Polylactic Glycolic Acid-Mediated Delivery of Plectasin Derivative NZ2114 in Staphylococcus epidermidis Biofilms
Abstract
:1. Introduction
2. Results
2.1. NZ2114-NP Characterization
2.1.1. Size and Zeta Potential of NZ2114-NP
2.1.2. NZ2114-NP Drug-Loading and Encapsulation Rate
2.1.3. NZ2114-NP Release Rate
2.2. Hemolysis Analysis
2.3. Cytotoxicity
2.4. Serum Stability
2.5. Enzymatic Resistance of NZ2114-NPs
2.6. MIC and MBC Determination
2.7. Effect of NZ2114-NPs on Bacteria in Biofilms
2.8. Effect of NZ2114-NPs on Biofilm Persister
2.9. Observation of Biofilms by Confocal Laser Scanning Microscopy (CLSM)
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Preparation of Nanoparticles
4.3. Characterization of NZ2114-NP
4.3.1. Particle Distribution
4.3.2. Zeta Potential
4.3.3. Scanning Electron Microscopy
4.3.4. RP-HPLC Analysis of NZ2114
4.3.5. Drug Loading and Encapsulation Efficiency
4.3.6. Release Rate
4.4. Safety and Stability
4.4.1. Hemolysis Analysis
4.4.2. Cytotoxicity
4.4.3. Serum Stability
4.4.4. Enzymatic Resistance of NZ2114-NP
4.5. In Vitro Antimicrobial Activity
4.5.1. MIC and MBC Determination
4.5.2. Effect of NZ2114-NPs on Bacteria in Biofilms
4.5.3. Effect of NZ2114-NPs on Biofilm Persister
4.5.4. Observation of Biofilms by Confocal Laser Scanning Microscopy
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Holmes, A.H.; Moore, L.S.; Sundsfjord, A.; Steinbakk, M.; Regmi, S.; Karkey, A.; Guerin, P.J.; Piddock, L.J. Understanding the mechanisms and drivers of antimicrobial resistance. Lancet 2016, 387, 176–187. [Google Scholar] [CrossRef]
- Dalhoff, A. Resistance surveillance studies: A multifaceted problem—The fluoroquinolone example. Infection 2012, 40, 239–262. [Google Scholar] [CrossRef]
- Han, C.; Romero, N.; Fischer, S.; Dookran, J.; Doiron, A.L. Recent developments in the use of nanoparticles for treatment of biofilms. Nanotechnol. Rev. 2016, 6, 383–404. [Google Scholar] [CrossRef]
- Leung, S.S.Y.; Chan, H.-K. Emerging antibiotic alternatives: From antimicrobial peptides to bacteriophage therapies. Adv. Drug Deliv. Rev. 2022, 191, 114594. [Google Scholar] [CrossRef]
- Murray, C.J.L.; Ikuta, K.S.; Sharara, F.; Swetschinski, L.; Aguilar, G.R.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef]
- De Oliveira, D.M.P.; Forde, B.M.; Kidd, T.J.; Harris, P.N.A.; Schembri, M.A.; Beatson, S.A.; Paterson, D.L.; Walker, M.J. Antimicrobial resistance in ESKAPE pathogens. Clin. Microbiol. Rev. 2022, 33, e00181-19. [Google Scholar] [CrossRef]
- Lazzaro, B.P.; Zasloff, M.; Rolff, J. Antimicrobial peptides: Application informed by evolution. Science 2020, 368, eaau5480. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.-Y.; Yan, Z.-B.; Meng, Y.-M.; Hong, X.-Y.; Shao, G.; Ma, J.-J.; Cheng, X.-R.; Liu, J.; Kang, J.; Fu, C.-Y. Antimicrobial peptides: Mechanism of action, activity and clinical potential. Mil. Med. Res. 2021, 8, 48. [Google Scholar] [CrossRef] [PubMed]
- Hao, Y.; Teng, D.; Mao, R.; Yang, N.; Wang, J. Site mutation improves the expression and antimicrobial properties of fungal defense. Antibiotics 2023, 12, 1283. [Google Scholar] [CrossRef] [PubMed]
