Comparative In Vitro Activity of Ceftazidime-Avibactam, Imipenem-Relebactam, and Meropenem-Vaborbactam against Carbapenem-Resistant Clinical Isolates of Klebsiella pneumoniae and Pseudomonas aeruginosa
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Bacterial Strains
4.2. Antimicrobial Susceptibility Testing
4.3. Carbapenemase Gene Detection
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cosgrove, S.E. The relationship between antimicrobial resistance and patient outcomes: Mortality, length of hospital stay, and health care costs. Clin. Infect. Dis. 2006, 42 (Suppl. S2), S82–S89. [Google Scholar] [CrossRef] [PubMed]
- Sydnor, E.R.; Perl, T.M. Hospital epidemiology and infection control in acute-care settings. Clin. Microbiol. Rev. 2011, 24, 141–173. [Google Scholar] [CrossRef] [PubMed]
- DiazGranados, C.A.; Zimmer, S.M.; Klein, M.; Jernigan, J.A. Comparison of mortality associated with vancomycin-resistant and vancomycin-susceptible enterococcal bloodstream infections: A meta-analysis. Clin. Infect. Dis. 2005, 41, 327–333. [Google Scholar] [CrossRef] [PubMed]
- Wagenlehner, F.M.E.; Dittmar, F. Re: Global Burden of Bacterial Antimicrobial Resistance in 2019: A Systematic Analysis. Eur. Urol. 2022, 82, 658. [Google Scholar] [CrossRef] [PubMed]
- WHO Priority Pathogens List for R&D of New Antibiotics. Available online: www.who.int/mediacentre/news/releases/2017/bacteria-antibiotics-needed/en/ (accessed on 6 November 2023).
- Chen, Z.; Chen, Y.; Fang, Y.; Wang, X.; Chen, Y.; Qi, Q.; Huang, F.; Xiao, X. Meta-analysis of colistin for the treatment of Acinetobacter baumanii infection. Sci. Rep. 2015, 5, 17091. [Google Scholar] [CrossRef] [PubMed]
- Doi, Y. Treatment Options for Carbapenem-resistant Gram-negative bacterial infections. Clin. Infect. Dis. 2019, 69 (Suppl. S7), S565–S575. [Google Scholar] [CrossRef] [PubMed]
- Bassetti, M.; Echols, R.; Matsunaga, Y.; Ariyasu, M.; Doi, Y.; Ferrer, R.; Lodise, T.P.; Naas, T.; Niki, Y.; Paterson, D.L.; et al. Efficacy and safety of cefiderocol or best available therapy for the treatment of serious infections caused by carbapenem-resistant Gram-negative bacteria (CREDIBLE-CR): A randomised, open-label, multicentre, pathogen-focused, descriptive, phase 3 trial. Lancet Infect. Dis. 2021, 21, 226–240. [Google Scholar] [CrossRef] [PubMed]
- Sophonsri, A.; Kelsom, C.; Lou, M.; Nieberg, P.; Wong-Beringer, A. Risk factors and outcome associated with coinfection with carbapenem-resistant Klebsiella pneumoniae and carbapenem-resistant Pseudomonas aeruginosa or Acinetobacter baumanii: A descriptive analysis. Front. Cell Infect. Microbiol. 2023, 13, 1231740. [Google Scholar] [CrossRef] [PubMed]
- Clinical and Laboratory Standards Institute. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically, 11th ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2018; pp. 1–242. [Google Scholar]
- Gaibani, P.; Campoli, C.; Lewis, R.E.; Volpe, S.L.; Scaltriti, E.; Giannella, M.; Pongolini, S.; Berlingeri, A.; Cristini, F.; Bartoletti, M.; et al. In vivo evolution of resistant subpopulations of KPC-producing Klebsiella pneumoniae during ceftazidime/avibactam treatment. J. Antimicrob. Chemother. 2018, 73, 1525–1529. [Google Scholar] [CrossRef] [PubMed]
- Giddins, M.J.; Macesic, N.; Annavajhala, M.K.; Stump, S.; Khan, S.; McConville, T.H.; Mehta, M.; Gomez-Simmonds, A.; Uhlemann, A.C. Successive Emergence of Ceftazidime-Avibactam Resistance through Distinct Genomic Adaptations in blaKPC-2-Harboring Klebsiella pneumoniae Sequence Type 307 Isolates. Antimicrob. Agents Chemother. 2018, 62, e02101-17. [Google Scholar] [CrossRef] [PubMed]
- Shields, R.K.; Nguyen, M.H.; Press, E.G.; Chen, L.; Kreiswirth, B.N.; Clancy, C.J. Emergence of ceftazidime-avibactam resistance and restoration of carbapenem susceptibility in Klebsiella pneumoniae carbapenemase-producing K. pneumoniae: A case report and review of literature. Open Forum Infect. Dis. 2017, 4, ofx101. [Google Scholar] [CrossRef] [PubMed]
- Haidar, G.; Clancy, C.J.; Shields, R.K.; Hao, B.; Cheng, S.; Nguyen, M.H. Mutations in blaKPC-3 that confer ceftazidime-avibactam resistance encode novel KPC-3 variants that function as extended-spectrum β-Lactamases. Antimicrob. Agents Chemother. 2017, 61, e02534-16. [Google Scholar] [CrossRef] [PubMed]
