Eminent Antimicrobial Peptide Resistance in Zymomonas mobilis: A Novel Advantage of Intrinsically Uncoupled Energetics
Abstract
:1. Introduction
2. Results
2.1. Comparative Screening of Z. mobilis MIC Values for the Selected AMPs
2.2. Confocal Microscopy Examination of Intracellular Localization of the FITC-Labeled AMPs
2.3. The AMP Effect on Langmuir–Blodgett Compression Isotherms of Model Membranes
2.4. AMP Uptake by Cells
2.5. The Interference of AMPs with ATP Synthesis by Artificially Induced Transmembrane pH Gradient
3. Discussion
4. Materials and Methods
4.1. Strains and Cultivation
4.2. Design and Synthesis of Antimicrobial Peptides
4.3. Quantification of Antibacterial Activity
4.4. Confocal Microscopy
4.5. Langmuir–Blodgett Compression Isotherms
4.6. ATP Synthase Activity Induced by Artificial pH Gradient
4.7. Uptake of FITC-Labeled AMPs in Inactivated Cells
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sprenger, G. Carbohydrate metabolism in Zymomonas mobilis: A catabolic highway with some scenic routes. FEMS Microbiol. Lett. 1996, 145, 301–307. [Google Scholar] [CrossRef]
- Rogers, P.L.; Lee, K.J.; Skotnicki, M.L.; Tribe, D.E. Ethanol production by Zymomonas mobilis. In Microbial Reactions. Advances in Biochemical Engineering; Springer: Berlin/Heidelberg, Germany, 1982; Volume 23, pp. 37–84. [Google Scholar]
- Belaich, J.P.; Senez, J.C. Influence of aeration and pantothenate on growth yields of Zymomonas mobilis. J. Bacteriol. 1965, 89, 1195–1200. [Google Scholar] [CrossRef]
- Strohdeicher, M.; Neuß, B.; Bringer-Meyer, S.; Sahm, H. Electron transport chain of Zymomonas mobilis. Interaction with the membrane-bound glucose dehydrogenase and identification of ubiquinone 10. Arch. Microbiol. 1990, 154, 536–543. [Google Scholar] [CrossRef]
- Kalnenieks, U.; Galinina, N.; Bringer-Meyer, S.; Poole, R.K. Membrane d-lactate oxidase in Zymomonas mobilis: Evidence for a branched respiratory chain. FEMS Microbiol. Lett. 1998, 168, 91–97. [Google Scholar] [CrossRef]
- Rutkis, R.; Galinina, N.; Strazdina, I.; Kalnenieks, U. The inefficient aerobic energetics of Zymomonas mobilis: Identifying the bottleneck. J. Basic Microbiol. 2014, 54, 1090–1097. [Google Scholar] [CrossRef]
- Rutkis, R.; Strazdina, I.; Balodite, E.; Lasa, Z.; Galinina, N.; Kalnenieks, U. The low energy-coupling respiration in Zymomonas mobilis accelerates flux in the Entner–Doudoroff pathway. PLoS ONE 2016, 11, 4. [Google Scholar] [CrossRef]
- Pentjuss, A.; Odzina, I.; Kostromins, A.; Fell, D.A.; Stalidzans, E.; Kalnenieks, U. Biotechnological potential of respiring Zymomonas mobilis: A stoichiometric analysis of its central metabolism. J. Biotechnol. 2013, 165, 1–10. [Google Scholar] [CrossRef]
- Wang, X.; He, Q.; Yang, Y.; Wang, J.; Haning, K.; Hu, Y.; Wu, B.; He, M.; Zhang, Y.; Bao, J.; et al. Advances and prospects in metabolic engineering of Zymomonas mobilis. Metab. Eng. 2018, 50, 57–73. [Google Scholar] [CrossRef]
