Relationship between Target Time above Minimum Inhibitory Concentration Achievement Rate of Meropenem Using Monte Carlo Simulation and In-Hospital Survival in Patients with Pseudomonas aeruginosa Bacteremia
Abstract
:1. Introduction
2. Results
2.1. Patient Background
2.2. Probability of Target Attainment
2.3. Investigating the Influence of the Probability of Target Attainment on In-Hospital Survival by Adjusting Patient Background Factors
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Study Population
5.2. Clinical Background
5.3. Definition
5.4. PK/PD Simulation of Individual Patients
5.5. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Muñoz, P.; Cruz, A.F.; Rodríguez-Créixems, M.; Bouza, E. Gram-negative bloodstream infections. Int. J. Antimicrob. Agents 2008, 32, S10–S14. [Google Scholar] [CrossRef] [PubMed]
- Vidal, F.; Mensa, J.; Almela, M.; Martínez, J.A.; Marco, F.; Casals, C.; Gatell, J.M.; Soriano, E.; Jimenez de Anta, M.T. Epidemiology and outcome of Pseudomonas aeruginosa bacteremia, with special emphasis on the influence of antibiotic treatment. Analysis of 189 episodes. Arch. Intern. Med. 1996, 156, 2121–2126. [Google Scholar] [CrossRef] [PubMed]
- Bisbe, J.; Gatell, J.M.; Puig, J.; Mallolas, J.; Martinez, J.A.; Jimenez de Anta, M.T.; Soriano, E. Pseudomonas aeruginosa bacteremia: Univariate and multivariate analyses of factors influencing the prognosis in 133 episodes. Rev. Infect. Dis. 1988, 10, 629–635. [Google Scholar] [CrossRef] [PubMed]
- Kang, C.I.; Kim, S.H.; Kim, H.B.; Park, S.W.; Choe, Y.J.; Oh, M.D.; Kim, E.C.; Choe, K.W. Pseudomonas aeruginosa bacteremia: Risk factors for mortality and influence of delayed receipt of effective antimicrobial therapy on clinical outcome. Clin. Infect. Dis. 2003, 37, 745–751. [Google Scholar] [CrossRef] [PubMed]
- Cheong, H.S.; Kang, C.I.; Wi, Y.M.; Ko, K.S.; Chung, D.R.; Lee, N.Y.; Song, J.H.; Peck, K.R. Inappropriate initial antimicrobial therapy as a risk factor for mortality in patients with community-onset Pseudomonas aeruginosa bacteraemia. Eur. J. Clin. Microbiol. Infect. Dis. 2008, 27, 1219–1225. [Google Scholar] [CrossRef] [PubMed]
- Micek, S.T.; Lloyd, A.E.; Ritchie, D.J.; Reichley, R.M.; Fraser, V.J.; Kollef, M.H. Pseudomonas aeruginosa bloodstream infection: Importance of appropriate initial antimicrobial treatment. Antimicrob. Agents Chemother. 2005, 49, 1306–1311. [Google Scholar] [CrossRef]
- Gomez, J.; Alcantara, M.; Simarro, E.; Martinez, B.; Ruiz, J.; Guerra, B.; Valdés, M. Pseudomonas aeruginosa bacteremia: Clinical and epidemiological patterns and treatment. Rev. Esp. Quimioter. 2002, 15, 360–365. [Google Scholar]
- Lodise, T.P., Jr.; Patel, N.; Kwa, A.; Graves, J.; Furuno, J.P.; Graffunder, E.; Lomaestro, B.; McGregor, J.C. Predictors of 30-day mortality among patients with Pseudomonas aeruginosa bloodstream infections: Impact of delayed appropriate antibiotic selection. Antimicrob. Agents Chemother. 2007, 51, 3510–3515. [Google Scholar] [CrossRef]
- Iversen, B.G.; Brantsaeter, A.B.; Aavitsland, P. Nationwide study of invasive Pseudomonas aeruginosa infection in Norway: Importance of underlying disease. J. Infect. 2008, 57, 139–146. [Google Scholar] [CrossRef]
- Parkins, M.D.; Gregson, D.B.; Pitout, J.D.; Ross, T.; Laupland, K.B. Population-based study of the epidemiology and the risk factors for Pseudomonas aeruginosa bloodstream infection. Infection 2010, 38, 25–32. [Google Scholar] [CrossRef]
- Kang, C.I.; Kim, S.H.; Park, W.B.; Lee, K.D.; Kim, H.B.; Kim, E.C.; Oh, M.D.; Choe, K.W. Clinical features and outcome of patients with community-acquired Pseudomonas aeruginosa bacteraemia. Clin. Microbiol. Infect. 2005, 11, 415–418. [Google Scholar] [CrossRef]