- Xuan, J.; Feng, W.; Wang, J.; Wang, R.; Zhang, B.; Bo, L.; Chen, Z.-S.; Yang, H.; Sun, L. Antimicrobial peptides for combating drug-resistant bacterial infections. Drug Resist. Update 2023, 68, 100954. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Tan, P.; Tang, Q.; Wang, T.; Ding, Y.; Fu, H.; Zhang, Y.; Zhou, C.; Song, M.; Tang, Q.; et al. Enhancing the stability of antimicrobial peptides: From design strategies to applications. Chem. Eng. J. 2023, 475, 145923. [Google Scholar] [CrossRef]
- Ewles, M.; Goodwin, L. Bioanalytical approaches to analyzing peptides and proteins by LC--MS/MS. Bioanalysis 2011, 3, 1379–1397. [Google Scholar] [CrossRef]
- Heng, W.; Wu, H.; Ciofu, O.; Song, Z.; Hiby, N. In vivo pharmacokinetics/pharmacodynamics of colistin and imipenem in Pseudomonas aeruginosa biofilm infection. Antimicrob. Agents Chemother. 2012, 56, 2683. [Google Scholar] [CrossRef]
- Jiang, Y.; Chen, Y.; Song, Z.; Tan, Z.; Cheng, J. Recent advances in design of antimicrobial peptides and polypeptides toward clinical translation. Adv. Drug Deliv. Rev. 2021, 170, 261–280. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Yang, N.; Teng, D.; Hao, Y.; Mao, R.; Wang, J. Molecular modification of kex2 P1’ site enhances expression and druggability of fungal defensin. Antibiotics 2023, 12, 786. [Google Scholar] [CrossRef]
- Yang, N.; Zhang, Q.; Mao, R.; Hao, Y.; Ma, X.; Teng, D.; Fan, H.; Wang, J. Effect of NZ2114 against Streptococcus dysgalactiae biofilms and its application in murine mastitis model. Front. Microbiol. 2022, 13, 1010148. [Google Scholar] [CrossRef]
- Wang, C.; Hong, T.; Cui, P.; Wang, J.; Xia, J. Antimicrobial peptides towards clinical application: Delivery and formulation. Adv. Drug Deliv. Rev. 2021, 175, 113818. [Google Scholar] [CrossRef] [PubMed]
- Imperlini, E.; Massaro, F.; Buonocore, F. Antimicrobial peptides against bacterial pathogens: Innovative delivery nanosystems for pharmaceutical applications. Antibiotics 2023, 12, 184. [Google Scholar] [CrossRef] [PubMed]
- Fonte, P.; Araújo, F.; Silva, C.; Pereira, C.; Sarmento, B. Polymer-based nanoparticles for oral insulin delivery: Revisited approaches. Biotechnol. Adv. 2015, 33, 1342–1354. [Google Scholar] [CrossRef]
- Manchanda, R.; Fernandez-Fernandez, A.; Nagesetti, A.; McGoron, A.J. Preparation and characterization of a polymeric (PLGA) nanoparticulate drug delivery system with simultaneous incorporation of chemotherapeutic and thermo-optical agents. Colloids Surf. B Biointerfaces 2010, 1, 260–267. [Google Scholar] [CrossRef]
- Martins, C.; Sousa, F.; Araújo, F.; Sarmento, B. Functionalizing PLGA and PLGA derivatives for drug delivery and tissue regeneration applications. Adv. Healthc. Mater. 2017, 7, 1701035. [Google Scholar] [CrossRef]
- El-Hammadi, M.M.; Arias, J.L. Recent advances in the surface functionalization of PLGA-based nanomedicines. Nanomaterials 2022, 12, 354. [Google Scholar] [CrossRef]
- Water, J.J.; Smart, S.; Franzyk, H.; Foged, C.; Nielsen, H.M. Nanoparticle-mediated delivery of the antimicrobial peptide plectasin against Staphylococcus aureus in infected epithelial cells. Eur. J. Pharm. Biopharm. 2015, 92, 65–73. [Google Scholar] [CrossRef]