- Kalnenieks, U.; Pappas, K.M.; Bettenbrock, K. Zymomonas mobilis metabolism: Novel tools and targets for its rational engineering. Adv. Microb. Physiol. 2020, 77, 37–88. [Google Scholar] [CrossRef]
- Fuchino, K.; Bruheim, P. An assessment of serial co-cultivation approach for generating novel Zymomonas mobilis strains. BMC Res. Notes 2020, 13, 422. [Google Scholar] [CrossRef]
- Strazdina, I.; Klavins, L.; Galinina, N.; Shvirksts, K.; Grube, M.; Stalidzans, E.; Kalnenieks, U. Syntrophy of Crypthecodinium cohnii and immobilized Zymomonas mobilis for docosahexaenoic acid production from sucrose-containing substrates. J. Biotechnol. 2021, 338, 63–70. [Google Scholar] [CrossRef]
- Haffie, T.L.; Louie, P.W.; Khachatourians, G.G. Isolation of noninhibitory strains of Zymomonas mobilis. Appl. Environ. Microbiol. 1985, 49, 1007–1009. [Google Scholar] [CrossRef]
- Fu, N.; Peiris, P.; Markham, J.; Bavor, J. A novel co-culture process with Zymomonas mobilis and Pichia stipitis for efficient ethanol production on glucose/ xylose mixtures. Enzym. Microb. Technol. 2009, 45, 210–217. [Google Scholar] [CrossRef]
- Souza, C.; Souza, L.A.G. Colpites and vulvovaginitis treatment using Zymomonas mobilis var. recifensis. Rev. Inst. Antib. 1973, 13, 85–87. [Google Scholar]
- Swings, J.; De Ley, J. The biology of Zymomonas. Bacteriol. Rev. 1977, 41, 1–46. [Google Scholar] [CrossRef]
- Santos, J.F.M.; Vasconcelos, J.; Souza, J.R.; Coutinho, E.M.; Montenegro, S.M.L.; Azevedo-Ximenes, E. The effect of Zymomonas mobilis culture on experimental Shistosoma mansoni infection. Rev. Soc. Bras. Med. Trop. 2004, 37, 502–504. [Google Scholar] [CrossRef]
- Weir, P.M. The ecology of Zymomonas: A review. Folia Microbiol. 2016, 61, 385–392. [Google Scholar] [CrossRef]
- Rutkis, R.; Ļaša, Z.; Rubina, M.; Ščerbaka, R.; Kalniņš, G.; Bogans, J.; Kalnenieks, U. Antimicrobial Activity of Zymomonas mobilis Is Related to Its Aerobic Catabolism and Acid Resistance. Fermentation 2022, 8, 77. [Google Scholar] [CrossRef]
- Lima, G.M.S.; Souza, L.I.O.; Rosato, Y.B.; Araújo, J.M. Detection of bacteriocins in Zymomonas mobilis and RAPD fingerprinting of the producer strains. Afr. J. Pharm. Pharmacol. 2011, 5, 2132–2139. [Google Scholar] [CrossRef]
- Corrêa, J.A.F.; Evangelista, A.G.; Nazareth, T.M.; Luciano, F.B. Fundamentals on the molecular mechanism of action of antimicrobial peptides. Materialia 2019, 8, 100494. [Google Scholar] [CrossRef]
- Algar, E.M.; Scopes, R.K. Studies on cell-free metabolism: Ethanol production by extracts of Zymomonas mobilis. J. Biotechnol. 1985, 2, 275–287. [Google Scholar] [CrossRef]
- Osman, Y.A.; Conway, T.; Bonetti, S.J.; Ingram, L.O. Glycolytic flux in Zymomonas mobilis: Enzyme and metabolite levels during batch fermentation. J. Bacteriol. 1987, 169, 3726–3736. [Google Scholar] [CrossRef] [PubMed]
