Lippia graveolens Essential Oil to Enhance the Effect of Imipenem against Axenic and Co-Cultures of Pseudomonas aeruginosa and Acinetobacter baumannii
Abstract
:1. Introduction
2. Results
2.1. Antibacterial Capacity of L. graveolens Essential Oil, Carvacrol and Imipenem against Axenic Culture and Co-Culture of P. aeruginosa and A. baumannii
2.1.1. Formation of the Co-Culture
2.1.2. MIC and MBC of L. graveolens, Carvacrol and Imipenem against Axenic and Co-Culture of P. aeruginosa and A. baumannii
2.2. Synergy of L. graveolens–Imipenem and Carvacrol–Imipenem against Axenic and Co-Cultures of P. aeruginosa and A. baumannii
2.3. Individual and Combined L. graveolens Essential Oil, Carvacrol, and Imipenem against Axenic and Co-Cultured Biofilms of P. aeruginosa, A. baumannii on Endotracheal Tubes
2.4. In Silico Binding Affinity and Dynamic Stability of Molecular Complexes between OXA-51 and IMP-1 β-Lactamases from A. baumannii and P. aeruginosa with Carvacrol, Thymol and Imipenem
2.4.1. Binding Affinity
2.4.2. Complexes Stability by Dynamic Simulation
3. Discussion
4. Materials and Methods
4.1. Conditions for Co-Culture
4.2. MIC and MBC of L. graveolens, Carvacrol and Imipenem on P. aeruginosa and A. baumannii
4.3. Effect of L. graveolens–Imipenem and Carvacrol–Imipenem Essential Oil Combinations on Axenic and Co-Cultures of P. aeruginosa and A. baumannii
- -
- ∑FIC ≤ 0.5: combination with a synergistic effect.
- -
- ∑FIC > 0.5 ≤ 4: combination indifferent or no interaction.
- -
- ∑FIC > 4: combination with antagonistic effect.
4.4. Impact of L. graveolens Essential Oil, Carvacrol and Their Combination with Imipenem on P. aeruginosa, A. baumannii and Their Co-Culture Biofilms on Endotracheal Tubes
4.5. Fluorescence Microscopy of Treated Biofilms
4.6. Molecular Docking of OXA-51 and IMP-1 Enzymes from A. baumannii and P. aeruginosa with Carvacrol and Thymol
4.7. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Centros-para-el-Control-y-la-Prevención-de-Enfermedades. Preguntas y Respuestas Sobre el uso de Antibióticos. Available online: https://www.cdc.gov/antibiotic-use/sp/should-know.html (accessed on 3 April 2023).
- Organización Mundial de la Salud. Resistencia a los Antibióticos. Available online: https://www.who.int/es/news-room/fact-sheets/detail/resistencia-a-los-antibi%C3%B3ticos (accessed on 15 June 2023).
- Giono-Cerezo, S.; Santos-Preciado, J.I.; Morfín-Otero, M.d.R.; Torres-López, F.J.; Alcántar-Curiel, M.D. Resistencia antimicrobiana. Importancia y esfuerzos por contenerla. Gac. Méd. M. 2021, 156, 172–180. [Google Scholar] [CrossRef]
- World Health Organization. WHO Outlines 40 Research Priorities on Antimicrobial Resistance. Available online: https://www.who.int/news/item/22-06-2023-who-outlines-40-research-priorities-on-antimicrobial-resistance (accessed on 19 November 2023).
- Yu, D.; Ryu, K.; Zhi, S.; Otto, S.J.G.; Neumann, N.F. Naturalized Escherichia coli in Wastewater and the Co-evolution of Bacterial Resistance to Water Treatment and Antibiotics. Front. Microbiol. 2022, 13, 810312. [Google Scholar] [CrossRef] [PubMed]
- Xie, R.; Zhang, X.D.; Zhao, Q.; Peng, B.; Zheng, J. Analysis of global prevalence of antibiotic resistance in Acinetobacter baumannii infections disclosed a faster increase in OECD countries. Emerg. Microbes Infect. 2018, 7, 31. [Google Scholar] [CrossRef] [PubMed]
- Malekzadegan, Y.; Abdi, A.; Heidari, H.; Moradi, M.; Rastegar, E.; Sedigh Ebrahim-Saraie, H. In vitro activities of colistin, imipenem and ceftazidime against drug-resistant Pseudomonas aeruginosa and Acinetobacter baumannii isolates in the south of Iran. BMC Res. Notes 2019, 12, 301. [Google Scholar] [CrossRef] [PubMed]
- Young, K.; Painter, R.E.; Raghoobar, S.L.; Hairston, N.N.; Racine, F.; Wisniewski, D.; Balibar, C.J.; Villafania, A.; Zhang, R.; Sahm, D.F.; et al. In vitro studies evaluating the activity of imipenem in combination with relebactam against Pseudomonas aeruginosa. BMC Microbiol. 2019, 19, 150. [Google Scholar] [CrossRef] [PubMed]
- Organización Mundial de la Salud. La OMS Publica la Lista de las Bacterias para las Que se Necesitan Urgentemente Nuevos Antibióticos. Available online: https://www.who.int/es/news/item/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed (accessed on 15 April 2023).