- D’angelo, I.; Casciaro, B.; Miro, A.; Quaglia, F.; Mangoni, M.L.; Ungaro, F. Overcoming barriers in Pseudomonas aeruginosa lung infections: Engineered nanoparticles for local delivery of a cationic antimicrobial peptide. Colloids Surf. B Biointerfaces 2015, 135, 717–725. [Google Scholar] [CrossRef]
- Casciaro, B.; d’Angelo, I.; Zhang, X.; Loffredo, M.R.; Conte, G.; Cappiello, F.; Quaglia, F.; Di, Y.-P.P.; Ungaro, F.; Mangoni, M.L. Poly(lactide-co-glycolide) nanoparticles for prolonged therapeutic efficacy of esculentin-1a-derived antimicrobial peptides against Pseudomonas aeruginosa lung infection: In vitro and in vivo studies. Biomacromolecules 2019, 20, 1876–1888. [Google Scholar] [CrossRef]
- Ali, M.; van Gent, M.E.; de Waal, A.M.; van Doodewaerd, B.R.; Bos, E.; Koning, R.I.; Cordfunke, R.A.; Drijfhout, J.W.; Nibbering, P.H. Physical and functional characterization of PLGA nanoparticles containing the antimicrobial peptide SAAP-148. Int. J. Mol. Sci. 2023, 24, 2867. [Google Scholar] [CrossRef] [PubMed]
- Park, K.; Skidmore, S.; Hadar, J.; Garner, J.; Wang, Y. Injectable, long-acting PLGA formulations: Analyzing PLGA and understanding microparticle formation. J. Control. Release 2019, 304, 125–134. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Yang, N.; Teng, D.; Mao, R.; Hao, Y.; Ma, X.; Wang, J. Design and pharmacodynamics of recombinant fungus defensin NZL with improved activity against Staphylococcus hyicus in vitro and in vivo. Int. J. Mol. Sci. 2021, 22, 5435. [Google Scholar] [CrossRef] [PubMed]
- Makabenta, J.M.V.; Nabawy, A.; Li, C.H.; Schmidt-Malan, S.; Rotello, V.M. Nanomaterial-based therapeutics for antibiotic-resistant bacterial infections. Nat. Rev. Microbiol. 2020, 1, 23–36. [Google Scholar] [CrossRef] [PubMed]
- Al-Wrafy, F.A.; Al-Gheethi, A.A.; Ponnusamy, S.K.; Noman, E.A.; Fattah, S.A. Nanoparticles approach to eradicate bacterial biofilm-related infections: A critical review. Chemosphere 2021, 288, 132603. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Shi, L.; Su, L.; van der Mei, H.C.; Jutte, P.C.; Ren, Y.; Busscher, H.J. Nanotechnology-based antimicrobials and delivery systems for biofilm-infection control. Chem. Soc. Rev. 2019, 48, 428–446. [Google Scholar] [CrossRef]
- Mundargi, R.C.; Babu, V.R.; Rangaswamy, V.; Patel, P.; Aminabhavi, T.M. Nano/micro technologies for delivering macromolecular therapeutics using poly(D,L-lactide-co-glycolide) and its derivatives. J. Control. Release 2008, 125, 193–209. [Google Scholar] [CrossRef]
- Akl, M.A.; Kartal-Hodzic, A.; Oksanen, T.; Ismael, H.R.; Afouna, M.M.; Yliperttula, M.; Samy, A.M.; Viitala, T. Factorial design formulation optimization and in vitro characterization of curcumin-loaded PLGA nanoparticles for colon delivery. J. Drug Deliv. Sci. Technol. 2016, 32, 10–20. [Google Scholar] [CrossRef]
- Bohrey, S.; Chourasiya, V.; Pandey, A. Polymeric nanoparticles containing diazepam: Preparation, optimization, characterization, in-vitro drug release and release kinetic study. Nano Converg. 2016, 3, 3. [Google Scholar] [CrossRef]
- Jarvis, M.; Krishnan, V.; Mitragotri, S. Nanocrystals: A perspective on translational research and clinical studies. Bioeng. Transl. Med. 2019, 4, 5–16. [Google Scholar] [CrossRef]
