Antifungal Activity of Brilacidin, a Nonpeptide Host Defense Molecule
Abstract
:1. Introduction
2. Results
3. Materials and Methods
3.1. Drugs
3.2. Isolates
3.3. Testing
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mookerjee, M.; Anderson, M.A.; Haagsman, H.P.; Davidson, D.J. Antimicrobial host defense peptides: Function and clinical potential. Nat. Rev. Drug Discov. 2020, 19, 311–332. [Google Scholar] [CrossRef]
- Lewies, A.; Wentzel, J.F.; Jacobs, G.; Du Plessis, L.H. The potential use of natural and structural analogues of antimicrobial peptides in the fight against neglected tropical diseases. Molecules 2015, 20, 15392–15433. [Google Scholar] [CrossRef]
- Baxter, A.A.; Poon, I.K.H.; Hulett, M.D. The lure of the lipids: How defensins exploit membrane phospholipids to induce cytolysis in target cells. Cell Death Dis. 2017, 8, e2712. [Google Scholar] [CrossRef]
- Ballard, E.; Yucel, R.; Melchers, W.J.G.; Brown, A.J.P.; Verweij, P.E.; Warris, A. Antifungal activity of antimicrobial peptides and proteins against Aspergillus fumigatus. J. Fungi 2020, 6, 65. [Google Scholar] [CrossRef]
- de la Fuentes-Nunez, C.; Silva, O.N.; Lu, T.K.; Franco, O.L. Antimicrobial peptides: Role in human disease and potential as immunotherapies. Pharmacol. Ther. 2017, 178, 132–140. [Google Scholar] [CrossRef]
- Mensa, B.; Howell, G.L.; Scott, R.; DeGrado, W.F. Comparative mechanistic studies of brilacidin, daptomycin, and the antimicrobial peptide LL16. Antimicrob. Agents Chemother. 2014, 58, 5136–5145. [Google Scholar] [CrossRef]
- Lima, P.G.; Oliveira, J.T.A.; Amaral, J.L.; Freitas, C.D.T.; Souza, P.F.N. Synthetic antimicrobial peptides: Characteristics, design, and potential as alternative molecules to overcome microbial resistance. Life Sci. 2021, 78, 119647. [Google Scholar] [CrossRef]
- Li, J.; Fernandez-Millan, P.; Boix, E. Synergism between host defense peptides and antibiotics against bacterial infections. Curr. Top. Med. Chem. 2020, 20, 1238–1263. [Google Scholar] [CrossRef]
- Payne, J.E.; Dubois, A.V.; Ingram, R.J.; Weldon, S.; Taggart, C.C.; Elborn, J.S.; Tunney, M.M. Activity of innate antimicrobial peptides and ivacaftor against clinical cystic fibrosis respiratory pathogens. Internat. J. Antimicrob. Agents 2017, 50, 417–435. [Google Scholar] [CrossRef]
- Scott, R.W.; Tew, G.N. Mimics of host defense proteins; strategies for translation to therapeutic applications. Curr. Top. Med. Chem. 2017, 17, 576–589. [Google Scholar] [CrossRef]
- Tew, G.N.; Scott, R.W.; Klein, M.L.; DeGrado, W.F. De novo design of antimicrobial polymers, foldamers and small molecules: From discovery to practical applications. Acc. Chem. Res. 2010, 43, 30–39. [Google Scholar] [CrossRef]
- Lyu, Y.; Yang, Y.; Lyu, X.; Dong, N.; Shan, A. Antimicrobial activity, improved cell selectivity and mode of action of short PMAP-36-derived peptides against bacteria and Candida. Sci. Rep. 2016, 6, 27258. [Google Scholar] [CrossRef]
- Woodburn, K.W.; Clemens, L.E.; Jaynes, J.; Joubert, L.-M.; Botha, A.; Nazik, H.; Stevens, D.A. Designed antimicrobial peptides for recurrent vulvovaginal candidiasis treatment. Antimicrob. Agents Chemother. 2019, 63, e02690-18. [Google Scholar] [CrossRef]
- Scott, R.W.; DeGrado, W.F.; Tew, G.N. De novo designed synthetic mimics of antimicrobial peptides. Curr. Opin. Biotechnol. 2008, 19, 620–627. [Google Scholar] [CrossRef]
- Stevens, D.A.; Hope, W. Polyene antifungals. In Principles and Practice of Infectious Disease, 10th ed.; Blaser, M.J., Cohen, J.I., Holland, S.M., Eds.; Elsevier: Philadelphia, PA, USA, in press.
