Application of Octenidine into Nasal Vestibules Does Not Influence SARS-CoV-2 Detection via PCR or Antigen Test Methods
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Study Design
4.2. RT-PCR Test
4.3. Antigen (Ag) Rapid Diagnostic Test
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Karlsen, Ø.E.; Borgen, P.; Bragnes, B.; Figved, W.; Grøgaard, B.; Rydinge, J.; Sandberg, L.; Snorrason, F.; Wangen, H.; Witsøe, E.; et al. Rifampin combination therapy in staphylococcal prosthetic joint infections: A randomized controlled trial. J. Orthop. Surg. Res. 2020, 15, 365. [Google Scholar] [CrossRef] [PubMed]
- Dencker, E.E.; Bonde, A.; Troelsen, A.; Varadarajan, K.M.; Sillesen, M. Postoperative complications: An observational study of trends in the United States from 2012 to 2018. BMC Surg. 2021, 21, 393. [Google Scholar] [CrossRef] [PubMed]
- Seidelman, J.L.; Baker, A.W.; Lewis, S.S.; Advani, S.D.; Smith, B.; Anderson, D. Duke Infection Control Outreach Network Surveillance Team. Surgical site infection trends in community hospitals from 2013 to 2018. Infect. Control Hosp. Epidemiol. 2023, 44, 610–615. [Google Scholar] [CrossRef] [PubMed]
- Seidelman, J.L.; Mantyh, C.R.; Anderson, D.J. Surgical Site Infection Prevention: A Review. JAMA 2023, 329, 244–252. [Google Scholar] [CrossRef] [PubMed]
- Steinhauer, K.; Meister, T.L.; Todt, D.; Krawczyk, A.; Paßvogel, L.; Becker, B.; Paulmann, D.; Bischoff, B.; Pfaender, S.; Brill, F.H.H.; et al. Comparison of the in-vitro efficacy of different mouthwash solutions targeting SARS-CoV-2 based on the European Standard EN 14476. J. Hosp. Infect. 2021, 111, 180–183. [Google Scholar] [CrossRef]
- Scheiblauer, H.; Filomena, A.; Nitsche, A.; Puyskens, A.; Corman, V.M.; Drosten, C.; Zwirglmaier, K.; Lange, C.; Emmerich, P.; Müller, M.; et al. Comparative sensitivity evaluation for 122 CE-marked rapid diagnostic tests for SARS-CoV-2 antigen, Germany, September 2020 to April 2021. Euro Surveill. 2021, 26, 2100441. [Google Scholar] [CrossRef]
- Jegerlehner, S.; Suter-Riniker, F.; Jent, P.; Bittel, P.; Nagler, M. Diagnostic accuracy of a SARS-CoV-2 rapid antigen test in real-life clinical settings. Int. J. Infect. Dis. 2021, 109, 118–122. [Google Scholar] [CrossRef]
- Wölfl-Duchek, M.; Bergmann, F.; Jorda, A.; Weber, M.; Müller, M.; Seitz, T.; Zoufaly, A.; Strassl, R.; Zeitlinger, M.; Herkner, H.; et al. Sensitivity and Specificity of SARS-CoV-2 Rapid Antigen Detection Tests Using Oral, Anterior Nasal, and Nasopharyngeal Swabs: A Diagnostic Accuracy Study. Microbiol. Spectr. 2022, 10, e0202921. [Google Scholar] [CrossRef]
- Smith, M.; Herwaldt, L. Nasal decolonization: What antimicrobials and antiseptics are most effective before surgery and in the ICU. Am. J. Infect. Control 2023, 51 (Suppl. S11), A64–A71. [Google Scholar] [CrossRef]
- Wenzel, R.P.; Perl, T.M. The significance of nasal carriage of Staphylococcus aureus and the incidence of postoperative wound infection. J. Hosp. Infect. 1995, 31, 13–24. [Google Scholar] [CrossRef]
- Kluytmans, J.A.; Mouton, J.W.; Ijzerman, E.P.; Vandenbroucke-Grauls, C.M.; Maat, A.W.; Wagenvoort, J.H.; Verbrugh, H.A. Nasal carriage of Staphylococcus aureus as a major risk factor for wound infections after cardiac surgery. J. Infect. Dis. 1995, 171, 216–219. [Google Scholar] [CrossRef] [PubMed]
- Kalmeijer, M.D.; van Nieuwland-Bollen, E.; Bogaers-Hofman, D.; de Baere, G.A. Nasal carriage of Staphylococcus aureus is a major risk factor for surgical-site infections in orthopedic surgery. Infect. Control Hosp. Epidemiol. 2000, 21, 319–323. [Google Scholar] [CrossRef] [PubMed]
- Mermel, L.A.; Cartony, J.M.; Covington, P.; Maxey, G.; Morse, D. Methicillin-resistant Staphylococcus aureus colonization at different body sites: A prospective, quantitative analysis. J. Clin. Microbiol. 2011, 49, 1119–1121. [Google Scholar] [CrossRef] [PubMed]
- Emergency Committee on the COVID-19 Pandemic. Statement on the Fifteenth Meeting of the IHR. 2005. Available online: https://www.who.int/news/item/05-05-2023-statement-on-the-fifteenth-meeting-of-the-international-health-regulations-(2005)-emergency-committee-regarding-the-coronavirus-disease-(covid-19)-pandemic (accessed on 13 November 2023).