- Anselmo, A.C.; Mitragotri, S. An overview of clinical and commercial impact of drug delivery systems. J. Control. Release 2014, 190, 15–28. [Google Scholar] [CrossRef]
- Dorati, R.; Detrizio, A.; Spalla, M.; Migliavacca, R.; Pagani, L.; Pisani, S.; Chiesa, E.; Conti, B.; Modena, T.; Genta, I. Gentamicin sulfate PEG-PLGA/PLGA-H nanoparticles: Screening design and antimicrobial effect evaluation toward clinic bacterial isolates. Nanomaterials 2018, 8, 37. [Google Scholar] [CrossRef]
- Martín-Sabroso, C.; Fraguas-Sánchez, A.I.; Aparicio-Blanco, J.; Cano-Abad, M.F.; Torres-Suárez, A.I. Critical attributes of formulation and of elaboration process of PLGA-protein microparticles. Int. J. Pharm. 2018, 480, 27–36. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Wu, L.; Tao, A.; Bera, H.; Yang, M. Formulation and in vitro characterization of long-acting PLGA injectable microspheres encapsulating a peptide analog of LHRH. J. Mater. Sci. Technol. 2020, 63, 133–144. [Google Scholar] [CrossRef]
- Park, K.; Otte, A.; Sharifi, F.; Garner, J.; Skidmore, S.; Park, H.; Jhon, Y.K.; Qin, B.; Wang, Y. Formulation composition, manufacturing process, and characterization of poly(lactide-co-glycolide) microparticles. J. Control. Release 2021, 329, 1150–1161. [Google Scholar] [CrossRef] [PubMed]
- Doty, A.C.; Weinstein, D.G.; Hirota, K.; Olsen, K.F.; Schwendeman, S.P. Mechanisms of in vivo release of triamcinolone acetonide from PLGA microspheres. J. Control. Release 2017, 256, 19–25. [Google Scholar] [CrossRef]
- Klose, D.; Siepmann, F.; Elkharraz, K.; Siepmann, J. PLGA-based drug delivery systems: Importance of the type of drug and device geometry. Int. J. Pharm. 2008, 354, 95–103. [Google Scholar] [CrossRef] [PubMed]
- Fredenberg, S.; Wahlgren, M.; Reslow, M.; Axelsson, A. The mechanisms of drug release in poly (lactic-co-glycolic acid)-based drug delivery systems—A review. Int. J. Pharm. 2011, 415, 34–52. [Google Scholar] [CrossRef]
- Groo, A.-C.; Matougui, N.; Umerska, A.; Saulnier, P. Reverse micelle-lipid nanocapsules: A novel strategy for drug delivery of the plectasin derivate AP138 antimicrobial peptide. Int. J. Nanomed. 2018, 15, 7565–7574. [Google Scholar] [CrossRef] [PubMed]
- Boge, L.; Umerska, A.; Matougui, N.; Bysell, H.; Andersson, M. Cubosomes post-loaded with antimicrobial peptides: Characterization, bactericidal effect and proteolytic stability. Int. J. Pharm. 2017, 526, 400–412. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wang, D.; Lu, H.; Wang, X.; Wang, X.; Su, J.; Xia, G. Strategies to Promote the journey of nanoparticles against biofilm-associated infections. Small 2024, 4, e2305988. [Google Scholar] [CrossRef] [PubMed]
- Modified Surface of PLGA Nanoparticles in Smart Hydrogel, US National Library of Medicine.ClinicalTrials.gov NCT05442736. Available online: https://clinicaltrials.gov/ct2/show/NCT05442736 (accessed on 1 December 2023).
- Hen, M.; Wei, J.; Xie, S.; Tao, X.; Zhang, Z.; Rana, P.; Li, X. Bacterial biofilm destruction by size/surface charge-adaptive micelles. Nanoscale 2019, 11, 1410–1422. [Google Scholar] [CrossRef]
- Zhang, Y.; Teng, D.; Mao, R.; Wang, X.; Xi, D.; Hu, X.; Wang, J. High expression of a plectasin-derived peptide NZ2114 in Pichia pastoris and its pharmacodynamics, postantibiotic and synergy against Staphylococcus aureus. Appl. Microbiol. Biotechnol. 2014, 98, 681–694. [Google Scholar] [CrossRef]
