Evolution of Antimicrobial Resistance in Klebsiella pneumoniae over 3 Years (2019–2021) in a Tertiary Hospital in Bucharest, Romania
Abstract
:1. Introduction
2. Results
2.1. Demographic Features
2.2. Epidemiological and Clinical Features
2.3. Antimicrobial Resistance of Klebsiella pneumoniae
3. Discussion
Study Limitations
4. Materials and Methods
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Martin, R.M.; Bachman, M.A. Colonization, Infection, and the Accessory Genome of Klebsiella pneumoniae. Front. Cell. Infect. Microbiol. 2018, 8, 4. [Google Scholar] [CrossRef] [PubMed]
- Tian, L.; Tan, R.; Chen, Y.; Sun, J.; Liu, J.; Qu, H.; Wang, X. Epidemiology of Klebsiella pneumoniae bloodstream infections in a teaching hospital: Factors related to the carbapenem resistance and patient mortality. Antimicrob. Resist. Infect. Control 2016, 5, 48. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Zhang, G.; Yang, Y.; Zhang, J.; Li, D.; Duan, S.; Yang, Q.; Xu, Y. Antimicrobial resistance comparison of Klebsiella pneumoniae pathogens isolated from intra-abdominal and urinary tract infections in different organs, hospital departments and regions of China between 2014 and 2017. J. Microbiol. Immunol. Infect. 2021, 54, 639–648. [Google Scholar] [CrossRef] [PubMed]
- Navon-Venezia, S.; Kondratyeva, K.; Carattoli, A. Klebsiella pneumoniae: A major worldwide source and shuttle for antibiotic resistance. FEMS Microbiol. Rev. 2017, 41, 252–275. [Google Scholar] [CrossRef] [PubMed]
- Santajit, S.; Indrawattana, N. Mechanisms of Antimicrobial Resistance in ESKAPE Pathogens. BioMed Res. Int. 2016, 2016, 2475067. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. WHO Publishes List of Bacteria for Which New Antibiotics Are Urgently Needed. Available online: https://www.who.int/news/item/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed (accessed on 21 January 2024).
- Findlay, J.; Rens, C.; Poirel, L.; Nordmann, P. In Vitro Mechanisms of Resistance Development to Imipenem-Relebactam in KPC-Producing Klebsiella pneumoniae. Antimicrob. Agents Chemother. 2022, 66, e0091822. [Google Scholar] [CrossRef] [PubMed]
- Gaibani, P.; Lombardo, D.; Bussini, L.; Bovo, F.; Munari, B.; Giannella, M.; Bartoletti, M.; Viale, P.; Lazzarotto, T.; Ambretti, S. Epidemiology of Meropenem/Vaborbactam Resistance in KPC-Producing Klebsiella pneumoniae Causing Bloodstream Infections in Northern Italy, 2018. Antibiotics 2021, 10, 536. [Google Scholar] [CrossRef]
- Moon, S.H.; Huang, E. Cefiderocol Resistance in Klebsiella pneumoniae Is Linked to SHV Extended-Spectrum β-Lactamase Activities and Functional Loss of the Outer Membrane Porin OmpK35. Microbiol. Spectr. 2023, 11, e0349622. [Google Scholar] [CrossRef] [PubMed]
- European Centre for Disease Prevention and Control. European Antimicrobial Resistance Surveillance Network (EARS-Net). Available online: https://www.ecdc.europa.eu/en/about-us/networks/disease-networks-and-laboratory-networks/ears-net-data (accessed on 23 January 2024).