- World Health Organization. WHO Fungal Priority Pathogens List to Guide Research, Development and Public Health Action; World Health Organization Report; World Health Organization: Geneva, Switzerland, 2022. [Google Scholar]
- CLSI. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Filamentous Fungi, 3rd ed.; CLSI Standard M38; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2017. [Google Scholar]
- CLSI. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts, 4th ed.; CLSI Standard M27; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2017. [Google Scholar]
- Denning, D.W.; Hanson, L.H.; Perlman, A.M.; Stevens, D.A. In vitro susceptibility and synergy studies of Aspergillus species to conventional and new agents. Diag. Micro. Infect. Dis. 1992, 15, 21–34. [Google Scholar] [CrossRef]
- Giovati, L.; Ciociola, T.; Magliani, W.; Conti, S. Antimicrobial peptides with antiprotozoal activity: Current state and future perspectives. Future Med. Chem. 2018, 10, 2569–2572. [Google Scholar] [CrossRef]
- Mishra, B.; Reiling, S.; Zarena, D.; Wang, G. Host defense antimicrobial peptides as antibiotics: Design and application strategies. Curr. Opin. Chem. Biol. 2017, 38, 87–96. [Google Scholar] [CrossRef]
- Kuroda, K.; Caputo, G.A. Antimicrobial polymers as synthetic mimics of host defense peptides. WIREs Nanomed. Nanobiotechnol. 2013, 5, 49–66. [Google Scholar] [CrossRef]
- Sierra, J.M.; Fusté, E.; Rabanal, F.; Vinuesa, T.; Viñas, M. An overview of antimicrobial peptides and the latest advances in their development. Expert Opin. Biol. Ther. 2017, 17, 663–676. [Google Scholar] [CrossRef]
- Grigoreva, A.; Bardasheva, A.; Tupitsyna, A.; Amirkhanov, N.; Tikunova, N.; Pyshniyi, D.; Kleshev, M.; Ryabchikova, E. Changes in the ultrastructure of Candida albicans treated with cationic peptides. Microorganisms 2020, 8, 582. [Google Scholar] [CrossRef]
- Lima, P.G.; Souza, P.F.N.; Freitas, C.D.T.; Oliveira, J.T.A.; Dias, L.P.; Neto, J.X.S.; Vasconcelos, I.M.; Lopes, J.L.S.; Sousa, D.O.B. Anticandidal activity of synthetic peptides: Mechanisms of action revealed by scanning electron and fluorescence microscopies and synergism effect with nystatin. J. Pep. Sci. 2020, 26, e3249. [Google Scholar] [CrossRef]
- Delattin, N.; De Brucker, K.; De Cremer, K.; Cammue, B.P.A.; Thevissen, K. Antimicrobial peptides as a strategy to combat fungal biofilms. Curr. Top. Med. Chem. 2017, 17, 604–612. [Google Scholar] [CrossRef]
- Sheehan, G.; Bergsson, G.; McElvaney, L.G.; Reeves, E.P.; Kavanagh, K. The human cathelicidin antimicrobial peptide LL-37 promotes the growth of the pulmonary pathogen Aspergillus fumigatus. Infect. Immun. 2018, 86, e00097-18. [Google Scholar] [CrossRef]
- Hacioglu, M.; Guzel, C.B.; Savage, P.B.; Tan, A.S.B. Antifungal susceptibilities, in vitro production of virulence factors and activities of ceragenins against Candida spp. isolated from vulvovaginal candidiasis. Med. Mycol. 2019, 57, 291–299. [Google Scholar] [CrossRef]