- Marturano, J.E.; Lowery, T.J. ESKAPE Pathogens in Bloodstream Infections Are Associated with Higher Cost and Mortality but Can Be Predicted Using Diagnoses Upon Admission. Open Forum Infect. Dis. 2019, 6, ofz503. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Xie, J.; Yang, J.; Liu, S.; Ding, Z.; Hao, J.; Ding, Y.; Zeng, Z.; Liu, J. Pathogenic Characteristics and Risk Factors for ESKAPE Pathogens Infection in Burn Patients. Infect. Drug Resist. 2021, 14, 4727–4738. [Google Scholar] [CrossRef] [PubMed]
- Castanheira, M.; Mendes, R.E.; Gales, A.C. Global Epidemiology and Mechanisms of Resistance of Acinetobacter baumannii-calcoaceticus Complex. Clin. Infect. Dis. 2023, 76, S166–S178. [Google Scholar] [CrossRef] [PubMed]
- CDC. COVID-19: U.S. Impact on Antimicrobial Resistance, Special Report 2022. Available online: https://www.cdc.gov/drugresistance/pdf/covid19-impact-report-508.pdf (accessed on 9 November 2023).
- Morris, F.C.; Dexter, C.; Kostoulias, X.; Uddin, M.I.; Peleg, A.Y. The Mechanisms of Disease Caused by Acinetobacter baumannii. Front. Microbiol. 2019, 10, 1601. [Google Scholar] [CrossRef]
- Bhardwaj, S.; Bhatia, S.; Singh, S.; Franco, F., Jr. Growing emergence of drug-resistant Pseudomonas aeruginosa and attenuation of its virulence using quorum sensing inhibitors: A critical review. Iran. J. Basic Med. Sci. 2021, 24, 699–719. [Google Scholar] [CrossRef]
- Reynolds, D.; Kollef, M. The Epidemiology and Pathogenesis and Treatment of Pseudomonas aeruginosa Infections: An Update. Drugs 2021, 81, 2117–2131. [Google Scholar] [CrossRef] [PubMed]
- Behzadi, P.; Baráth, Z.; Gajdács, M. It’s Not Easy Being Green: A Narrative Review on the Microbiology, Virulence and Therapeutic Prospects of Multidrug-Resistant Pseudomonas aeruginosa. Antibiotics 2021, 10, 42. [Google Scholar] [CrossRef]
- Sionov, R.V.; Steinberg, D. Targeting the Holy Triangle of Quorum Sensing, Biofilm Formation, and Antibiotic Resistance in Pathogenic Bacteria. Microorganisms 2022, 10, 1239. [Google Scholar] [CrossRef] [PubMed]
- Chiș, A.A.; Rus, L.L.; Morgovan, C.; Arseniu, A.M.; Frum, A.; Vonica-Țincu, A.L.; Gligor, F.G.; Mureșan, M.L.; Dobrea, C.M. Microbial Resistance to Antibiotics and Effective Antibiotherapy. Biomedicines 2022, 10, 1121. [Google Scholar] [CrossRef] [PubMed]
- Yoon, E.J.; Jeong, S.H. Mobile Carbapenemase Genes in Pseudomonas aeruginosa. Front. Microbiol. 2021, 12, 614058. [Google Scholar] [CrossRef] [PubMed]
- Khare, T.; Anand, U.; Dey, A.; Assaraf, Y.G.; Chen, Z.-S.; Liu, Z.; Kumar, V. Exploring Phytochemicals for Combating Antibiotic Resistance in Microbial Pathogens. Front. Pharmacol. 2021, 12, 720726. [Google Scholar] [CrossRef]
- Basavegowda, N.; Patra, J.K.; Baek, K.-H. Essential Oils and Mono/bi/tri-Metallic Nanocomposites as Alternative Sources of Antimicrobial Agents to Combat Multidrug-Resistant Pathogenic Microorganisms: An Overview. Molecules 2020, 25, 1058. [Google Scholar] [CrossRef]
- Fimbres-García, J.O.; Flores-Sauceda, M.; Othon-Díaz, E.D.; García-Galaz, A.; Tapia-Rodríguez, M.R.; Silva-Espinoza, B.A.; Ayala-Zavala, J.F. Facing Resistant Bacteria with Plant Essential Oils: Reviewing the Oregano Case. Antibiotics 2022, 11, 1777. [Google Scholar] [CrossRef]
- Lombrea, A.; Antal, D.; Ardelean, F.; Avram, S.; Pavel, I.Z.; Vlaia, L.; Mut, A.M.; Diaconeasa, Z.; Dehelean, C.A.; Soica, C.; et al. A Recent Insight Regarding the Phytochemistry and Bioactivity of Origanum vulgare L. Essential Oil. Int. J. Mol. Sci. 2020, 21, 9653. [Google Scholar] [CrossRef]
- Bautista-Hernández, I.; Aguilar, C.N.; Martínez-Ávila, G.C.G.; Torres-León, C.; Ilina, A.; Flores-Gallegos, A.C.; Kumar Verma, D.; Chávez-González, M.L. Mexican Oregano (Lippia graveolens Kunth) as Source of Bioactive Compounds: A Review. Molecules 2021, 26, 5156. [Google Scholar] [CrossRef]
- Rubio-Ortega, A.; Travieso-Novelles, M.d.C.; Riverón-Alemán, Y.; Martínez-Vasallo, A.; Peña-Rodríguez, J.; Espinosa-Castaño, I.; Pino-Pérez, O. Actividad antibacteriana de aceites esenciales de plantas cultivadas en Cuba sobre cepas de Salmonella enterica. Rev. Salud Anim. 2018, 40, 1–10. [Google Scholar]