- Guo, H.; Wu, Y.; Li, L.; Wang, J.; Xu, J.; He, F. Global emergence of carbapenem-resistant Klebsiella pneumoniae co-carrying multiple carbapenemases. Comput. Struct. Biotechnol. J. 2023, 21, 3557–3563. [Google Scholar] [CrossRef]
- Cruz-López, F.; Martínez-Meléndez, A.; Morfin-Otero, R.; Rodriguez-Noriega, E.; Maldonado-Garza, H.J.; Garza-González, E. Efficacy and In Vitro Activity of Novel Antibiotics for Infections with Carbapenem-Resistant Gram-Negative Pathogens. Front. Cell. Infect. Microbiol. 2022, 12, 884365. [Google Scholar] [CrossRef]
- Wu, J.Y.; Srinivas, P.; Pogue, J.M. Cefiderocol: A Novel Agent for the Management of Multidrug-Resistant Gram-Negative Organisms. Infect. Dis. Ther. 2020, 9, 17–40. [Google Scholar] [CrossRef] [PubMed]
- Tan, X.; Kim, H.S.; Baugh, K.; Huang, Y.; Kadiyala, N.; Wences, M.; Singh, N.; Wenzler, E.; Bulman, Z.P. Therapeutic Options for Metallo-β-Lactamase-Producing Enterobacterales. Infect. Drug Resist. 2021, 14, 125–142. [Google Scholar] [CrossRef]
- Pitout, J.D.; Nordmann, P.; Poirel, L. Carbapenemase-Producing Klebsiella pneumoniae, a Key Pathogen Set for Global Nosocomial Dominance. Antimicrob. Agents Chemother. 2015, 59, 5873–5884. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Li, Y.; Song, N.; Chen, Y. Risk factors for carbapenem-resistant Klebsiella pneumoniae infection: A meta-analysis. J. Glob. Antimicrob. Resist. 2020, 21, 306–313. [Google Scholar] [CrossRef] [PubMed]
- Correa, L.; Martino, M.D.V.; Siqueira, I.; Pasternak, J.; Gales, A.C.; Silva, C.V.; Camargo, T.Z.S.; Scherer, P.F.; Marra, A.R. A hospital-based matched case-control study to identify clinical outcome and risk factors associated with carbapenem-resistant Klebsiella pneumoniae infection. BMC Infect. Dis. 2013, 13, 80. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Qin, R.R.; Huang, L.; Sun, L.Y. Risk Factors for Carbapenem-resistant Klebsiella pneumoniae Infection and Mortality of Klebsiella pneumoniae Infection. Chin. Med. J. 2018, 131, 56–62. [Google Scholar] [CrossRef]
- Hussein, K.; Raz-Pasteur, A.; Finkelstein, R.; Neuberger, A.; Shachor-Meyouhas, Y.; Oren, I.; Kassis, I. Impact of carbapenem resistance on the outcome of patients’ hospital-acquired bacteraemia caused by Klebsiella pneumoniae. J. Hosp. Infect. 2013, 83, 307–313. [Google Scholar] [CrossRef] [PubMed]
- Jiao, Y.; Qin, Y.; Liu, J.; Li, Q.; Dong, Y.; Shang, Y.; Huang, Y.; Liu, R. Risk factors for carbapenem-resistant Klebsiella pneumoniae infection/colonization and predictors of mortality: A retrospective study. Pathog. Glob. Health 2015, 109, 68–74. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Li, X.; Luo, M.; Xu, X.; Su, K.; Chen, S.; Qing, Y.; Li, Y.; Qiu, J. Risk Factors for Carbapenem-Resistant Klebsiella pneumoniae Infection: A Meta-Analysis. Microb. Drug Resist. 2018, 24, 190–198. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, M.E. Risk factors in acquiring multidrug-resistant Klebsiella pneumoniae infections in a hospital setting in Saudi Arabia. Sci. Rep. 2023, 13, 11626. [Google Scholar] [CrossRef]
- Hu, Y.; Liu, C.; Shen, Z.; Zhou, H.; Cao, J.; Chen, S.; Lv, H.; Zhou, M.; Wang, Q.; Sun, L.; et al. Prevalence, risk factors and molecular epidemiology of carbapenem-resistant Klebsiella pneumoniae in patients from Zhejiang, China, 2008–2018. Emerg. Microbes Infect. 2020, 9, 1771–1779. [Google Scholar] [CrossRef] [PubMed]
- European Centre for Disease Prevention and Control. Antimicrobial Resistance in the EU/EEA (EARS-Net). Annual Epidemiological Report for 2022. Available online: https://www.ecdc.europa.eu/sites/default/files/documents/AER-antimicrobial-resistance.pdf (accessed on 21 January 2024).