- Sharifi, F.; Otte, A.; Yoon, G.; Park, K. Continuous in-line homogenization process for scale-up production of naltrexone-loaded PLGA microparticles. J. Control. Release 2020, 325, 347–358. [Google Scholar] [CrossRef] [PubMed]
- Umerska, A.; Matougui, N.; Groo, A.-C.; Saulnier, P. Understanding the adsorption of salmon calcitonin, antimicrobial peptide AP114 and polymyxin B onto lipid nanocapsules. Int. J. Pharm. 2016, 506, 191–200. [Google Scholar] [CrossRef]
- Zheng, X.; Yang, N.; Mao, R.; Hao, Y.; Teng, D.; Wang, J. Pharmacokinetics and pharmacodynamics of fungal defensin NZX against Staphylococcus aureus-induced mouse peritonitis model. Front. Microbiol. 2022, 13, 865774. [Google Scholar] [CrossRef]
- Cruz, J.; Flórez, J.; Torres, R.; Urquiza, M.; Gutiérrez, J.A.; Guzmán, F.; Ortiz, C.C. Antimicrobial activity of a new synthetic peptide loaded in polylactic acid or poly(lactic-co-glycolic) acid nanoparticles against Pseudomonas aeruginosa, Escherichia coli O157:H7 and methicillin resistant Staphylococcus aureus(MRSA). Nanotechnology 2017, 28, 135102. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Li, X.D.; He, P.P.; Hu, X.X.; Zhang, K.; Fan, J.Q.; Yang, P.P.; Zheng, H.Y.; Tian, W.; Chen, Z.M.; et al. A biomimetic peptide recognizes and traps bacteria in vivo as human defensin-6. Sci. Adv. 2020, 6, eaaz4767. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Liu, X.; Da, T.; Mao, R.; Hao, Y.; Yang, N.; Wang, X.; Li, Z.; Wang, X.; Wang, J. Development of chimeric peptides to facilitate the neutralisation of lipopolysaccharides during bactericidal targeting of multidrug-resistant Escherichia coli. Commun. Biol. 2020, 3, 41. [Google Scholar] [CrossRef] [PubMed]
- Yang, N.; Teng, D.; Mao, R.; Hao, Y.; Wang, X.; Wang, Z.; Wang, X.; Wang, J. A recombinant fungal defensin-like peptide-P2 combats multidrug-resistant Staphylococcus aureus and biofilms. Appl. Microbiol. Biotechnol. 2019, 103, 5193–5213. [Google Scholar] [CrossRef]
Antimicrobial Peptide | NZ2114 |
---|---|
Sequence (amino acid) | GFGCNGPWNEDDLRCHNHCKSIKGYKGGYCAKGGFVCKCY |
Cyclic site | Cys4-Cys30, Cys15-Cys37, Cys19-Cys39 |
Structure type | CSαβ |
Molecular weight (Da) | 4417.03 |
Number of amino acids | 40 |
Charge number | +3 |
Theoretical PI | 8.62 |
Hydrophobicity | 0.35 |
Grand average of hydropathicity (GRAVY) | −0.672 |
Formulation | Theoretical Loading (%) | PLGA Type (L/G, dL/g) | PVA Type | Size (nm) | PDI (Polydispersity Index) | ζ-Potential (Zeta Potential, mV) | Encapsulation Rate (EE %) | Actual Loading Rate (%) |
---|---|---|---|---|---|---|---|---|
1 | 0.625 | 75:25 (0.16) | 224 | 378.50 ± 6.08 | 0.182 ± 0.01 | −12.6 ± 0.21 | 91.5 ± 1.44 | 0.57 ± 0.01 |
2 | 0.625 | 75:25 (0.30) | 117 | 224.29 ± 3.10 | 0.225 ± 0.03 | −18.2 ± 0.96 | 92.48 ± 1.72 | 0.58 ± 0.01 |
3 | 0.625 | 50:50 (0.30) | 1788 | 243.67 ± 2.12 | 0.096 ± 0.01 | −22.3 ± 0.52 | 96.18 ± 3.01 | 0.60 ± 0.02 |
4 | 0.625 | 50:50 (0.14) | 205 | 165.05 ± 2.21 | 0.045 ± 0.01 | −17.6 ± 0.52 | 94.50 ± 3.77 | 0.59 ± 0.02 |
5 | 1.25 | 75:25 (0.16) | 117 | 365.45 ± 10.05 | 0.325 ± 0.02 | −9.56 ± 0.25 | 89.91 ± 1.95 | 1.12 ± 0.02 |