- Tapia-Rodriguez, M.R.; Cantu-Soto, E.U.; Vazquez-Armenta, F.J.; Bernal-Mercado, A.T.; Ayala-Zavala, J.F. Inhibition of Acinetobacter baumannii Biofilm Formation by Terpenes from Oregano (Lippia graveolens) Essential Oil. Antibiotics 2023, 12, 1539. [Google Scholar] [CrossRef] [PubMed]
- Amaral, S.C.; Pruski, B.B.; de Freitas, S.B.; Allend, S.O.; Ferreira, M.R.A.; Moreira, C.J.; Pereira, D.I.B.; Junior, A.S.V.; Hartwig, D.D. Origanum vulgare essential oil: Antibacterial activities and synergistic effect with polymyxin B against multidrug-resistant Acinetobacter baumannii. Mol. Biol. Rep. 2020, 47, 9615–9625. [Google Scholar] [CrossRef] [PubMed]
- Karumathil, D.P.; Nair, M.S.; Gaffney, J.; Kollanoor-Johny, A.; Venkitanarayanan, K. Trans-Cinnamaldehyde and Eugenol Increase Acinetobacter baumannii Sensitivity to Beta-Lactam Antibiotics. Front. Microbiol. 2018, 9, 1011. [Google Scholar] [CrossRef] [PubMed]
- Alharbi, M.A.; Alrehaili, A.A.; Albureikan, M.O.I.; Gharib, A.F.; Daghistani, H.; Bakhuraysah, M.M.; Aloraini, G.S.; Bazuhair, M.A.; Alhuthali, H.M.; Ghareeb, A. In vitro studies on the pharmacological potential, anti-tumor, antimicrobial, and acetylcholinesterase inhibitory activity of marine-derived Bacillus velezensis AG6 exopolysaccharide. RSC Adv. 2023, 13, 26406–26417. [Google Scholar] [CrossRef] [PubMed]
- Hung, K.H.; Wang, M.C.; Huang, A.H.; Yan, J.J.; Wu, J.J. Heteroresistance to cephalosporins and penicillins in Acinetobacter baumannii. J. Clin. Microbiol. 2012, 50, 721–726. [Google Scholar] [CrossRef] [PubMed]
- Valcek, A.; Philippe, C.; Whiteway, C.; Robino, E.; Nesporova, K.; Bové, M.; Coenye, T.; De Pooter, T.; De Coster, W.; Strazisar, M.; et al. Phenotypic Characterization and Heterogeneity among Modern Clinical Isolates of Acinetobacter baumannii. Microbiol. Spectr. 2023, 11, e0306122. [Google Scholar] [CrossRef] [PubMed]
- Verma, P.; Verma, M.K. Antimicrobial activity of Antibiotics and Antiseptics (Dettol and Betadine) against Clinical Isolates of Pseudomonas aeruginosa. Int. J. Life. Sci. Sci. Res. 2018, 4, 10. [Google Scholar] [CrossRef]
- Acharya, T. Pseudomonas aeruginosa: Infections, Pathogenesis and Lab Diagnosis. 2022. Available online: https://microbeonline.com/pseudomonas-aeruginosa-infection-mortality-pathogenesis-and-diagnosis (accessed on 12 November 2023).
- Cho, T.J.; Park, S.M.; Yu, H.; Seo, G.H.; Kim, H.W.; Kim, S.A.; Rhee, M.S. Recent Advances in the Application of Antibacterial Complexes Using Essential Oils. Molecules 2020, 25, 1752. [Google Scholar] [CrossRef]
- Reece, E.; Bettio, P.H.A.; Renwick, J. Polymicrobial Interactions in the Cystic Fibrosis Airway Microbiome Impact the Antimicrobial Susceptibility of Pseudomonas aeruginosa. Antibiotics 2021, 10, 827. [Google Scholar] [CrossRef]
- Gao, C.-H.; Cao, H.; Cai, P.; Sørensen, S.J. The initial inoculation ratio regulates bacterial coculture interactions and metabolic capacity. ISME J. 2021, 15, 29–40. [Google Scholar] [CrossRef]
- Orazi, G.; O’Toole, G.A. “It Takes a Village”: Mechanisms Underlying Antimicrobial Recalcitrance of Polymicrobial Biofilms. J. Bacteriol. 2019, 202, e00530-19. [Google Scholar] [CrossRef]
- Roy, S.; Chowdhury, G.; Mukhopadhyay, A.K.; Dutta, S.; Basu, S. Convergence of Biofilm Formation and Antibiotic Resistance in Acinetobacter baumannii Infection. Front. Med. 2022, 9, 793615. [Google Scholar] [CrossRef]
- Barraza, J.P.; Whiteley, M. A Pseudomonas aeruginosa Antimicrobial Affects the Biogeography but Not Fitness of Staphylococcus aureus during Coculture. mBio 2021, 12, e00047-00021. [Google Scholar] [CrossRef] [PubMed]
- Tognon, M.; Köhler, T.; Luscher, A.; van Delden, C. Transcriptional profiling of Pseudomonas aeruginosa and Staphylococcus aureus during in vitro co-culture. BMC Genom. 2019, 20, 30. [Google Scholar] [CrossRef]
- Ramsey, M.M.; Rumbaugh, K.P.; Whiteley, M. Metabolite cross-feeding enhances virulence in a model polymicrobial infection. PLoS Pathog. 2011, 7, e1002012. [Google Scholar] [CrossRef]
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing. Available online: https://www.nih.org.pk/wp-content/uploads/2021/02/CLSI-2020.pdf (accessed on 23 November 2023).
