Impact of Interfering Substances on the Bactericidal Efficacy of Different Commercially Available Hypochlorous Acid-Based Wound Irrigation Solutions Commonly Found in South-East Asia
Abstract
:1. Introduction
2. Results
2.1. Efficacy of Wound Irrigation Solutions under Low Protein Condition
2.2. Efficacy of Wound Irrigation Solutions under High Protein Condition
3. Materials and Method
3.1. Antimicrobial Solutions
3.2. Challenge Conditions
3.3. Test Suspension
3.4. Quantitative Suspension Test and Challenge Conditions
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Armstrong, D.G.; Tan, T.-W.; Boulton, A.J.M.; Bus, S.A. Diabetic Foot Ulcers: A Review. JAMA 2023, 330, 62–75. [Google Scholar] [CrossRef] [PubMed]
- Nair, H.K.R.; Norlizah, P.; Mariam, M.N.; Alsagoff, S.A.L.; Ming Long, K.; Anantha, K.; Liew, N.C.; Ali Husien, N. Diabetic Foot Ulcer in Malaysia: Consensus on Treatment Patterns, Health Care Utilization and Cost. Int. J. Low. Extrem. Wounds 2022. [Google Scholar] [CrossRef] [PubMed]
- Graves, N.; Ganesan, G.; Tan, K.B.; Goh, O.; Ho, J.P.; Chong, T.T.; Bishnoi, P.; Carmody, D.; Yuh, A.S.; Ng, Y.Z.; et al. Chronic Wounds in a Multiethnic Asian Population: A Cost of Illness Study. BMJ Open 2023, 13, e065692. [Google Scholar] [CrossRef] [PubMed]
- Malone, M.; Bjarnsholt, T.; McBain, A.J.; James, G.A.; Stoodley, P.; Leaper, D.; Tachi, M.; Schultz, G.; Swanson, T.; Wolcott, R.D. The Prevalence of Biofilms in Chronic Wounds: A Systematic Review and Meta-Analysis of Published Data. J. Wound Care 2017, 26, 20–25. [Google Scholar] [CrossRef] [PubMed]
- Nair, H.; Mrozikiewicz-Rakowska, B.; Sanches Pinto, D.; Stuermer, E.; Matiasek, J.; Sander, J.; Lázaro-Martínez, J.; Ousey, K.; Assadian, O.; Kim, P.; et al. International Consensus Document: Use of Wound Antiseptics in Practice. Wounds International: London, UK, 2023; pp. 1–28. Available online: https://www.woundsinternational.com (accessed on 12 December 2023).
- EN 13727:2012+A2:2015; Chemical Disinfectants and Antiseptics: Quantitative Suspension Test for the Evaluation of Bactericidal Activity in the Medical Area—Test Method and Requirements (Phase 2, Step 1). European Committee for Standardization: Brussels, Belgium, 2015.
- ASTM E2783-11(2016); Standard Test Method for Assessment of Antimicrobial Activity for Water Miscible Compounds Using a Time-Kill Procedure. American Society for Testing and Materials: West Conshohocken, PA, USA, 2016.
- Araújo, P.A.; Lemos, M.; Mergulhão, F.; Melo, L.; Simões, M. The Influence of Interfering Substances on the Antimicrobial Activity of Selected Quaternary Ammonium Compounds. Int. J. Food Sci. 2013, 2013, 237581. [Google Scholar] [CrossRef] [PubMed]
- Otzen, D. Protein–Surfactant Interactions: A Tale of Many States. Biochim. Biophys. Acta (BBA)-Proteins Proteom. 2011, 1814, 562–591. [Google Scholar] [CrossRef] [PubMed]
- Rembe, J.-D.; Thompson, V.-D.; Stuermer, E.K. Antimicrobials Cetylpyridinium-Chloride and Miramistin Demonstrate Non-Inferiority and No “Protein-Error” Compared to Established Wound Care Antiseptics in vitro. AIMS Microbiol. 2022, 8, 372–387. [Google Scholar] [CrossRef] [PubMed]
- Radischat, N.; Augustin, M.; Herberger, K.; Wille, A.; Goroncy-Bermes, P. Influence of Human Wound Exudate on the Bactericidal Efficacy of Antiseptic Agents in Quantitative Suspension Tests on the Basis of European Standards (DIN EN 13727). Int. Wound J. 2020, 17, 781–789. [Google Scholar] [CrossRef] [PubMed]
- Severing, A.-L.; Borkovic, M.; Stuermer, E.K.; Rembe, J.-D. Composition of Challenge Substance in Standardized Antimicrobial Efficacy Testing of Wound Antimicrobials Is Essential to Correctly Simulate Efficacy in the Human Wound Micro-Environment. Biomedicines 2022, 10, 2751. [Google Scholar] [CrossRef]