6 | 1.25 | 75:25 (0.30) | 224 | 226.94 ± 3.02 | 0.115 ± 0.01 | −12.13 ± 0.56 | 90.00 ± 2.38 | 1.13 ± 0.03 |
7 | 1.25 | 50:50 (0.30) | 205 | 186.69 ± 1.05 | 0.156 ± 0.02 | −11.56 ± 0.62 | 94.48 ± 3.72 | 1.18 ± 0.05 |
8 | 1.25 | 50:50 (0.14) | 1788 | 281.81 ± 2.05 | 0.083 ± 0.01 | −10.28 ± 0.91 | 92.06 ± 3.95 | 1.15 ± 0.05 |
9 | 2.5 | 75:25 (0.16) | 1788 | 487.67 ± 6.02 | 0.232 ± 0.02 | −3.56 ± 0.52 | 80.30 ± 3.64 | 2.01 ± 0.09 |
10 | 2.5 | 75:25 (0.30) | 205 | 169.67 ± 3.56 | 0.125 ± 0.01 | −5.93 ± 0.24 | 83.70 ± 2.18 | 2.09 ± 0.05 |
11 | 2.5 | 50:50 (0.30) | 224 | 321.77 ± 2.31 | 0.240 ± 0.05 | 2.56 ± 0.12 | 87.65 ± 5.70 | 2.19 ± 0.14 |
12 | 2.5 | 50:50 (0.14) | 117 | 346.67 ± 7.32 | 0.135 ± 0.01 | 1.32 ± 0.36 | 82.26 ± 3.57 | 2.06 ± 0.09 |
13 | 5.0 | 75:25 (0.16) | 205 | 178.11 ± 5.23 | 0.108 ± 0.10 | 4.78 ± 0.67 | 81.46 ± 7.42 | 4.07 ± 0.37 |
14 | 5.0 | 75:25 (0.30) | 1788 | 244.72 ± 1.65 | 0.250 ± 0.01 | 7.56 ± 0.24 | 75.87 ± 1.15 | 3.79 ± 0.06 |
15 | 5.0 | 50:50 (0.30) | 117 | 412.40 ± 16.58 | 0.241 ± 0.01 | 4.32 ± 0.57 | 76.36 ± 7.42 | 3.82 ± 0.37 |
16 | 5.0 | 50:50 (0.14) | 224 | 237.19 ± 7.54 | 0.185 ± 0.01 | 8.24 ± 0.45 | 81.63 ± 10.38 | 4.08 ± 0.52 |
Strains | MIC (μg/mL) | MBC (μg/mL) | |||
---|---|---|---|---|---|
Blank-NP | NZ2114 | NZ2114-NP | NZ2114 | NZ2114-NP | |
Staphylococcus epidermidis ATCC 35984 | >512 | 8 | 8 | 16 | 16 |
S. epidermidis ATCC 12228 | >512 | 2 | 4 | 4 | 8 |
S. epidermidis G4 | >512 | 2 | 4 | 16 | 8 |
S. epidermidis G11 | >512 | 4 | 8 | 32 | 32 |
Value Level | Factor Level | ||
---|---|---|---|
A: NZ2114 Concentration (w/v %) | B: PLGA Type (L:G, dL/g) | C: PVA Type | |
1 | 0.625 | 75:25 (0.16) | 224 |
2 | 1.25 | 75:25 (0.30) | 117 |
3 | 2.50 | 50:50 (0.30) | 1788 |
4 | 5.00 | 50:50 (0.14) | 205 |
Formula No. | A | B | C |
---|---|---|---|
1 | 1 | 1 | 1 |
2 | 1 | 2 | 2 |
3 | 1 | 3 | 3 |
4 | 1 | 4 | 4 |
5 | 2 | 1 | 2 |
6 | 2 | 2 | 1 |
7 | 2 | 3 | 4 |
8 | 2 | 4 | 3 |
9 | 3 | 1 | 3 |
10 | 3 | 2 | 4 |
11 | 3 | 3 | 1 |
12 | 3 | 4 | 2 |
13 | 4 | 1 | 4 |
14 | 4 | 2 | 3 |
15 | 4 | 3 | 2 |
16 | 4 | 4 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, X.; Yang, N.; Mao, R.; Hao, Y.; Teng, D.; Huang, Y.; Wang, J. Polylactic Glycolic Acid-Mediated Delivery of Plectasin Derivative NZ2114 in Staphylococcus epidermidis Biofilms. Antibiotics 2024, 13, 228. https://doi.org/10.3390/antibiotics13030228
Ma X, Yang N, Mao R, Hao Y, Teng D, Huang Y, Wang J. Polylactic Glycolic Acid-Mediated Delivery of Plectasin Derivative NZ2114 in Staphylococcus epidermidis Biofilms. Antibiotics. 2024; 13(3):228. https://doi.org/10.3390/antibiotics13030228
Chicago/Turabian StyleMa, Xuanxuan, Na Yang, Ruoyu Mao, Ya Hao, Da Teng, Yinhua Huang, and Jianhua Wang. 2024. "Polylactic Glycolic Acid-Mediated Delivery of Plectasin Derivative NZ2114 in Staphylococcus epidermidis Biofilms" Antibiotics 13, no. 3: 228. https://doi.org/10.3390/antibiotics13030228
APA StyleMa, X., Yang, N., Mao, R., Hao, Y., Teng, D., Huang, Y., & Wang, J. (2024). Polylactic Glycolic Acid-Mediated Delivery of Plectasin Derivative NZ2114 in Staphylococcus epidermidis Biofilms. Antibiotics, 13(3), 228. https://doi.org/10.3390/antibiotics13030228