- Rodriguez-Garcia, I.; Cruz-Valenzuela, M.R.; Silva-Espinoza, B.A.; Gonzalez-Aguilar, G.A.; Moctezuma, E.; Gutierrez-Pacheco, M.M.; Tapia-Rodriguez, M.R.; Ortega-Ramirez, L.A.; Ayala-Zavala, J.F. Oregano (Lippia graveolens) essential oil added within pectin edible coatings prevents fungal decay and increases the antioxidant capacity of treated tomatoes. J. Sci. Food Agric. 2016, 96, 3772–3778. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Garcia, I.; Silva-Espinoza, B.A.; Ortega-Ramirez, L.A.; Leyva, J.M.; Siddiqui, M.W.; Cruz-Valenzuela, M.R.; Gonzalez-Aguilar, G.A.; Ayala-Zavala, J.F. Oregano Essential Oil as an Antimicrobial and Antioxidant Additive in Food Products. Crit. Rev. Food Sci. Nutr. 2016, 56, 1717–1727. [Google Scholar] [CrossRef] [PubMed]
- Lu, M.; Dai, T.; Murray, C.K.; Wu, M.X. Bactericidal Property of Oregano Oil Against Multidrug-Resistant Clinical Isolates. Front. Microbiol. 2018, 9, 2329. [Google Scholar] [CrossRef]
- De Martino, L.; De Feo, V.; Formisano, C.; Mignola, E.; Senatore, F. Chemical composition and antimicrobial activity of the essential oils from three chemotypes of Origanum vulgare L. ssp. hirtum (Link) Ietswaart growing wild in Campania (Southern Italy). Molecules 2009, 14, 2735–2746. [Google Scholar] [CrossRef]
- Montagu, A.; Joly-Guillou, M.-L.; Rossines, E.; Cayon, J.; Kempf, M.; Saulnier, P. Stress Conditions Induced by Carvacrol and Cinnamaldehyde on Acinetobacter baumannii. Front. Microbiol. 2016, 7, 1133. [Google Scholar] [CrossRef]
- Ayoub Moubareck, C.; Hammoudi Halat, D. Insights into Acinetobacter baumannii: A Review of Microbiological, Virulence, and Resistance Traits in a Threatening Nosocomial Pathogen. Antibiotics 2020, 9, 119. [Google Scholar] [CrossRef] [PubMed]
- Singh, J.K.; Adams, F.G.; Brown, M.H. Diversity and Function of Capsular Polysaccharide in Acinetobacter baumannii. Front. Microbiol. 2018, 9, 3301. [Google Scholar] [CrossRef] [PubMed]
- Mutlu-Ingok, A.; Devecioglu, D.; Dikmetas, D.N.; Karbancioglu-Guler, F.; Capanoglu, E. Antibacterial, Antifungal, Antimycotoxigenic, and Antioxidant Activities of Essential Oils: An Updated Review. Molecules 2020, 25, 4711. [Google Scholar] [CrossRef] [PubMed]
- Reyes-Jurado, F.; Munguía-Pérez, R.; Cid-Pérez, T.S.; Hernández-Carranza, P.; Ochoa-Velasco, C.E.; Avila-Sosa, R. Inhibitory Effect of Mexican Oregano (Lippia berlandieri Schauer) Essential Oil on Pseudomonas aeruginosa and Salmonella Thyphimurium Biofilm Formation. Front. Sustain. Food Syst. 2020, 4, 36. [Google Scholar] [CrossRef]
- Sarrazin, S.L.F.; da Silva, L.A.; de Assunção, A.P.F.; Oliveira, R.B.; Calao, V.Y.P.; da Silva, R.; Stashenko, E.E.; Maia, J.G.S.; Mourão, R.H.V. Antimicrobial and seasonal evaluation of the carvacrol-chemotype oil from Lippia origanoides kunth. Molecules 2015, 20, 1860–1871. [Google Scholar] [CrossRef] [PubMed]
- Kachur, K.; Suntres, Z. The antibacterial properties of phenolic isomers, carvacrol and thymol. Crit. Rev. Food Sci. Nutr. 2020, 60, 3042–3053. [Google Scholar] [CrossRef]
- National Library of Medicine. PubChem Compound Summary for CID 10364, Carvacrol. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/10364 (accessed on 15 November 2023).