- Choi, Y.; Paik, J.H.; Kim, J.H.; Han, S.B.; Durey, A. Clinical Predictors of Pseudomonas aeruginosa Bacteremia in Emergency Department. Emerg. Med. Int. 2018, 2018, 7581036. [Google Scholar] [CrossRef]
- Fabre, V.; Amoah, J.; Cosgrove, S.E.; Tamma, P.D. Antibiotic Therapy for Pseudomonas aeruginosa Bloodstream Infections: How Long Is Long Enough? Clin. Infect. Dis. 2019, 169, 2011–2014. [Google Scholar] [CrossRef] [PubMed]
- Babich, T.; Naucler, P.; Valik, J.K.; Giske, C.G.; Benito, N.; Cardona, R.; Rivera, A.; Pulcini, C.; Fattah, M.A.; Haquin, J.; et al. Risk factors for mortality among patients with Pseudomonas aeruginosa bacteremia: A retrospective multicentre study. Int. J. Antimicrob. Agents 2020, 55, 105847. [Google Scholar] [CrossRef]
- Steinberg, J.P.; Burd, E.M. Other gram-negative and gram-variable bacilli. In Mandell, Douglas, and Bennett’s Principles and Practice of Infectious Diseases; Elsevier/Saunders: Philadelphia, PA, USA, 2015; Volume 3023, pp. 2667–2683. [Google Scholar]
- Quinn, J.P. Clinical problems posed by multiresistant nonfermenting Gram-negative pathogens. Clin. Infect. Dis. 1998, 27, S117–S124. [Google Scholar] [CrossRef]
- Livermore, D.M. Multiple mechanisms of antimicrobial resistance in Pseudomonas aeruginosa: Our worst nightmare? Clin. Infect. Dis. 2002, 34, 634–640. [Google Scholar] [CrossRef] [PubMed]
- Bonomo, R.A.; Szabo, D. Mechanisms of multidrug resistance in Acinetobacter species and Pseudomonas aeruginosa. Clin. Infect. Dis. 2006, 43, S49–S56. [Google Scholar] [CrossRef]
- Baldwin, C.M.; Lyseng-Williamson, K.A.; Keam, S.J. Meropenem: A review of its use in the treatment of serious bacterial infections. Drugs 2008, 68, 803–838. [Google Scholar] [CrossRef] [PubMed]
- Kwee, F.; Walker, S.A.; Elligsen, M.; Palmay, L.; Simor, A.; Daneman, N. Outcomes in Documented Pseudomonas aeruginosa Bacteremia Treated with Intermittent IV Infusion of Ceftazidime, Meropenem, or Piperacillin-Tazobactam: A Retrospective Study. Can. J. Hosp. Pharm. 2015, 68, 386–394. [Google Scholar] [CrossRef]
- Vogelman, B.; Gudmundsson, S.; Leggett, J.; Turnidge, J.; Ebert, S.; Craig, W.A. Correlation of antimicrobial pharmacokinetic parameters with therapeutic efficacy in an animal model. J. Infect. Dis. 1988, 158, 831–847. [Google Scholar] [CrossRef]
- Nicolau, D.P. Optimizing outcomes with antimicrobial therapy through pharmacodynamic profiling. J. Infect. Chemother. 2003, 9, 292–296. [Google Scholar] [CrossRef]
- Ambrose, P.G.; Bhavnani, S.M.; Rubino, C.M.; Louie, A.; Gumbo, T.; Forrest, A.; Drusano, G.L. Pharmacokinetics-pharmacodynamics of antimicrobial therapy: It’s not just for mice anymore. Clin. Infect. Dis. 2007, 44, 79–86. [Google Scholar] [CrossRef] [PubMed]
- Nicolau, D.P. Pharmacokinetic and pharmacodynamic properties of meropenem. Clin. Infect. Dis. 2008, 47, S32–S40. [Google Scholar] [CrossRef]
- Craig, W.A. Pharmacokinetic/pharmacodynamic parameters: Rationale for antibacterial dosing of mice and men. Clin. Infect. Dis. 1998, 26, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Boonpeng, A.; Jaruratanasirikul, S.; Jullangkoon, M.; Samaeng, M.; Wattanavijitkul, T.; Bhurayanontachai, R.; Pattharachayakul, S. Population Pharmacokinetics/Pharmacodynamics and Clinical Outcomes of Meropenem in Critically Ill Patients. Antimicrob. Agents Chemother. 2022, 66, e0084522. [Google Scholar] [CrossRef]
- Ariano, R.E.; Nyhlén, A.; Donnelly, J.P.; Sitar, D.S.; Harding, G.K.; Zelenitsky, S.A. Pharmacokinetics and Pharmacodynamics of Meropenem in Febrile Neutropenic Patients with Bacteremia. Ann. Pharmacother. 2005, 39, 32–38. [Google Scholar] [CrossRef] [PubMed]