- Mercer, D.K.; Torres, M.D.T.; Duay, S.S.; Lovie, E.; Simpson, L.; von Kockritz-Blickwede, M.; de la Fuentes-Nunez, C.; O’Neil, D.A.; Angeles-Boza, A.M. Antimicrobial susceptibility testing of antimicrobial peptides to better predict efficacy. Front. Cell. Infect. Microbiol. 2020, 10, 326. [Google Scholar] [CrossRef]
- dos Reis, T.F.; de Castro, P.A.; Bastos, R.W.; Pinzan, C.F.; Souza, P.F.N.; Ackloo, S.; Hossein, M.A.; Drewry, D.H.; Alkhazraji, S.; Ibrahim, A.S.; et al. A host defense peptide mimetic, brilacidin, potentiates caspofungin antifungal activity against human pathogenic fungi. Nat. Commun. 2023, 14, 2052. [Google Scholar] [CrossRef]
- Corbett, D.; Wise, A.; Langley, T.; Skinner, K.; Trimby, E.; Birchall, S.; Dorall, A.; Sandiford, S.; Williams, J.; Warn, P.; et al. Potentiation of antibiotic activity by a novel cationic peptide: Potency and spectrum of activity of SPR741. Antimicrob. Agents Chemother. 2017, 61, e00200-17. [Google Scholar] [CrossRef]
- Mensa, B.; Kim, Y.H.; Choi, S.; Scott, R.; Caputo, G.A.; DeGrado, W.F. Antibacterial mechanism of action of arylamide foldamers. Antimicrob. Agents Chemother. 2011, 55, 5043–5053. [Google Scholar] [CrossRef]
- Stevens, D.A.; Moss, R.B.; Hernandez, C.; Clemons, K.V.; Martinez, M. Effect of media modified to mimic cystic fibrosis sputum on the susceptibility of Aspergillus fumigatus, and the frequency of resistance at one center. Antimicrob. Agents Chemother. 2016, 60, 2180–2184. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, J.A.G.; Penner, J.; Moss, R.B.; Haagensen, J.A.J.; Clemons, K.V.; Spormann, A.M.; Nazik, H.; Cohen, K.; Banaei, N.; Carolino, E.; et al. Inhibition of Aspergillus fumigatus and its biofilm by Pseudomonas aeruginosa is dependent on the source, phenotype and growth conditions of the bacterium. PLoS ONE 2015, 10, e0134692. [Google Scholar] [CrossRef]
- Overhage, J.; Campisano, A.; Bains, M.; Torfs, E.C.; Rehm, B.H.; Hancock, R.E. Human host defense peptide LL-37 prevents bacterial biofilm formation. Infect. Immun. 2008, 76, 4176–4182. [Google Scholar] [CrossRef] [PubMed]
- Ageitos, J.M.; Sánchez-Pérez, A.; Calo-Mata, P.; Villa, T.G. Antimicrobial peptides (AMPs): Ancient compounds that represent novel weapons in the fight against bacteria. Biochem. Pharmacol. 2017, 133, 117–138. [Google Scholar] [CrossRef] [PubMed]
- Sahl, H.-G.; Pag, U.; Bonness, S.; Wagner, S.; Antcheva, N.; Tossi, A. Mammalian defensins: Structures and mechanism of antibiotic activity. J. Leukocyte Biol. 2005, 77, 466–475. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Liu, S.; Wang, H. Invasive fungi-derived defensins kill drug-resistant bacterial pathogens. Peptides 2018, 99, 82–91. [Google Scholar] [CrossRef] [PubMed]
- Kratochvil, H.T.; Newberry, R.W.; Mensa, B.; Mravic, M.; DeGrado, W.F. Spiers Memorial Lecture: Analysis and de novo design of membrane-interactive peptides. Faraday Discuss. 2021, 24, 9–48. [Google Scholar] [CrossRef]
- Tew, G.N.; Liu, D.; Chen, B.; Doerksen, R.J.; Kaplan, J.; Carroll, P.J.; Klein, M.L.; DeGrado, W.F. De novo design of biomimetic antimicrobial polymers. Proc. Nat. Acad. Sci. USA 2002, 99, 5110–5114. [Google Scholar] [CrossRef]