- Swamy, M.K.; Akhtar, M.S.; Sinniah, U.R. Antimicrobial Properties of Plant Essential Oils against Human Pathogens and Their Mode of Action: An Updated Review. Evid. Based Complement. Altern. Med. 2016, 2016, 3012462. [Google Scholar] [CrossRef] [PubMed]
- Heo, Y.A. Imipenem/Cilastatin/Relebactam: A Review in Gram-Negative Bacterial Infections. Drugs 2021, 81, 377–388. [Google Scholar] [CrossRef]
- Centro Colaborador de La Administración Nacional de Medicamentos, Alimentos y Tecnología Médica. Imipenem + Cilastatina. Available online: https://www.iqb.es/cbasicas/farma/farma04/c052.htm (accessed on 5 October 2023).
- Suárez, C.; Gudiol, F. Antibióticos betalactámicos. Enfermedades Infecc. Microbiol. Clín. 2009, 27, 116–129. [Google Scholar] [CrossRef]
- Dera, A.A.; Ahmad, I.; Rajagopalan, P.; Shahrani, M.A.; Saif, A.; Alshahrani, M.Y.; Alraey, Y.; Alamri, A.M.; Alasmari, S.; Makkawi, M.; et al. Synergistic efficacies of thymoquinone and standard antibiotics against multi-drug resistant isolates. Saudi Med. J. 2021, 42, 196–204. [Google Scholar] [CrossRef] [PubMed]
- Guo, T.; Li, M.; Sun, X.; Wang, Y.; Yang, L.; Jiao, H.; Li, G. Synergistic Activity of Capsaicin and Colistin Against Colistin-Resistant Acinetobacter baumannii: In Vitro/Vivo Efficacy and Mode of Action. Front. Pharmacol. 2021, 12, 744494. [Google Scholar] [CrossRef] [PubMed]
- Topa, S.H.; Palombo, E.A.; Kingshott, P.; Blackall, L.L. Activity of Cinnamaldehyde on Quorum Sensing and Biofilm Susceptibility to Antibiotics in Pseudomonas aeruginosa. Microorganisms 2020, 8, 455. [Google Scholar] [CrossRef] [PubMed]
- Chan, A.P.; Choi, Y.; Brinkac, L.M.; Krishnakumar, R.; DePew, J.; Kim, M.; Hinkle, M.K.; Lesho, E.P.; Fouts, D.E. Multidrug resistant pathogens respond differently to the presence of co-pathogen, commensal, probiotic and host cells. Sci. Rep. 2018, 8, 8656. [Google Scholar] [CrossRef]
- Eze, E.C.; Chenia, H.Y.; El Zowalaty, M.E. Acinetobacter baumannii biofilms: Effects of physicochemical factors, virulence, antibiotic resistance determinants, gene regulation, and future antimicrobial treatments. Infect. Drug Resist. 2018, 11, 2277–2299. [Google Scholar] [CrossRef]
- Yin, R.; Cheng, J.; Wang, J.; Li, P.; Lin, J. Treatment of Pseudomonas aeruginosa infectious biofilms: Challenges and strategies. Front. Microbiol. 2022, 13, 955286. [Google Scholar] [CrossRef] [PubMed]
- Elfaky, M.A.; Okairy, H.M.; Abdallah, H.M.; Koshak, A.E.; Mohamed, G.A.; Ibrahim, S.R.M.; Alzain, A.A.; Hegazy, W.A.H.; Khafagy, E.-S.; Seleem, N.M. Assessing the antibacterial potential of 6-gingerol: Combined experimental and computational approaches. Saudi Pharm. J. 2024, 32, 102041. [Google Scholar] [CrossRef] [PubMed]
- Yunus, J.; Wan Dagang, W.R.Z.; Jamaluddin, H.; Jemon, K.; Mohamad, S.E.; Jonet, M.A. Bacterial biofilm growth and perturbation by serine protease from Bacillus sp. Arch. Microbiol. 2024, 206, 138. [Google Scholar] [CrossRef]
- Celebi, O.; Celebi, D.; Baser, S.; Yilmaz, A.; Yildirim, S. Vitamins Can Increase Antibiotic Effects Against Multidrug-Resistant Pseudomonas aeruginosa and Acinetobacter baumannii in an In Vitro Infection Model. Eurasian J. Med. 2024. [Google Scholar] [CrossRef]
- Abdullah, S.; Younis, K. The Impact of Minimum Inhibitory and Sub Inhibitory Concentrations of Antibiotics on Acinetobacter baumannii and Pseudomonas aeruginosa Biofilm Production. Egypt. J. Vet. Sci. 2024, 55, 1423–1433. [Google Scholar] [CrossRef]
- de la Fuente-Núñez, C.; Reffuveille, F.; Mansour, S.C.; Reckseidler-Zenteno, S.L.; Hernández, D.; Brackman, G.; Coenye, T.; Hancock, R.E. D-enantiomeric peptides that eradicate wild-type and multidrug-resistant biofilms and protect against lethal Pseudomonas aeruginosa infections. Chem. Biol. 2015, 22, 196–205. [Google Scholar] [CrossRef] [PubMed]
