Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = brilacidin

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
8 pages, 226 KiB  
Article
Antifungal Activity of Brilacidin, a Nonpeptide Host Defense Molecule
by David J. Larwood and David A. Stevens
Antibiotics 2024, 13(5), 405; https://doi.org/10.3390/antibiotics13050405 - 28 Apr 2024
Cited by 5 | Viewed by 2071
Abstract
Natural host defensins, also sometimes termed antimicrobial peptides, are evolutionarily conserved. They have been studied as antimicrobials, but some pharmaceutical properties, undesirable for clinical use, have led to the development of synthetic molecules with constructed peptide arrangements and/or peptides not found in nature. [...] Read more.
Natural host defensins, also sometimes termed antimicrobial peptides, are evolutionarily conserved. They have been studied as antimicrobials, but some pharmaceutical properties, undesirable for clinical use, have led to the development of synthetic molecules with constructed peptide arrangements and/or peptides not found in nature. The leading development currently is synthetic small-molecule nonpeptide mimetics, whose physical properties capture the characteristics of the natural molecules and share their biological attributes. We studied brilacidin, an arylamide of this type, for its activity in vitro against fungi (40 clinical isolates, 20 species) that the World Health Organization has highlighted as problem human pathogens. We found antifungal activity at low concentrations for many pathogens, which indicates that further screening for activity, particularly in vivo, is justified to evaluate this compound, and other mimetics, as attractive leads for the development of effective antifungal agents. Full article
15 pages, 1290 KiB  
Article
Brilacidin as a Broad-Spectrum Inhibitor of Enveloped, Acutely Infectious Viruses
by Carol A. Anderson, Michael D. Barrera, Niloufar A. Boghdeh, Miata Smith, Farhang Alem and Aarthi Narayanan
Microorganisms 2024, 12(1), 54; https://doi.org/10.3390/microorganisms12010054 - 28 Dec 2023
Cited by 3 | Viewed by 2422
Abstract
Alphaviruses, belonging to the Togaviridae family, and bunyaviruses, belonging to the Paramyxoviridae family, are globally distributed and lack FDA-approved vaccines and therapeutics. The alphaviruses Venezuelan equine encephalitis virus (VEEV) and eastern equine encephalitis virus (EEEV) are known to cause severe encephalitis, whereas Sindbis [...] Read more.
Alphaviruses, belonging to the Togaviridae family, and bunyaviruses, belonging to the Paramyxoviridae family, are globally distributed and lack FDA-approved vaccines and therapeutics. The alphaviruses Venezuelan equine encephalitis virus (VEEV) and eastern equine encephalitis virus (EEEV) are known to cause severe encephalitis, whereas Sindbis virus (SINV) causes arthralgia potentially persisting for years after initial infection. The bunyavirus Rift Valley Fever virus (RVFV) can lead to blindness, liver failure, and hemorrhagic fever. Brilacidin, a small molecule that was designed de novo based on naturally occurring host defensins, was investigated for its antiviral activity against these viruses in human small airway epithelial cells (HSAECs) and African green monkey kidney cells (Veros). This testing was further expanded into a non-enveloped Echovirus, a Picornavirus, to further demonstrate brilacidin’s effect on early steps of the viral infectious cycle that leads to inhibition of viral load. Brilacidin demonstrated antiviral activity against alphaviruses VEEV TC-83, VEEV TrD, SINV, EEEV, and bunyavirus RVFV. The inhibitory potential of brilacidin against the viruses tested in this study was dependent on the dosing strategy which necessitated compound addition pre- and post-infection, with addition only at the post-infection stage not eliciting a robust inhibitory response. The inhibitory activity of brilacidin was only modest in the context of the non-enveloped Picornavirus Echovirus, suggesting brilacidin may be less potent against non-enveloped viruses. Full article
(This article belongs to the Special Issue Emerging Viruses and Antiviral Drugs, 2nd Edition)
Show Figures

Figure 1

14 pages, 2619 KiB  
Article
Brilacidin Demonstrates Inhibition of SARS-CoV-2 in Cell Culture
by Allison Bakovic, Kenneth Risner, Nishank Bhalla, Farhang Alem, Theresa L. Chang, Warren K. Weston, Jane A. Harness and Aarthi Narayanan
Viruses 2021, 13(2), 271; https://doi.org/10.3390/v13020271 - 9 Feb 2021
Cited by 37 | Viewed by 20085
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the newly emergent causative agent of coronavirus disease-19 (COVID-19), has resulted in more than two million deaths worldwide since it was first detected in 2019. There is a critical global need for therapeutic intervention strategies that [...] Read more.
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the newly emergent causative agent of coronavirus disease-19 (COVID-19), has resulted in more than two million deaths worldwide since it was first detected in 2019. There is a critical global need for therapeutic intervention strategies that can be deployed to safely treat COVID-19 disease and reduce associated morbidity and mortality. Increasing evidence shows that both natural and synthetic antimicrobial peptides (AMPs), also referred to as Host Defense Proteins/Peptides (HDPs), can inhibit SARS-CoV-2, paving the way for the potential clinical use of these molecules as therapeutic options. In this manuscript, we describe the potent antiviral activity exerted by brilacidin—a de novo designed synthetic small molecule that captures the biological properties of HDPs—on SARS-CoV-2 in a human lung cell line (Calu-3) and a monkey cell line (Vero). These data suggest that SARS-CoV-2 inhibition in these cell culture models is likely to be a result of the impact of brilacidin on viral entry and its disruption of viral integrity. Brilacidin demonstrated synergistic antiviral activity when combined with remdesivir. Collectively, our data demonstrate that brilacidin exerts potent inhibition of SARS-CoV-2 against different strains of the virus in cell culture. Full article
(This article belongs to the Section SARS-CoV-2 and COVID-19)
Show Figures

Graphical abstract

Back to TopTop