- Augustin, M.; Herberger, K.; Wille, A.; Twarock, S. Impact of Human Wound Exudate on the Bactericidal Efficacy of Commercial Antiseptic Products. J. Wound Care 2023, 32, 422–427. [Google Scholar] [CrossRef]
- Rembe, J.-D.; Huelsboemer, L.; Plattfaut, I.; Besser, M.; Stuermer, E.K. Antimicrobial Hypochlorous Wound Irrigation Solutions Demonstrate Lower Anti-Biofilm Efficacy against Bacterial Biofilm in a Complex In-Vitro Human Plasma Biofilm Model (HpBIOM) than Common Wound Antimicrobials. Front. Microbiol. 2020, 11, 564513. [Google Scholar] [CrossRef] [PubMed]
- Severing, A.-L.; Rembe, J.-D.; Koester, V.; Stuermer, E.K. Safety and Efficacy Profiles of Different Commercial Sodium Hypochlorite/Hypochlorous Acid Solutions (NaClO/HClO): Antimicrobial Efficacy, Cytotoxic Impact and Physicochemical Parametersin Vitro. J. Antimicrob. Chemother. 2018, 74, 365–372. [Google Scholar] [CrossRef] [PubMed]
- Lin, W.; Chen, H.; Chen, X.; Guo, C. The Roles of Neutrophil-Derived Myeloperoxidase (MPO) in Diseases: The New Progress. Antioxidants 2024, 13, 132. [Google Scholar] [CrossRef] [PubMed]
- B Braun Sharing Expertise. Prontosan® Wound Irrigation Solution. Available online: https://www.bbraun.com/en/products/b/prontosan-wound-irrigation-solution-for-wounds-and-burns.html (accessed on 29 January 2024).
- Dyamed Biotech. How To Use. Dyamed Biotech. Available online: https://dyamed.com/dermacyn-wound-care/how-to-use/ (accessed on 29 January 2024).
- Bactiguard AB. HYDROCYN Aqua—Bactiguard. Preventing Infections. Available online: https://www.bactiguard.com/wound-management/hydrocyn-aqua/ (accessed on 29 January 2024).
- Molnlycke. Instruction for Usage—Granudacyn; Molnlycke: Gothenburg, Sweden, 2020. [Google Scholar]
- Swanson, T.; Ousey, K.; Haesler, E.; Bjarnsholt, T.; Carville, K.; Idensohn, P.; Kalan, L.; Keast, D.H.; Larsen, D.; Percival, S.; et al. IWII Wound Infection in Clinical Practice Consensus Document: 2022 Update. J. Wound Care 2022, 31 (Suppl. S12), S10–S21. [Google Scholar] [CrossRef] [PubMed]
- Albert, M.; Feiertag, P.; Hayn, G.; Saf, R.; Hönig, H. Structure−Activity Relationships of OligoguanidinesInfluence of Counterion, Diamine, and Average Molecular Weight on Biocidal Activities. Biomacromolecules 2003, 4, 1811–1817. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, P.; Moore, L.E. Cationic Antiseptics: Diversity of Action under a Common Epithet. J. Appl. Microbiol. 2005, 99, 703–715. [Google Scholar] [CrossRef] [PubMed]
- Malanovic, N.; Ön, A.; Pabst, G.; Zellner, A.; Lohner, K. Octenidine: Novel Insights into the Detailed Killing Mechanism of Gram-Negative Bacteria at a Cellular and Molecular Level. Int. J. Antimicrob. Agents 2020, 56, 106146. [Google Scholar] [CrossRef] [PubMed]
- Malanovic, N.; Buttress, J.A.; Vejzovic, D.; Ön, A.; Piller, P.; Kolb, D.; Lohner, K.; Strahl, H. Disruption of the Cytoplasmic Membrane Structure and Barrier Function Underlies the Potent Antiseptic Activity of Octenidine in Gram-Positive Bacteria. Appl. Environ. Microbiol. 2022, 88, e00180-22. [Google Scholar] [CrossRef] [PubMed]
- Johani, K.; Malone, M.; Jensen, S.O.; Dickson, H.G.; Gosbell, I.B.; Hu, H.; Yang, Q.; Schultz, G.; Vickery, K. Evaluation of Short Exposure Times of Antimicrobial Wound Solutions against Microbial Biofilms: From in Vitro to in Vivo. J. Antimicrob. Chemother. 2017, 73, 494–502. [Google Scholar] [CrossRef]