- Chanda, W.; Joseph, T.P.; Padhiar, A.A.; Guo, X.; Min, L.; Wang, W.; Lolokote, S.; Ning, A.; Cao, J.; Huang, M.; et al. Combined effect of linolenic acid and tobramycin on Pseudomonas aeruginosa biofilm formation and quorum sensing. Exp. Ther. Med. 2017, 14, 4328–4338. [Google Scholar] [CrossRef] [PubMed]
- Chadha, J.; Harjai, K.; Chhibber, S. Repurposing phytochemicals as anti-virulent agents to attenuate quorum sensing-regulated virulence factors and biofilm formation in Pseudomonas aeruginosa. Microb. Biotechnol. 2022, 15, 1695–1718. [Google Scholar] [CrossRef] [PubMed]
- Roy, R.; Tiwari, M.; Donelli, G.; Tiwari, V. Strategies for combating bacterial biofilms: A focus on anti-biofilm agents and their mechanisms of action. Virulence 2018, 9, 522–554. [Google Scholar] [CrossRef] [PubMed]
- Bernal-Mercado, A.T.; Juarez, J.; Valdez, M.A.; Ayala-Zavala, J.F.; Del-Toro-Sánchez, C.L.; Encinas-Basurto, D. Hydrophobic Chitosan Nanoparticles Loaded with Carvacrol against Pseudomonas aeruginosa Biofilms. Molecules 2022, 27, 699. [Google Scholar] [CrossRef] [PubMed]
- van Alphen, L.B.; Burt, S.A.; Veenendaal, A.K.; Bleumink-Pluym, N.M.; van Putten, J.P. The natural antimicrobial carvacrol inhibits Campylobacter jejuni motility and infection of epithelial cells. PLoS ONE 2012, 7, e45343. [Google Scholar] [CrossRef] [PubMed]
- Leja, K.; Drożdżyńska, A.; Majcher, M.; Kowalczewski, P.Ł.; Czaczyk, K. Influence of sub-inhibitory concentration of selected plant essential oils on the physical and biochemical properties of Pseudomonas orientalis. Open Chem. 2019, 17, 492–505. [Google Scholar] [CrossRef]
- Venkateswaran, P.; Vasudevan, S.; David, H.; Shaktivel, A.; Shanmugam, K.; Neelakantan, P.; Solomon, A.P. Revisiting ESKAPE Pathogens: Virulence, resistance, and combating strategies focusing on quorum sensing. Front. Cell. Infect. Microbiol. 2023, 13, 1159798. [Google Scholar] [CrossRef] [PubMed]
- Gutierrez-Pacheco, M.M.; Gonzalez-Aguilar, G.A.; Martinez-Tellez, M.A.; Lizardi-Mendoza, J.; Madera-Santana, T.J.; Bernal-Mercado, A.T.; Vazquez-Armenta, F.J.; Ayala-Zavala, J.F. Carvacrol inhibits biofilm formation and production of extracellular polymeric substances of Pectobacterium carotovorum subsp. carotovorum. Food Control 2018, 89, 210–218. [Google Scholar] [CrossRef]
- Tapia-Rodriguez, M.R.; Bernal-Mercado, A.T.; Gutierrez-Pacheco, M.M.; Vazquez-Armenta, F.J.; Hernandez-Mendoza, A.; Gonzalez-Aguilar, G.A.; Martinez-Tellez, M.A.; Nazzaro, F.; Ayala-Zavala, J.F. Virulence of Pseudomonas aeruginosa exposed to carvacrol: Alterations of the Quorum sensing at enzymatic and gene levels. J. Cell Commun. Signal. 2019, 13, 531–537. [Google Scholar] [CrossRef]
- Orhan-Yanıkan, E.; da Silva-Janeiro, S.; Ruiz-Rico, M.; Jiménez-Belenguer, A.I.; Ayhan, K.; Barat, J.M. Essential oils compounds as antimicrobial and antibiofilm agents against strains present in the meat industry. Food Control 2019, 101, 29–38. [Google Scholar] [CrossRef]
- Shenkutie, A.M.; Zhang, J.; Yao, M.; Asrat, D.; Chow, F.W.N.; Leung, P.H.M. Effects of Sub-Minimum Inhibitory Concentrations of Imipenem and Colistin on Expression of Biofilm-Specific Antibiotic Resistance and Virulence Genes in Acinetobacter baumannii Sequence Type 1894. Int. J. Mol. Sci. 2022, 23, 2705. [Google Scholar] [CrossRef] [PubMed]
- Bagge, N.; Schuster, M.; Hentzer, M.; Ciofu, O.; Givskov, M.; Greenberg, E.P.; Høiby, N. Pseudomonas aeruginosa biofilms exposed to imipenem exhibit changes in global gene expression and beta-lactamase and alginate production. Antimicrob. Agents Chemother. 2004, 48, 1175–1187. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.C.; Kuo, S.C.; Yang, Y.S.; Lee, Y.T.; Chiu, C.H.; Chuang, M.F.; Lin, J.C.; Chang, F.Y.; Chen, T.L. Individual or Combined Effects of Meropenem, Imipenem, Sulbactam, Colistin, and Tigecycline on Biofilm-Embedded Acinetobacter baumannii and Biofilm Architecture. Antimicrob. Agents Chemother. 2016, 60, 4670–4676. [Google Scholar] [CrossRef] [PubMed]