- Ramata-Stunda, A.; Boroduskis, M.; Kaktina, E.; Patetko, L.; Kalnenieks, U.; Lasa, Z.; Rubina, M.; Strazdina, I.; Kalnins, G.; Rutkis, R. Comparative Evaluation of Existing and Rationally Designed Novel Antimicrobial Peptides for Treatment of Skin and Soft Tissue Infections. Antibiotics 2023, 12, 551. [Google Scholar] [CrossRef]
- Savini, F.; Loffredo, M.R.; Troiano, C.; Bobone, S.; Malanovic, N.; Eichmann, T.O.; Caprio, L.; Canale, V.C.; Park, Y.; Mangoni, M.L.; et al. Binding of an antimicrobial peptide to bacterial cells: Interaction with different species, strains and cellular components. Biochim. Biophys. Acta Biomembr. 2020, 1862, 183291. [Google Scholar] [CrossRef]
- Sajed, T.; Marcu, A.; Ramirez, M.; Pon, A.; Guo, A.; Knox, C.; Wilson, M.; Grant, J.; Djoumbou, Y.; Wishart, D. ECMDB 2.0: A richer resource for understanding the biochemistry of E. coli. Nucleic Acids Res. 2015, 44, D495–D501. [Google Scholar] [CrossRef]
- Rojewska, M.; Smułek, W.; Kaczorek, E.; Prochaska, K. Langmuir Monolayer Techniques for the Investigation of Model Bacterial Membranes and Antibiotic Biodegradation Mechanisms. Membranes 2021, 11, 707. [Google Scholar] [CrossRef]
- Hoyo, J.; Torrent-Burgués, J.; Tzanov, T. Lipid-lipid interactions of Escherichia coli mimetic inner membrane at human physiological temperature. Gen. Physiol. Biophys. 2020, 39, 195–202. [Google Scholar] [CrossRef]
- Barrow, K.D.; Collins, J.G.; Rogers, P.L.; Smith, G.M. Lipid composition of an ethanol-tolerant strain of Zymomonas mobilis. Biochim. Biophys. Acta 1983, 753, 324–330. [Google Scholar] [CrossRef]
- Seelig, A. Local Anesthetics and Pressure: A Comparison of Dibucaine Binding to Lipid Monolayers and Bilayers. Biochim. Biophys. Acta 1987, 899, 196–204. [Google Scholar] [CrossRef]
- Kalnenieks, U.; de Graaf, A.A.; Bringer-Meyer, S.; Sahm, H. Oxidative phosphorylation in Zymomonas mobilis. Arch. Microbiol. 1993, 160, 74–79. [Google Scholar] [CrossRef]
- Wilson, D.M.; Alderete, J.F.; Maloney, P.C.; Wilson, T.H. Protonmotive force as the source of energy for adenosine 5′-triphosphate synthesis in Escherichia coli. J. Bacteriol. 1976, 126, 327–337. [Google Scholar] [CrossRef]
- Kalnenieks, U. Physiology of Zymomonas mobilis: Some unanswered questions. Adv. Microb. Physiol. 2006, 51, 73–117. [Google Scholar] [CrossRef]
- Li, J.; Hu, S.; Jian, W.; Xie, C.; Yang, X. Plant antimicrobial peptides: Structures, functions, and applications. Bot. Stud. 2021, 62, 5. [Google Scholar] [CrossRef]
- Klubthawee, N.; Adisakwattana, P.; Hanpithakpong, W.; Somsri, S.; Aunpad, R. A Novel, Rationally Designed, Hybrid Antimicrobial Peptide, Inspired by Cathelicidin and Aurein, Exhibits Membrane-Active Mechanisms against Pseudomonas aeruginosa. Sci. Rep. 2020, 10, 9117. [Google Scholar] [CrossRef]
- Woodburn, K.W.; Jaynes, J.; Clemens, L.E. Designed Antimicrobial Peptides for Topical Treatment of Antibiotic Resistant Acne Vulgaris. Antibiotics 2020, 9, 23. [Google Scholar] [CrossRef]