- Institutul Național de Sănătate Publică. CARMIAAM-ROM 2021 (Consumul de Antibiotice, Rezistența Microbiană și Infecții Asociate Asistenței Medicale în România—2021). Available online: https://insp.gov.ro/centrul-national-de-supraveghere-si-control-al-bolilor-transmisibile-cnscbt/analiza-date-supraveghere (accessed on 22 January 2024).
- Institutul Național de Sănătate Publică. CARMIAAM-ROM 2020 (Consumul de Antibiotice, Rezistența Microbiană și Infecții Asociate Asistenței Medicale în România—2020). Available online: https://insp.gov.ro/centrul-national-de-supraveghere-si-control-al-bolilor-transmisibile-cnscbt/analiza-date-supraveghere (accessed on 22 January 2024).
- Timofte, D.; Panzaru, C.V.; Maciuca, I.E.; Dan, M.; Mare, A.D.; Man, A.; Toma, F. Active surveillance scheme in three Romanian hospitals reveals a high prevalence and variety of carbapenamase-producing Gram-negative bacteria: A pilot study, December 2014 to May 2015. Eurosurveillance 2016, 21, 30262. [Google Scholar] [CrossRef] [PubMed]
- Coppi, M.; Antonelli, A.; Niccolai, C.; Bartolini, A.; Bartolini, L.; Grazzini, M.; Mantengoli, E.; Farese, A.; Pieralli, F.; Mechi, M.T.; et al. Nosocomial outbreak by NDM-1-producing Klebsiella pneumoniae highly resistant to cefiderocol, Florence, Italy, August 2021 to June 2022. Eurosurveillance 2022, 27, 2200795. [Google Scholar] [CrossRef] [PubMed]
- European Centre for Disease Prevention and Control. Outbreak of Carbapenemase-Producing (NDM-1 and OXA-48) and Colistin-Resistant Klebsiella pneumoniae ST307, North-East Germany. 2019. Available online: https://www.ecdc.europa.eu/sites/default/files/documents/Klebsiella-pneumoniae-resistance-Germany-risk-assessment.pdf (accessed on 21 January 2024).
- European Centre for Disease Prevention and Control. Regional outbreak of New Delhi Metallo-Beta-Lactamase-Producing Carbapenem-Resistant Enterobacteriaceae, Italy, 2018–2019. Available online: https://www.ecdc.europa.eu/sites/default/files/documents/04-Jun-2019-RRA-Carbapenems%2C%20Enterobacteriaceae-Italy.pdf (accessed on 24 January 2024).
- Emeraud, C.; Mahamat, A.; Jousset, A.B.; Bernabeu, S.; Goncalves, T.; Pommier, C.; Girlich, D.; Birer, A.; Rodriguez, C.; Pawlotsky, J.M.; et al. Emergence and rapid dissemination of highly resistant NDM-14-producing Klebsiella pneumoniae ST147, France, 2022. Eurosurveillance 2023, 28, 2300095. [Google Scholar] [CrossRef] [PubMed]
- Székely, E.; Damjanova, I.; Jánvári, L.; Vas, K.E.; Molnár, S.; Bilca, D.V.; Lőrinczi, L.K.; Tóth, A. First description of bla(NDM-1), bla(OXA-48), bla(OXA-181) producing Enterobacteriaceae strains in Romania. Int. J. Med. Microbiol. 2013, 303, 697–700. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. AWaRe Classification of Antibiotics for Evaluation and Monitoring of Use. 2023. Available online: https://www.who.int/publications/i/item/WHO-MHP-HPS-EML-2023.04 (accessed on 24 January 2024).