- Bhat, B.A.; Mir, W.R.; Sheikh, B.A.; Alkanani, M.; Mir, M.A. Metabolite fingerprinting of phytoconstituents from Fritillaria cirrhosa D. Don and molecular docking analysis of bioactive peonidin with microbial drug target proteins. Sci. Rep. 2022, 12, 7296. [Google Scholar] [CrossRef] [PubMed]
- Alnasser, S.M.; Azam, F.; Alqarni, M.H.; Aodah, A.H.; Hashmi, S.; Kamal, M.; Meshal, A.; Alam, A. Development and Evaluation of Novel Encapsulated Isoeugenol-Liposomal Gel Carrier System for Methicillin-Resistant Staphylococcus aureus. Gels 2023, 9, 228. [Google Scholar] [CrossRef] [PubMed]
- Mir, W.R.; Bhat, B.A.; Rather, M.A.; Muzamil, S.; Almilaibary, A.; Alkhanani, M.; Mir, M.A. Molecular docking analysis and evaluation of the antimicrobial properties of the constituents of Geranium wallichianum D. Don ex Sweet from Kashmir Himalaya. Sci. Rep. 2022, 12, 12547. [Google Scholar] [CrossRef] [PubMed]
- Silva-Trujillo, L.; Quintero-Rueda, E.; Stashenko, E.E.; Conde-Ocazionez, S.; Rondón-Villarreal, P.; Ocazionez, R.E. Essential Oils from Colombian Plants: Antiviral Potential against Dengue Virus Based on Chemical Composition, In Vitro and In Silico Analyses. Molecules 2022, 27, 6844. [Google Scholar] [CrossRef] [PubMed]
- Salari-Jazi, A.; Mahnam, K.; Sadeghi, P.; Damavandi, M.S.; Faghri, J. Discovery of potential inhibitors against New Delhi metallo-β-lactamase-1 from natural compounds: In silico-based methods. Sci. Rep. 2021, 11, 2390. [Google Scholar] [CrossRef]
- Bernal-Mercado, A.T. Combinación de Compuestos Fenólicos para Inhibir la Formación de Biopelículas de Escherichia coli Uropatógena en Superficies de Silicona. Ph.D. Thesis, Centro de Investigación en Alimentación y Desarrollo, Hermosillo, México, 2019. [Google Scholar]
- Blasco, A.C.; Blanco, A.C.; Aguilar, M.D.; Reilly, M.I.M.; Gascón, A.R.; García, C.S. Métodos Microbiológicos para la Determinación In Vitro de la Actividad de Combinaciones de Antimicrobianos. Available online: https://seimc.org/contenidos/documentoscientificos/procedimientosmicrobiologia/seimc-procedimiento70.pdf (accessed on 23 November 2023).
- Tapia-Rodriguez, M.R. Carvacrol Como Inhibidor de Comunicación Intercelular Responsable de la Formación de Biopelículas de Pseudomonas aeruginosa. Ph.D. Thesis, Centro de Investigación en Alimentación y Desarrollo, Hermosillo, México, 2018. [Google Scholar]
- Smith, C.A.; Antunes, N.T.; Stewart, N.K.; Frase, H.; Toth, M.; Kantardjieff, K.A.; Vakulenko, S. Structural Basis for Enhancement of Carbapenemase Activity in the OXA-51 Family of Class D β-Lactamases. ACS Chem. Biol. 2015, 10, 1791–1796. [Google Scholar] [CrossRef]
- Concha, N.O.; Janson, C.A.; Rowling, P.; Pearson, S.; Cheever, C.A.; Clarke, B.P.; Lewis, C.; Galleni, M.; Frère, J.M.; Payne, D.J.; et al. Crystal structure of the IMP-1 metallo beta-lactamase from Pseudomonas aeruginosa and its complex with a mercaptocarboxylate inhibitor: Binding determinants of a potent, broad-spectrum inhibitor. Biochemistry 2000, 39, 4288–4298. [Google Scholar] [CrossRef] [PubMed]
- Van Der Spoel, D.; Lindahl, E.; Hess, B.; Groenhof, G.; Mark, A.E.; Berendsen, H.J. GROMACS: Fast, flexible, and free. J. Comput. Chem. 2005, 26, 1701–1718. [Google Scholar] [CrossRef] [PubMed]
A. baumannii | P. aeruginosa | Co-Culture | ||||
---|---|---|---|---|---|---|
Antibacterial (mg/mL) | MIC | MBC | MIC | MBC | MIC | MBC |
Imipenem | 5 × 10−4 | 1 × 10−3 | 5 × 10−4 | >2 × 10−3 | 5 × 10−4 | 4 × 10−3 |