- Scharf, M.; Holzapfel, D.E.; Ehrnsperger, M.; Grifka, J. Preoperative Decolonization Appears to Reduce the Risk of Infection in High-Risk Groups Undergoing Total Hip Arthroplasty. Antibiotics 2023, 12, 877. [Google Scholar] [CrossRef] [PubMed]
- Pichler, G.; Pux, C.; Babeluk, R.; Hermann, B.; Stoiser, E.; De Campo, A.; Grisold, A.; Zollner-Schwetz, I.; Krause, R.; Schippinger, W. MRSA prevalence rates detected in a tertiary care hospital in Austria and successful treatment of MRSA positive patients applying a decontamination regime with octenidine. Eur. J. Clin. Microbiol. Infect. Dis. 2018, 37, 21–27. [Google Scholar] [CrossRef]
- Jeans, E.; Holleyman, R.; Tate, D.; Reed, M.; Malviya, A. Methicillin sensitive staphylococcus aureus screening and decolonisation in elective hip and knee arthroplasty. J. Infect. 2018, 77, 405–409. [Google Scholar] [CrossRef]
- Tschelaut, L.; Assadian, O.; Strauss, R.; Matiasek, J.; Beer, M.; Angerler, G.; Berger-Grabner, D.; Presterl, E. A survey on current knowledge, practice and beliefs related to preoperative antimicrobial decolonization regimens for prevention of surgical site infections among Austrian surgeons. J. Hosp. Infect. 2018, 100, 386–392. [Google Scholar] [CrossRef]
- Wisgrill, L.; Zizka, J.; Unterasinger, L.; Rittenschober-Böhm, J.; Waldhör, T.; Makristathis, A.; Berger, A. Active Surveillance Cultures and Targeted Decolonization Are Associated with Reduced Methicillin-Susceptible Staphylococcus aureus Infections in VLBW Infants. Neonatology 2017, 112, 267–273. [Google Scholar] [CrossRef]
- Gastmeier, P.; Kämpf, K.P.; Behnke, M.; Geffers, C.; Schwab, F. An observational study of the universal use of octenidine to decrease nosocomial bloodstream infections and MDR organisms. J. Antimicrob. Chemother. 2016, 71, 2569–2576. [Google Scholar] [CrossRef]
- Malanovic, N.; Buttress, J.A.; Vejzovic, D.; Ön, A.; Piller, P.; Kolb, D.; Lohner, K.; Strahl, H. Disruption of the Cytoplasmic Membrane Structure and Barrier Function Underlies the Potent Antiseptic Activity of Octenidine in Gram-Positive Bacteria. Appl. Environ. Microbiol. 2022, 88, e0018022. [Google Scholar] [CrossRef]
- Malanovic, N.; Ön, A.; Pabst, G.; Zellner, A.; Lohner, K. Octenidine: Novel insights into the detailed killing mechanism of Gram-negative bacteria at a cellular and molecular level. Int. J. Antimicrob. Agents 2020, 56, 106146. [Google Scholar] [CrossRef] [PubMed]
- Sicilia, P.; Castro, G.; Fantilli, A.C.; Gierotto, R.; López, L.; Barbás, M.G.; Pisano, M.B.; Ré, V.E. Rapid screening of SARS-CoV-2 infection: Good performance of nasopharyngeal and Nasal Mid-Turbinate swab for antigen detection among symptomatic and asymptomatic individuals. PLoS ONE 2022, 17, e0266375. [Google Scholar] [CrossRef] [PubMed]
- Neukam, K.; Lucero, A.; Gutiérrez-Valencia, A.; Amaya, L.; Echegoyen, N.; Martelli, A.; Videla, C.; Di Lello, F.A.; Martínez, A.P. Point-of-care detection of SARS-CoV-2 antigen among symptomatic vs. asymptomatic persons: Testing for COVID-19 vs. infectivity. Front. Public Health 2022, 10, 995249. [Google Scholar] [CrossRef] [PubMed]
- Marx, G.E.; Biggerstaff, B.J.; Nawrocki, C.C.; Totten, S.E.; Travanty, E.A.; Burakoff, A.W.; Scott, T.; De Hey, J.C.; Carlson, J.J.; Wendel, K.A.; et al. Colorado Department of Public Health and Environment COVID-19 Laboratory Response Team; Centers for Disease Control and Prevention COVID-19 Laboratory Response Team. Detection of Severe Acute Respiratory Syndrome Coronavirus 2 on Self-Collected Saliva or Anterior Nasal Specimens Compared with Healthcare Personnel-Collected Nasopharyngeal Specimens. Clin. Infect. Dis. 2021, 73 (Suppl. S1), S65–S73. [Google Scholar] [CrossRef] [PubMed]
- Ray, H.M.; Kamitsuka, P.F.; Firetti, P.W.; Almeter, A.L.; McNabb, K.M.; von Biberstein, S.E.; Barton, A.C.H.; Shakar, R.; Paul, J.W. Safe Elective Surgery Using Selective SARS-CoV-2 (COVID-19) Molecular Testing. Am. J. Med. Qual. 2022, 37, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Interim Guidelines for Collecting and Handling of Clinical Specimens for COVID-19 Testing. Available online: https://www.cdc.gov/coronavirus/2019-ncov/lab/guidelines-clinical-specimens.html#handling-specimens-safely (accessed on 13 November 2023).