- Kuti, J.L.; Dandekar, P.K.; Nightingale, C.H.; Nicolau, D.P. Use of Monte Carlo simulation to design an optimized pharmacodynamic dosing strategy for meropenem. J. Clin. Pharmacol. 2003, 43, 1116–1123, Erratum in J. Clin. Pharmacol. 2005, 45, 357. [Google Scholar] [CrossRef]
- Ellis, J.M.; Kuti, J.L.; Nicolau, D.P. Pharmacodynamic evaluation of meropenem and cefotaxime for pediatric meningitis: A report from the OPTAMA program. Paediatr. Drugs 2006, 8, 131–138. [Google Scholar] [CrossRef]
- Lee, J.H.; Lee, D.H.; Kim, J.S.; Jung, W.B.; Heo, W.; Kim, Y.K.; Kim, S.H.; No, T.H.; Jo, K.M.; Ko, J.; et al. Pharmacokinetics and Monte Carlo Simulation of Meropenem in Critically Ill Adult Patients Receiving Extracorporeal Membrane Oxygenation. Front. Pharmacol. 2021, 12, 768912. [Google Scholar] [CrossRef]
- Yamada, T.; Minami, K.; Oda, K.; Suzuki, K.; Nishihara, M.; Uchiyama, K.; Ukimura, A. Probability of target attainment of oral antimicrobials for Escherichia coli and Klebsiella pneumoniae based on Monte Carlo simulations. Diagn. Microbiol. Infect. Dis. 2022, 103, 115662. [Google Scholar] [CrossRef]
- Sjövall, F.; Alobaid, A.S.; Wallis, S.C.; Perner, A.; Lipman, J.; Roberts, J.A. Maximally effective dosing regimens of meropenem in patients with septic shock. J. Antimicrob. Chemother. 2018, 73, 191–198. [Google Scholar] [CrossRef]
- Fukumoto, S.; Ohbayashi, M.; Okada, A.; Kohyama, N.; Tamatsukuri, T.; Inoue, H.; Kato, A.; Kotani, T.; Sagara, H.; Dohi, K.; et al. Population Pharmacokinetic Model and Dosing Simulation of Meropenem Using Measured Creatinine Clearance for Patients with Sepsis. Ther. Drug Monit. 2023, 45, 392–399. [Google Scholar] [CrossRef]
- Roberts, J.A.; Kirkpatrick, C.M.; Roberts, M.S.; Robertson, T.A.; Dalley, A.J.; Lipman, J. Meropenem dosing in critically ill patients with sepsis and without renal dysfunction: Intermittent bolus versus continuous administration? Monte Carlo dosing simulations and subcutaneous tissue distribution. J. Antimicrob. Chemother. 2009, 64, 142–150. [Google Scholar] [CrossRef]
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing, 30th Edition. CLSI supplement M100. Clinical and Laboratory Standards Institute: Wayne, NY, USA, 2020, 42–45.
- Frippiat, F.; Musuamba, F.T.; Seidel, L.; Albert, A.; Denooz, R.; Charlier, C.; Van Bambeke, F.; Wallemacq, P.; Descy, J.; Lambermont, B.; et al. Modelled target attainment after meropenem infusion in patients with severe nosocomial pneumonia: The PROMESSE study. J. Antimicrob. Chemother. 2015, 70, 207–216. [Google Scholar] [CrossRef]
- Lodise, T.P.; Sorgel, F.; Melnick, D.; Mason, B.; Kinzig, M.; Drusano, G.L. Penetration of meropenem into epithelial lining fluid of patients with ventilator-associated pneumonia. Antimicrob. Agents Chemother. 2011, 55, 1606–1610. [Google Scholar] [CrossRef] [PubMed]
- Blassmann, U.; Roehr, A.C.; Frey, O.R.; Vetter-Kerkhoff, C.; Thon, N.; Hope, W.; Briegel, J.; Huge, V. Cerebrospinal fluid penetration of meropenem in neurocritical care patients with proven or suspected ventriculitis: A prospective observational study. Crit. Care 2016, 20, 343. [Google Scholar] [CrossRef] [PubMed]
- Hamanoue, S.; Suwabe, T.; Ubara, Y.; Kikuchi, K.; Hazue, R.; Mise, K.; Ueno, T.; Takaichi, K.; Matsumoto, K.; Morita, K. Cyst infection in autosomal dominant polycystic kidney disease: Penetration of meropenem into infected cysts. BMC Nephrol. 2018, 19, 272. [Google Scholar] [CrossRef] [PubMed]