- Wang, N.; Zhan, M.; Wang, T.; Liu, J.; Li, C.; Li, B.; Han, X.; Li, H.; Liu, S.; Cao, J.; et al. Long Term Characteristics of Clinical Distribution and Resistance Trends of Carbapenem-Resistant and Extended-Spectrum β-Lactamase Klebsiella pneumoniae Infections: 2014–2022. Infect. Drug Resist. 2023, 16, 1279–1295. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Li, D.; Huang, X.; Long, S.; Yu, H. The Distribution of K. pneumoniae in Different Specimen Sources and Its Antibiotic Resistance Trends in Sichuan, China From 2017 to 2020. Front. Med. 2022, 9, 759214. [Google Scholar] [CrossRef] [PubMed]
- Institutul Național de Sănătate Publică. CARMIAAM-ROM 2019 (Consumul de Antibiotice, Rezistența Microbiană și Infecții Asociate Asistenței Medicale în România—2019). Available online: https://www.cnscbt.ro/index.php/analiza-date-supraveghere/infectii-nosocomiale-1/2704-consumul-de-antibiotice-rezistenta-microbiana-si-infectii-asociate-asistentei-medicale-in-romania-2019 (accessed on 23 January 2024).
- Shein, A.M.S.; Wannigama, D.L.; Higgins, P.G.; Hurst, C.; Abe, S.; Hongsing, P.; Chantaravisoot, N.; Saethang, T.; Luk-In, S.; Liao, T.; et al. High prevalence of mgrB-mediated colistin resistance among carbapenem-resistant Klebsiella pneumoniae is associated with biofilm formation, and can be overcome by colistin-EDTA combination therapy. Sci. Rep. 2022, 12, 12939. [Google Scholar] [CrossRef]
- Della Rocca, M.T.; Foglia, F.; Crudele, V.; Greco, G.; De Filippis, A.; Franci, G.; Finamore, E.; Galdiero, M. Antimicrobial resistance changing trends of Klebsiella pneumoniae isolated over the last 5 years. New Microbiol. 2022, 45, 338–343. [Google Scholar]
- The European Committee on Antimicrobial Susceptibility Testing. Archive of EUCAST Tables and Documents. Available online: https://www.eucast.org/ast_of_bacteria/previous_versions_of_documents (accessed on 20 January 2024).
AMR Profile | Inpatients (N, %) 2 | Outpatients (N, %) 3 | Z Score |
---|---|---|---|
Non-MDR Klebsiella pneumoniae | 191 (35%) | 100 (62.1%) | z = 6.74, p < 0.01 |
CRKP | 207 (40.1%) | 25 (16.1%) | z = 4.78, p < 0.01 |
MDR Klebsiella pneumoniae | 307 (56.3%) | 59 (36.6%) | z = 3.89, p < 0.01 |
Isolates for which the AMR profile could not be defined 1 | 47 | 2 | - |
AMR Profile | ≤3 Days (N = 306; %) 1 | 3–10 Days (N = 99; %) 2 | ≥10 Days (N = 140; %) 3 | Chi Square Test |
---|---|---|---|---|
CRKP | 60 (19.6%) | 54 (54.5%) | 93 (66.4%) | ꭓ2 = 104.27, p < 0.01 |
MDR Klebsiella pneumoniae | 137 (44.7%) | 65 (65.6%) | 105 (75%) | ꭓ2 = 49.68, p < 0.01 |