- Zhang, Q.; Xu, Y.; Wang, Q.; Hang, B.; Sun, Y.; Wei, X.; Hu, J. Potential of novel antimicrobial peptide P3 from bovine erythrocytes and its analogs to disrupt bacterial membranes in vitro and display activity against drug-resistant bacteria in a mouse model. Antimicrob. Agents Chemother. 2015, 59, 2835–2841. [Google Scholar] [CrossRef] [PubMed]
- Elliott, A.G.; Huang, J.X.; Neve, S.; Zuegg, J.; Edwards, I.A.; Cain, A.K.; Boinett, C.J.; Barquist, L.; Lundberg, C.V.; Steen, J.; et al. An amphipathic peptide with antibiotic activity against multidrug-resistant Gram-negative bacteria. Nat. Commun. 2020, 11, 3184. [Google Scholar] [CrossRef] [PubMed]
MIC μg/mL | ||||||||
---|---|---|---|---|---|---|---|---|
This Work | From [22] | |||||||
Name | Z. mobilis | E. coli | E. Cancerogenus | P. aeroginosa | K. pneumonia | E. faecium | S. aureus | P. acne |
RP551 | 63.0 | 8.0 | 16.0 | 8.0 | 4.0 | 16.0 | 8.0 | 2.0 |
RP556 | 250.0 | 4.0 | 4.0 | 2.0 | 4.0 | 2.0 | 1.0 | 2.0 |
LZ1 | 63.0 | 31.0 | 16.0 | 8.0 | 16.0 | 4.0 | 2.0 | 8.0 |
AA139 | 250.0 | 4.0 | 8.0 | 16.0 | 8.0 | 16.0 | 8.0 | 63.0 |
PA13 | 63.0 | 31.0 | 16.0 | 16.0 | 16.0 | 4.0 | 2.0 | 16.0 |
Oligo10 | 31.0 | 16.0 | 63.0 | 63.0 | 63.0 | 16.0 | 4.0 | 2.0 |
R10 | 31.0 | 2.0 | 16.0 | 2.0 | 8.0 | 4.0 | 4.0 | 0.5 |
R11 | 250.0 | 125.0 | 63.0 | 63.0 | 63.0 | 16.0 | 16.0 | 0.3 |
R12 | 63.0 | 8.0 | 31.0 | 4.0 | 31.0 | 16.0 | 8.0 | 0.5 |
R13 | 63.0 | 4.0 | 31.0 | 4.0 | 8.0 | 16.0 | 4.0 | 0.3 |
R14 | 63.0 | 16.0 | 16.0 | 4.0 | 4.0 | 8.0 | 8.0 | 1.0 |
Bacteria | RP556 | R10 |
---|---|---|
E. coli | 2.93 × 107 | 2.30 × 107 |
S. aureus | 2.43 × 107 | 1.98 × 108 |
Z. mobilis | 1.68 × 1010 | 6.58 × 109 |
Sample | Mma, Å/molecule | π Collapse, mN/m |
---|---|---|
Z. mobilis membranes | 70.6 | 46.4 |
Z. mobilis membranes + RP556 | 85.3 | 45 |
Z. mobilis membranes + R10 | 81.3 | 44.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rutkis, R.; Lasa, Z.; Rubina, M.; Strazdina, I.; Kalnenieks, U. Eminent Antimicrobial Peptide Resistance in Zymomonas mobilis: A Novel Advantage of Intrinsically Uncoupled Energetics. Antibiotics 2024, 13, 451. https://doi.org/10.3390/antibiotics13050451
Rutkis R, Lasa Z, Rubina M, Strazdina I, Kalnenieks U. Eminent Antimicrobial Peptide Resistance in Zymomonas mobilis: A Novel Advantage of Intrinsically Uncoupled Energetics. Antibiotics. 2024; 13(5):451. https://doi.org/10.3390/antibiotics13050451
Chicago/Turabian StyleRutkis, Reinis, Zane Lasa, Marta Rubina, Inese Strazdina, and Uldis Kalnenieks. 2024. "Eminent Antimicrobial Peptide Resistance in Zymomonas mobilis: A Novel Advantage of Intrinsically Uncoupled Energetics" Antibiotics 13, no. 5: 451. https://doi.org/10.3390/antibiotics13050451
APA StyleRutkis, R., Lasa, Z., Rubina, M., Strazdina, I., & Kalnenieks, U. (2024). Eminent Antimicrobial Peptide Resistance in Zymomonas mobilis: A Novel Advantage of Intrinsically Uncoupled Energetics. Antibiotics, 13(5), 451. https://doi.org/10.3390/antibiotics13050451