- Krasowski, G.; Junka, A.; Paleczny, J.; Czajkowska, J.; Makomaska-Szaroszyk, E.; Chodaczek, G.; Majkowski, M.; Migdał, P.; Fijałkowski, K.; Kowalska-Krochmal, B.; et al. In Vitro Evaluation of Polihexanide, Octenidine and NaClO/HClO-Based Antiseptics against Biofilm Formed by Wound Pathogens. Membranes 2021, 11, 62. [Google Scholar] [CrossRef]
- Davis, S.C.; Harding, A.; Gil, J.; Parajon, F.; Valdes, J.; Solis, M.; Higa, A. Effectiveness of a Polyhexanide Irrigation Solution on Methicillin-Resistant Staphylococcus Aureus Biofilms in a Porcine Wound Model. Int. Wound J. 2017, 14, 937–944. [Google Scholar] [CrossRef]
Product | Manufacturer | Actives | Suggested Contact Time |
---|---|---|---|
octenilin® wound irrigation solution | Schülke & Mayr GmbH, Norderstedt, Germany | 0.05% OCT | Not indicated |
Prontosan® Wound Irrigation Solution | B. Braun Medical AG, Sempach, Switzerland | 0.1% PHMB | 15 min—for wound covering a large area and also wounds difficult to access [17] |
Dermacyn® wound care solution | Sonoma pharmaceuticals, Woodstock, GA, USA | 99.97% oxidized water, 0.004% NaOCl, 0.003% HOCl, 0.023% NaCl | 10 min on affected area [18] |
Hydrocyn® Aqua | Vigilenz Medical Devices Sdn. Bhd, Bukit Mertajam, Malaysia | 0.003% HOCl, 0.1% NaOCl and NaCl | 15 min on wound [19] |
Granudacyn® wound irrigation solution | Mölnlycke Health Care AB, Gothenburg, Sweden | <0.005% NaOCl and HOCl | 60 s for any encrustations; 15 min to remove stubborn encrustations [20] |
Electrocyn™ Soma advanced wound irrigation solution | V3bio Sdn. Bhd., Simpang Ampat, Malaysia | ≤0.1% HOCl, NaCl and NaOCl | Not indicated |
Antaviro® | Ionic Global Sdn. Bhd., Perai, Malaysia | 0.02% HOCl, <0.01% NaCl | Not indicated |
0.85% NaCl | Merck KGaA, Darmstadt, Germany | 0.85% NaCl | - |
Test Product | Formulation of Neutralizers |
---|---|
octenilin® wound irrigation solution | 60 g/L Tween 80, 8 g/L Sodium dodecyl sulphate, 6 g/L Lecithin |
Prontosan® Wound Irrigation Solution | 30 g/L Tween 80, 6 g/L Lecithin, 60 g/L Saponin, 1.0 g/L Histidine, 1.0 g/L Tryptone and 8.5 g/L NaCl |
Antaviro® | |
Dermacyn® wound care solution | 30 g/L Tween 80, 30 g/L Saponin, 10 g/L Sodium dodecyl sulphate, 3 g/L Sodium thiosulphate and 3 g/L Lecithin |
Hydrocyn® Aqua | |
Granudacyn® wound irrigation solution | |
Electrocyn Soma™ advanced wound irrigation solution | |
0.85% NaCl |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yap, J.W.; Ismail, N.I.; Lee, C.S.; Oh, D.Y. Impact of Interfering Substances on the Bactericidal Efficacy of Different Commercially Available Hypochlorous Acid-Based Wound Irrigation Solutions Commonly Found in South-East Asia. Antibiotics 2024, 13, 309. https://doi.org/10.3390/antibiotics13040309
Yap JW, Ismail NI, Lee CS, Oh DY. Impact of Interfering Substances on the Bactericidal Efficacy of Different Commercially Available Hypochlorous Acid-Based Wound Irrigation Solutions Commonly Found in South-East Asia. Antibiotics. 2024; 13(4):309. https://doi.org/10.3390/antibiotics13040309
Chicago/Turabian StyleYap, Jiann Wen, Neni Iffanida Ismail, Cheng Shoou Lee, and Ding Yuan Oh. 2024. "Impact of Interfering Substances on the Bactericidal Efficacy of Different Commercially Available Hypochlorous Acid-Based Wound Irrigation Solutions Commonly Found in South-East Asia" Antibiotics 13, no. 4: 309. https://doi.org/10.3390/antibiotics13040309
APA StyleYap, J. W., Ismail, N. I., Lee, C. S., & Oh, D. Y. (2024). Impact of Interfering Substances on the Bactericidal Efficacy of Different Commercially Available Hypochlorous Acid-Based Wound Irrigation Solutions Commonly Found in South-East Asia. Antibiotics, 13(4), 309. https://doi.org/10.3390/antibiotics13040309