Age Group | CRKP | MDR Klebsiella pneumoniae | ||
---|---|---|---|---|
R/T, % 1 | Reference—0–20 Years Age Group (RR, 95% CI) | R/T, % 2 | Reference—0–20 Years Age Group (RR, 95% CI) | |
≤20 years | 6/35 (17.1%) | RR = 1 | 13/33 (39.3%) | RR = 1 |
21–40 years | 24/92 (26%) | RR = 1.52, 95% CI [0.68, 3.4] | 35/93 (37.6%) | RR = 0.95, 95% CI [0.58, 1.57] |
41–60 years | 69/174 (39.6%) | RR = 2.31, 95% CI [1.09, 4.9] | 92/168 (54.7%) | RR = 1.39, 95% CI [0.89, 2.16] |
61–80 years | 110/304 (36.1%) | RR = 2.11, 95% CI [1, 4.43] | 182/298 (61%) | RR = 1.55, 95% CI [1, 2.38] |
≥81 years | 23/65 (35.3%) | RR = 2.06, 95% CI [0.92, 4.58] | 44/65 (67.6%) | RR = 1.71, 95% CI [1.08, 2.7] |
Risk Factor | CRKP | MDR Klebsiella pneumoniae | ||
---|---|---|---|---|
N = 207, % 1 | Reference— Non-CRKP (RR, 95% CI) | N = 307, % 1 | Reference— Non-MDR (RR, 95% CI) | |
Recent antibiotic usage | 70 (33.8%) | RR = 1.27, 95% CI [1.03, 1.58] | 110 (35.8%) | RR = 1.38, 95% CI [1.21, 1.57] |
Recent contact with hospital settings | 117 (56.5%) | RR = 1.13, 95% CI [0.91, 1.4] | 197 (64.1%) | RR = 1.54, 95% CI [1.32, 1.8] |
Antibiotic | Resistance (R/T, %) | 2019 vs. 2020 | 2020 vs. 2021 | 2019 vs. 2021 | 2019 vs. 2020–2021 |
---|---|---|---|---|---|
C3G | 2019—183/364 (50.3%) 2020—81/137 (59.1%) 2021—95/154 (61.7%) | ꭓ2 = 3.12, p = 0.08 | ꭓ2 = 0.19, p = 0.71 | ꭓ2 = 5.66, p = 0.02 | 50.3% vs. 60.5% ꭓ2 = 6.8, p < 0.01 |
Carbapenems | 2019—80/366 (21.9%) 2020—47/138 (34.1%) 2021—105/166 (63.3%) | ꭓ2 = 7.91, p < 0.01 | ꭓ2 = 25.69, p < 0.01 | ꭓ2 = 86.27, p < 0.01 | 21.9% vs. 50% ꭓ2 = 58.1, p < 0.01 |
MBL | 2019—3/79 (3.8%) 2020—17/45 (37.8%) 2021—37/89 (41.6%) | ꭓ2 = 24.47, p < 0.01 | ꭓ2 = 0.17, p = 0.71 | ꭓ2 = 32.92, p < 0.01 | 3.8% vs. 40.3% ꭓ2 = 33.78, p < 0.01 |
AG | 2019—106/366 (29%) 2020—63/137 (46%) 2021—84/153 (54.9%) | ꭓ2 = 12.94, p < 0.01 | ꭓ2 = 2.29, p = 0.15 | ꭓ2 = 31.28, p < 0.01 | 29% vs. 50.7% ꭓ2 = 32.24, p < 0.01 |
FQ | 2019—182/366 (49.7%) 2020—75/137 (54.7%) 2021—96/148 (64.9%) | ꭓ2 = 1, p = 0.36 | ꭓ2 = 3.03, p = 0.09 | ꭓ2 = 9.72, p < 0.01 | 49.7% vs. 60% ꭓ2 = 6.81, p = 0.01 |
TMP/SMX | 2019—165/361 (45.7%) 2020—60/137 (43.8%) 2021—43/152 (28.3%) | ꭓ2 = 0.14, p = 0.76 | ꭓ2 = 7.55, p < 0.01 | ꭓ2 = 13.46, p < 0.01 | 45.7% vs. 35.6% ꭓ2 = 6.71, p = 0.01 |
Colistin | 2019—57/327 (17.4%) 2020—21/90 (23.3%) 2021—60/95 (63.2%) | ꭓ2 = 1.61, p = 0.22 | ꭓ2 = 29.78, p < 0.01 | ꭓ2 = 76.81, p < 0.01 | 17.4% vs. 43.8% ꭓ2 = 41.67, p < 0.01 |