Essential oil of L. graveolens | 0.625 | >15 | 0.156 | 0.312 | 1.25 | >15 |
Carvacrol | 0.150 | >2.25 | 0.075 | 0.150 | 0.30 | >2.25 |
Type of Culture | EO L. graveolens (MIC, mg/mL) | Imipenem (MIC, mg/mL) | Effect (FICI) | Carvacrol (MIC, mg/mL) | Imipenem (MIC, mg/mL) | Effect (FICI) |
---|---|---|---|---|---|---|
A. baumannii axenic | 0.03 | 2.34 × 10−5 | Synergy (0.09) | 7 × 10−3 | 2.34 × 10−5 | Synergy (0.09) |
P. aeruginosa axenic | 7.30 × 10−3 | 2.34 × 10−5 | Synergy (0.09) | 3.5 × 10−3 | 4.69 × 10−5 | Synergy (0.14) |
Co-culture | 0.06 | 4.69 × 10−5 | Synergy (0.14) | 0.014 | 4.69 × 10−5 | Synergy (0.14) |
Type of Culture | Minimum Biofilm Inhibitory Concentrations (MBICs, mg/mL) | ||||
---|---|---|---|---|---|
OEO | Carvacrol | Imipenem | OEO/Imipenem | Carvacrol/Imipenem | |
A. baumannii axenic | 1.2 | 0.6 | 5 × 10−4 | 0.06/2.35 × 10−5 | 0.18/1.41 × 10−4 |
P. aeruginosa axenic | 2.7 | 0.6 | 9 × 10−4 | 0.48/1.68 × 10−4 | 0.03/8.5 × 10−5 |
Co-culture | 3 | 6 | 2.5 × 10−4 | 0.6/9.4 × 10−5 | 1.12/9.4 × 10−5 |
Enzyme | Molecule | Affinity Energy (Kcal/mol) | Interactions | Amino acids |
---|---|---|---|---|
OXA-51 | Imipenem | −6.1 | - Conventional hydrogen bond - Hydrogen–carbon bond - Pi-Sulfur - Pi-Alkyl | - Arg 260 * - Ser 218 - Gly 219 - Ser 80 * - Phe 111 * - Trp 114 * - Trp 222 |
Carvacrol | −5.5 | - Conventional hydrogen bond - Pi-Sigma - Pi-Pi T-shaped | - Arg 260 * - Phe 111 * | |
Thymol | −5.4 | - Pi-Pi stacked - Pi-Alkyl | - Phe 111 * - Trp 220 - Trp 114 * - Tep 222 | |
IMP-1 | Imipenem | −5.5 | - Conventional hydrogen bond - Hydrogen–carbon bond - Alkyl - Pi-Alkyl | - Asp 81 - Asn 167 * - His 139 * - Val 25 * - Val 31 * - His197 |
Carvacrol | −4.9 | - Conventional hydrogen bond - Pi-Donor hydrogen bond - Pi-Sigma - Pi-Sulfur - Pi-Alkyl | - Asp 81 - His 139 * - Asn 167 * - His 197 - His 79 * - Cys 158 | |
Thymol | −4.8 | - Conventional hydrogen bond - Pi-Donor hydrogen bond - Unfavorable Donor–Donor - Pi-Sigma - Pi-Alkyl | - His 77 * - Asn 167 * - His 197 - His 79 * - His 139 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fimbres-García, J.O.; Flores-Sauceda, M.; Othón-Díaz, E.D.; García-Galaz, A.; Tapia-Rodriguez, M.R.; Silva-Espinoza, B.A.; Alvarez-Armenta, A.; Ayala-Zavala, J.F. Lippia graveolens Essential Oil to Enhance the Effect of Imipenem against Axenic and Co-Cultures of Pseudomonas aeruginosa and Acinetobacter baumannii. Antibiotics 2024, 13, 444. https://doi.org/10.3390/antibiotics13050444
Fimbres-García JO, Flores-Sauceda M, Othón-Díaz ED, García-Galaz A, Tapia-Rodriguez MR, Silva-Espinoza BA, Alvarez-Armenta A, Ayala-Zavala JF. Lippia graveolens Essential Oil to Enhance the Effect of Imipenem against Axenic and Co-Cultures of Pseudomonas aeruginosa and Acinetobacter baumannii. Antibiotics. 2024; 13(5):444. https://doi.org/10.3390/antibiotics13050444
Chicago/Turabian StyleFimbres-García, Jorge O., Marcela Flores-Sauceda, Elsa Daniela Othón-Díaz, Alfonso García-Galaz, Melvin R. Tapia-Rodriguez, Brenda A. Silva-Espinoza, Andres Alvarez-Armenta, and J. Fernando Ayala-Zavala. 2024. "Lippia graveolens Essential Oil to Enhance the Effect of Imipenem against Axenic and Co-Cultures of Pseudomonas aeruginosa and Acinetobacter baumannii" Antibiotics 13, no. 5: 444. https://doi.org/10.3390/antibiotics13050444
APA StyleFimbres-García, J. O., Flores-Sauceda, M., Othón-Díaz, E. D., García-Galaz, A., Tapia-Rodriguez, M. R., Silva-Espinoza, B. A., Alvarez-Armenta, A., & Ayala-Zavala, J. F. (2024). Lippia graveolens Essential Oil to Enhance the Effect of Imipenem against Axenic and Co-Cultures of Pseudomonas aeruginosa and Acinetobacter baumannii. Antibiotics, 13(5), 444. https://doi.org/10.3390/antibiotics13050444