Brilacidin MICs | |||
---|---|---|---|
Pathogen | Strain | 50% Inhibition | 100% Inhibition |
Coccidioides posadasii | Silv. | 4 | >64 |
Coccidioides sp. | 22-50 | 2 | >64 |
22-40 | 2 | >64 | |
22-35 | 2 | >64 | |
22-33 | 2 | >64 | |
Aspergillus fumigatus | 18-31 | >64 | >64 |
13-130 | >64 | >64 | |
19-12 | >64 | >64 | |
21-23 | 64 | >64 | |
09-03 | >64 | >64 | |
18-32 | 64 | >64 | |
18-117 | >64 | >64 | |
13-30 | >64 | >64 | |
11-13 | >64 | >64 | |
09-117 | >64 | >64 | |
10AF | 64 | >64 | |
Aspergillus lentulus (voriconazole resistant) | 14-39 | 32 | >64 |
Aspergillus terreus | 12-70 | >64 | >64 |
Aspergillus niger | 22-4 | 8 | 16 |
Lomentospora prolificans | 15-101 | 4 | 8 |
15-99 | 4 | 8 | |
15-97 | 4 | 8 | |
15-98 | 4 | 8 | |
94-58 | 8 | 16 | |
10-03 | 4 | 8 | |
15-100 | 8 | 16 | |
Scedosporium apiospermum complex | 12-13 | 4 | 8 |
98-38 | 2 | 8 | |
(Scedosporium apiospermum …) | 01-48 | 4 | 16 |
10-23 | 2 | 4 | |
18-46 | 8 | 16 | |
Fusarium species | 07-144 | 4 | 16 |
22-51 | 8 | 16 | |
07-136 | 2 | 16 | |
00-137 | 2 | 32 | |
19-171 | 2 | 32 | |
12-22 | 1 | 64 | |
22-1 | 2 | 32 | |
Mucorales | |||
Rhizopus species | 16-88 | 4 | 16 |
20-235 | 16 | 32 | |
21-01 | 8 | 16 | |
13-91 | 2 | 8 | |
94-2 | 2 | 32 | |
21-85 | 4 | 64 | |
Mucor species | 20-177 | 16 | 32 |
15-64 | 4 | 64 | |
13-39 | 4 | 32 | |
13-127 | 4 | >64 | |
Unspeciated zygomycete | 07-140 | 2 | 16 |
Sporothrix brasiliensis | 20-18 | 8 | 64 |
20-19 | 16 | 64 | |
20-20 | 16 | 64 | |
Sporothrix schenckii | 20-45 | 4 | 16 |
20-46 | 8 | 32 | |
Cryptococcus neoformans | 00-288 | 1 | 2 |
01-126 | 1 | 1 | |
06-71 | 1 | 1 | |
00-289 | 1 | 2 | |
97-370 | 2 | 2 | |
CN9759 | 1 | 8 | |
17-66 | 2 | 2 |
Brilacidin MICs | |||
---|---|---|---|
Pathogen | Strain | 50% Inhibition | 100% Inhibition |
Candida albicans | 20-132 | 1 | 4 |
5 | 4 | >64 | |
(C. albicans, fluconazole-resistant) | 21-76 | 32 | >64 |
Candida auris | 20-253 | >64 | >64 |
Candida krusei (fluconazole-resistant) | 03-287 | 8 | 16 |
Candida lusitaniae (amphotericin-intermediate) | 22-16 | 8 | 8 |
Torulopsis glabrata (Nakaseomyces glabratus) | 22-21 | 64 | >64 |
Acremonium species (resistant to azoles, polyenes, echinocandins) | 18-51 | 4 | >64 |
Exserohilum species | 19-48 | 1 | 16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Larwood, D.J.; Stevens, D.A. Antifungal Activity of Brilacidin, a Nonpeptide Host Defense Molecule. Antibiotics 2024, 13, 405. https://doi.org/10.3390/antibiotics13050405
Larwood DJ, Stevens DA. Antifungal Activity of Brilacidin, a Nonpeptide Host Defense Molecule. Antibiotics. 2024; 13(5):405. https://doi.org/10.3390/antibiotics13050405
Chicago/Turabian StyleLarwood, David J., and David A. Stevens. 2024. "Antifungal Activity of Brilacidin, a Nonpeptide Host Defense Molecule" Antibiotics 13, no. 5: 405. https://doi.org/10.3390/antibiotics13050405
APA StyleLarwood, D. J., & Stevens, D. A. (2024). Antifungal Activity of Brilacidin, a Nonpeptide Host Defense Molecule. Antibiotics, 13(5), 405. https://doi.org/10.3390/antibiotics13050405