- Masuda, N.; Sakagawa, E.; Ohya, S.; Gotoh, N.; Tsujimoto, H.; Nishino, T. Substrate specificities of MexAB-OprM, MexCD-OprJ, and MexXY-oprM efflux pumps in Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2000, 44, 3322–3327. [Google Scholar] [CrossRef] [PubMed]
- Xavier, D.E.; Picão, R.C.; Girardello, R.; Fehlberg, L.C.; Gales, A.C. Efflux pumps expression and its association with porin down-regulation and beta-lactamase production among Pseudomonas aeruginosa causing bloodstream infections in Brazil. BMC Microbiol. 2010, 10, 217. [Google Scholar] [CrossRef]
- Flury, B.B.; Bösch, A.; Gisler, V.; Egli, A.; Seiffert, S.N.; Nolte, O.; Findlay, J. Multifactorial resistance mechanisms associated with resistance to ceftazidime-avibactam in clinical Pseudomonas aeruginosa isolates from Switzerland. Front. Cell Infect. Microbiol. 2023, 13, 1098944. [Google Scholar]
- Michaelis, C.; Grohmann, E. Horizontal Gene Transfer of Antibiotic Resistance Genes in Biofilms. Antibiotics 2023, 12, 328. [Google Scholar] [CrossRef] [PubMed]
- Acar Kirit, H.; Lagator, M.; Bollback, J.P. Experimental determination of evolutionary barriers to horizontal gene transfer. BMC Microbiol. 2020, 20, 326. [Google Scholar] [CrossRef] [PubMed]
- Ball, P.R.; Shales, S.W.; Chopra, I. Plasmid-mediated tetracycline resistance in Escherichia coli involves increased efflux of the antibiotic. Biochem. Biophys. Res. Commun. 1980, 93, 74–81. [Google Scholar] [CrossRef] [PubMed]
- McMurry, L.; Petrucci, R.E., Jr.; Levy, S.B. Active efflux of tetracycline encoded by four genetically different tetracycline resistance determinants in Escherichia coli. Proc. Natl. Acad. Sci. USA 1980, 77, 3974–3977. [Google Scholar] [CrossRef] [PubMed]
- Daigle, D.M.; Cao, L.; Fraud, S.; Wilke, M.S.; Pacey, A.; Klinoski, R.; Strynadka, N.C.; Dean, C.R.; Poole, K. Protein modulator of multidrug efflux gene expression in Pseudomonas aeruginosa. J. Bacteriol. 2007, 189, 5441–5451. [Google Scholar] [CrossRef] [PubMed]
Overall (n = 48) | K. pneumoniae Single Isolation (n = 24) | Co-Isolation (n = 24) | Overall (n = 48) | P. aeruginosa Single Isolation (n = 24) | Co-Isolation (n = 24) | ||
---|---|---|---|---|---|---|---|
Imipenem-relebactam | MIC Range (µg/mL) | ≤0.0625, 16 | 0.125, 16 | ≤0.0625, 1 | 0.25, 16 | 0.25, 4 | 0.25, 16 |
MIC50 (µg/mL) | 0.125 | 0.25 | 0.125 | 1 | 1 | 1 | |
MIC90 (µg/mL) | 1 | 1 | 0.5 | 2 | 4 | 2 | |
% Susceptible | 95.8 | 91.7 | 100 | 91.7 | 87.5 | 95.8 | |
Ceftazidime-avibactam | MIC Range (µg/mL) | 0.125, >16 | 0.125, > 16 | 0.5, 8 | 0.125, >16 | 0.125, >16 | 2, >16 |
MIC50 (µg/mL) | 2 | 2 | 2 | 8 | 8 | 8 | |
MIC90 (µg/mL) | 8 | >16 | 4 | >16 | >16 | 16 | |
% Susceptible | 93.8 | 87.5 | 100 | 79.2 | 79.2 | 79.2 | |
Meropenem-vaborbactam | MIC Range (µg/mL) | ≤0.0625, >16 | ≤0.0625, >16 | ≤0.0625, >16 | ≤0.0625, >16 | ≤0.0625, >16 | 4, >16 |
MIC50 (µg/mL) | ≤0.0625 | 0.125 | ≤0.0625 | 16 | 16 | 16 | |
MIC90 (µg/mL) | 4 | 2 | 4 | >16 | >16 | >16 | |
% Susceptible | 93.8 | 95.8 | 91.7 | 6.3 | 12.5 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sophonsri, A.; Kalu, M.; Wong-Beringer, A. Comparative In Vitro Activity of Ceftazidime-Avibactam, Imipenem-Relebactam, and Meropenem-Vaborbactam against Carbapenem-Resistant Clinical Isolates of Klebsiella pneumoniae and Pseudomonas aeruginosa. Antibiotics 2024, 13, 416. https://doi.org/10.3390/antibiotics13050416
Sophonsri A, Kalu M, Wong-Beringer A. Comparative In Vitro Activity of Ceftazidime-Avibactam, Imipenem-Relebactam, and Meropenem-Vaborbactam against Carbapenem-Resistant Clinical Isolates of Klebsiella pneumoniae and Pseudomonas aeruginosa. Antibiotics. 2024; 13(5):416. https://doi.org/10.3390/antibiotics13050416
Chicago/Turabian StyleSophonsri, Anthony, Michelle Kalu, and Annie Wong-Beringer. 2024. "Comparative In Vitro Activity of Ceftazidime-Avibactam, Imipenem-Relebactam, and Meropenem-Vaborbactam against Carbapenem-Resistant Clinical Isolates of Klebsiella pneumoniae and Pseudomonas aeruginosa" Antibiotics 13, no. 5: 416. https://doi.org/10.3390/antibiotics13050416
APA StyleSophonsri, A., Kalu, M., & Wong-Beringer, A. (2024). Comparative In Vitro Activity of Ceftazidime-Avibactam, Imipenem-Relebactam, and Meropenem-Vaborbactam against Carbapenem-Resistant Clinical Isolates of Klebsiella pneumoniae and Pseudomonas aeruginosa. Antibiotics, 13(5), 416. https://doi.org/10.3390/antibiotics13050416