Tigecycline 1 | 2019—1/328 (0.3%) 2020—2/42 (4.8%) 2021—5/21 (23.8%) | ꭓ2 = 9.19, p = 0.03 | ꭓ2 = 5.14, p = 0.03 | ꭓ2 = 64.53, p < 0.01 | 0.3% vs. 11.1% ꭓ2 = 30.79, p < 0.01 |
Fosfomycin | 2019—99/301 (32.9%) 2020—33/107 (30.8%) 2021—22/26 (84.6%) | ꭓ2 = 0.15, p = 0.72 | ꭓ2 = 24.94, p < 0.01 | ꭓ2 = 27.46, p < 0.01 | 32.9% vs. 41.4% ꭓ2 = 2.88, p = 0.1 |
MDR | 2019—188/366 (51.4%) 2020—82/137 (59.9%) 2021—96/154 (62.3%) | ꭓ2 = 2.88, p = 0.1 | ꭓ2 = 0.18, p = 0.71 | ꭓ2 = 5.26, p = 0.02 | 51.4% vs. 61.2% ꭓ2 = 6.31, p = 0.01 |
Antibiotic | Resistance (R/T, %) | 2019 vs. 2020 | 2020 vs. 2021 | 2019 vs. 2021 | 2019 vs. 2020–2021 |
---|---|---|---|---|---|
TMP/SMX | 2019—57/77 (74%) 2020—31/45 (68.9%) 2021—34/87 (39.1%) | ꭓ2 = 0.37, p = 0.53 | ꭓ2 = 10.54, p < 0.01 | ꭓ2 = 20.19, p < 0.01 | 57/77 vs. 65/132 74% vs. 49.2% ꭓ2 = 12.29, p < 0.01 |
Colistin | 2019—41/75 (54.7%) 2020—20/40 (50%) 2021—60/75 (80%) | ꭓ2 = 0.22, p = 0.69 | ꭓ2 = 11.08, p < 0.01 | ꭓ2 = 10.94, p < 0.01 | 41/75 vs. 80/115 54.7% vs. 69.6% ꭓ2 = 4.35, p = 0.04 |
Tigecycline 1 | 2019—0/73 (0%) 2020—2/13 (15.4%) 2021—5/19 (26.3%) | ꭓ2 = 11.49, p = 0.02 | ꭓ2 = 0.54, p = 0.67 | ꭓ2 = 20.31, p < 0.01 | 0/73 vs. 7/32 0% vs. 21.9% ꭓ2 = 17.1, p < 0.01 |
Fosfomycin | 2019—33/60 (55%) 2020—15/33 (45.5%) 2021—18/20 (90%) | ꭓ2 = 0.77, p = 0.39 | ꭓ2 = 10.51, p < 0.01 | ꭓ2 = 7.95, p < 0.01 | 33/60 vs. 33/53 55% vs. 62.3% ꭓ2 = 0.61, p = 0.45 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cireșă, A.; Tălăpan, D.; Vasile, C.-C.; Popescu, C.; Popescu, G.-A. Evolution of Antimicrobial Resistance in Klebsiella pneumoniae over 3 Years (2019–2021) in a Tertiary Hospital in Bucharest, Romania. Antibiotics 2024, 13, 431. https://doi.org/10.3390/antibiotics13050431
Cireșă A, Tălăpan D, Vasile C-C, Popescu C, Popescu G-A. Evolution of Antimicrobial Resistance in Klebsiella pneumoniae over 3 Years (2019–2021) in a Tertiary Hospital in Bucharest, Romania. Antibiotics. 2024; 13(5):431. https://doi.org/10.3390/antibiotics13050431
Chicago/Turabian StyleCireșă, Alexandra, Daniela Tălăpan, Carmen-Cristina Vasile, Cristina Popescu, and Gabriel-Adrian Popescu. 2024. "Evolution of Antimicrobial Resistance in Klebsiella pneumoniae over 3 Years (2019–2021) in a Tertiary Hospital in Bucharest, Romania" Antibiotics 13, no. 5: 431. https://doi.org/10.3390/antibiotics13050431
APA StyleCireșă, A., Tălăpan, D., Vasile, C. -C., Popescu, C., & Popescu, G. -A. (2024). Evolution of Antimicrobial Resistance in Klebsiella pneumoniae over 3 Years (2019–2021) in a Tertiary Hospital in Bucharest, Romania. Antibiotics, 13(5), 431. https://doi.org/10.3390/antibiotics13050431