1 | C16H12O5 | 151.08, 252.13, 240.04, 268.03, 283.26 | 4′-O-methylated flavonoids | [63,68] |
Biofilm Forming Ability * | Number of Isolates | |
---|---|---|
Before Treatment | After Treatment | |
Non-biofilm forming (NBF) | 1 | 5 |
Weak biofilm forming (WBF) | 5 | 11 |
Moderate biofilm forming (MBF) | 8 | 3 |
Strong biofilm forming (SBF) | 9 | 4 |
Inflammatory Levels (pg/mg Protein) | ||||
---|---|---|---|---|
Groups | Liver | Spleen | ||
IL-1β | IL-6 | IL-1β | IL-6 | |
Group I | 12.3 ± 2.3 | 19.8 ± 3.2 | 13.3 ± 0.8 | 24.3 ± 2.5 |
Group II | 80.5 ± 3.5 * | 219.2 ± 14.5 * | 89.3 ± 7.4 * | 240.6 ± 18.4 * |
Group III | 19.4 ± 1.4 | 28.9 ± 4.2 | 20.2 ± 2.3 | 34.6 ± 4.7 |
Group IV | 22.7 ± 1.1 | 29.3 ± 5.3 | 24.3 ± 1.4 | 36.9 ± 5.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alqahtani, J.; Negm, W.A.; Elekhnawy, E.; Hussein, I.A.; Hassan, H.S.; Alanzi, A.R.; Moglad, E.; Ahmed, R.; Ibrahim, S.; El-Sherbeni, S.A. Potential Surviving Effect of Cleome droserifolia Extract against Systemic Staphylococcus aureus Infection: Investigation of the Chemical Content of the Plant. Antibiotics 2024, 13, 450. https://doi.org/10.3390/antibiotics13050450
Alqahtani J, Negm WA, Elekhnawy E, Hussein IA, Hassan HS, Alanzi AR, Moglad E, Ahmed R, Ibrahim S, El-Sherbeni SA. Potential Surviving Effect of Cleome droserifolia Extract against Systemic Staphylococcus aureus Infection: Investigation of the Chemical Content of the Plant. Antibiotics. 2024; 13(5):450. https://doi.org/10.3390/antibiotics13050450
Chicago/Turabian StyleAlqahtani, Jawaher, Walaa A. Negm, Engy Elekhnawy, Ismail A. Hussein, Hassan Samy Hassan, Abdullah R. Alanzi, Ehssan Moglad, Rehab Ahmed, Sarah Ibrahim, and Suzy A. El-Sherbeni. 2024. "Potential Surviving Effect of Cleome droserifolia Extract against Systemic Staphylococcus aureus Infection: Investigation of the Chemical Content of the Plant" Antibiotics 13, no. 5: 450. https://doi.org/10.3390/antibiotics13050450
APA StyleAlqahtani, J., Negm, W. A., Elekhnawy, E., Hussein, I. A., Hassan, H. S., Alanzi, A. R., Moglad, E., Ahmed, R., Ibrahim, S., & El-Sherbeni, S. A. (2024). Potential Surviving Effect of Cleome droserifolia Extract against Systemic Staphylococcus aureus Infection: Investigation of the Chemical Content of the Plant. Antibiotics, 13(5), 450. https://doi.org/10.3390/antibiotics13050450