Patient # | d1 | d3 | ||
---|---|---|---|---|
RT-PCR (Ct) | Ag | RT-PCR (Ct) | Ag | |
1 (f, 53) | 33.8 | + | 25.6 | + |
2 (m, 80) | 17.2 | + | 21.1 | + |
3 (m, 77) | 18.3 | + | 32.8 | + |
4 (m, 80) | 28.2 | − | 36.9 | + |
5 (m, 29) | 14.2 | + | 26.9 | + |
6 (m, 79) | 13.9 | + | 23.1 | + |
7 (m, 62) | 22.0 | + | 26.1 | + |
8 (m, 87) | 17.7 | − | 27.1 | − |
9 (m, 73) | 27.3 | + | 12.3 | + |
10 (m, 72) | 22.2 | + | 30.2 | − |
11 (m, 82) | 28.5 | + | 20.1 | + |
12 (m, 85) | 22.7 | + | 19.3 | + |
13 (m, 63) | 20.9 | + | 29.7 | + |
14 (f, 61) | 19.1 | − | 34.1 | − |
15 (f, 53) | 14.0 | − | 17.3 | + |
16 (m, 85) | 23.2 | + | 27.9 | + |
17 (m, 73) | 18.1 | − | 39.4 | − |
18 (m, 79) | 21.1 | + | 24.9 | + |
19 (m, 89) | 17.1 | + | 26.1 | + |
20 (m, 50) | 20.0 | + | 26.3 | + |
RT-PCR (Ct) | >10–15 | >15–20 | >20–25 | >25–30 | >30–35 | >35 |
---|---|---|---|---|---|---|
d1 (d3) | d1 (d3) | d1 (d3) | d1 (d3) | d1 (d3) | d1 (d3) | |
Ag-positive | 2 (1) | 4 (2) | 6 (4) | 2 (7) | 1 (1) | 0 (1) |
Ag-negative | 1 (0) | 3 (0) | 0 (0) | 1 (1) | 0 (2) | 0 (1) |
PPA | 66.7% (100%) | 57.1% (100%) | 100% (100%) | 66.7% (87.5%) | 100% (33.3%) | n.c. (50%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Assadian, O.; Sigmund, F.; Herzog, D.; Riedl, K.; Klaus, C. Application of Octenidine into Nasal Vestibules Does Not Influence SARS-CoV-2 Detection via PCR or Antigen Test Methods. Antibiotics 2023, 12, 1724. https://doi.org/10.3390/antibiotics12121724
Assadian O, Sigmund F, Herzog D, Riedl K, Klaus C. Application of Octenidine into Nasal Vestibules Does Not Influence SARS-CoV-2 Detection via PCR or Antigen Test Methods. Antibiotics. 2023; 12(12):1724. https://doi.org/10.3390/antibiotics12121724
Chicago/Turabian StyleAssadian, Ojan, Fabiola Sigmund, Daniela Herzog, Karin Riedl, and Christoph Klaus. 2023. "Application of Octenidine into Nasal Vestibules Does Not Influence SARS-CoV-2 Detection via PCR or Antigen Test Methods" Antibiotics 12, no. 12: 1724. https://doi.org/10.3390/antibiotics12121724
APA StyleAssadian, O., Sigmund, F., Herzog, D., Riedl, K., & Klaus, C. (2023). Application of Octenidine into Nasal Vestibules Does Not Influence SARS-CoV-2 Detection via PCR or Antigen Test Methods. Antibiotics, 12(12), 1724. https://doi.org/10.3390/antibiotics12121724