- Sepúlveda, R.A.; Downey, P.; Soto, D.; Wong, K.Y.; Leung, Y.C.; So, L.Y.; Andresen, M. Plasma and Renal Cortex Meropenem Concentrations in Patients Undergoing Percutaneous Renal Biopsy. Biomed Res. Int. 2019, 2019, 1368397. [Google Scholar] [CrossRef] [PubMed]
- Moon, Y.S.; Chung, K.C.; Gill, M.A. Pharmacokinetics of meropenem in animals, healthy volunteers, and patients. Clin. Infect. Dis. 1997, 24, S249–S255. [Google Scholar] [CrossRef]
- Harrison, M.P.; Moss, S.R.; Featherstone, A.; Fowkes, A.G.; Sanders, A.M.; Case, D.E. The disposition and metabolism of meropenem in laboratory animals and man. J. Antimicrob. Chemother. 1989, 24, 265–277. [Google Scholar] [CrossRef]
- Angus, D.C.; van der Poll, T. Severe sepsis and septic shock. N. Engl. J. Med. 2013, 369, 840–851. [Google Scholar] [CrossRef]
- Udy, A.A.; Baptista, J.P.; Lim, N.L.; Joynt, G.M.; Jarrett, P.; Wockner, L.; Boots, R.J.; Lipman, J. Augmented renal clearance in the ICU: Results of a multicenter observational study of renal function in critically ill patients with normal plasma creatinine concentrations. Crit. Care Med. 2014, 42, 520–527. [Google Scholar] [CrossRef]
- Uchino, S.; Kellum, J.A.; Bellomo, R.; Doig, G.S.; Morimatsu, H.; Morgera, S.; Schetz, M.; Tan, I.; Bouman, C.; Macedo, E.; et al. Beginning and Ending Supportive Therapy for the Kidney (BEST Kidney) Investigators. Acute renal failure in critically ill patients: A multinational, multicenter study. JAMA 2005, 294, 813–818. [Google Scholar] [CrossRef]
- Sunenshine, R.H.; Wright, M.O.; Maragakis, L.L.; Harris, A.D.; Song, X.; Hebden, J.; Cosgrove, S.E.; Anderson, A.; Carnell, J.; Jernigan, D.B.; et al. Multidrug-resistant Acinetobacter infection mortality rate and length of hospitalization. Emerg. Infect. Dis. 2007, 13, 97–103. [Google Scholar] [CrossRef] [PubMed]
- Cockcroft, D.W.; Gault, M.H. Prediction of creatinine clearance from serum creatinine. Nephron 1976, 16, 31–41. [Google Scholar] [CrossRef] [PubMed]
- Mehta, R.L.; Kellum, J.A.; Shah, S.V.; Molitoris, B.A.; Ronco, C.; Warnock, D.G.; Levin, A. Acute Kidney Injury Network: Report of an initiative to improve outcomes in acute kidney injury. Crit. Care 2007, 11, R31. [Google Scholar] [CrossRef] [PubMed]
- Ikawa, K.; Morikawa, N.; Ohge, H.; Ikeda, K.; Sueda, T.; Taniwaki, M.; Kurisu, K. Pharmacokinetic–pharmacodynamic target attainment analysis of meropenem in Japanese adult patients. J. Infect. Chemother. 2010, 16, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Oda, K. Development of Software for Antimicrobial PK/PD Simulation incorporating Montecarlo Simulation Based on Microsoft® Office Excel. Iryo Yakugaku 2011, 37, 335–344. [Google Scholar]
Value for the Following Groups: | ||||
---|---|---|---|---|
Characteristic | Total Cohort (n = 41) | Survivors (n = 31) | Non-Survivors (n = 10) | p Value |
Age in years, median (IQR) | 77 (70–84) | 79 (69–86) | 73 (70–78) | 0.230 |
Male, n (%) | 29 (70.7) | 21 (67.7) | 8 (80.0) | 0.694 |
Wt (kg), median (IQR) | 55.9 (47.5–63.3) | 55.9 (47.6–63.3) | 52.9 (48.1–61.7) | 0.767 |
Modified APACHE II score on the day of culture, median (IQR) | 20 (13–22) | 18 (12–22) | 22 (21–27) | 0.005 |
Creatinine clearance on the day of culture (mL/min), median (IQR) | 45 (20.9–75.5) | 40.3 (18.8–62.4) | 66.1 (32.1–80.0) | 0.300 |
Patients with AKI, n (%) | 16 (39.0) | 12 (38.7) | 4 (40) | 1 |
ICU at culture, n (%) | 7 (17.1) | 4 (12.9) | 3 (30) | 0.332 |
Days to positive culture from admission, median (IQR) | 14 (0–24) | 14 (0.5–24.5) | 16 (0–19.25) | 0.854 |
Duration of meropenem therapy, median (IQR) | 9 (6–14) | 8 (5.5–13) | 10 (9–16) | 0.171 |
Received active combination therapy with meropenem, n (%) | 7 (17.1) | 4 (12.9) | 3 (30) | 0.332 |
Patients with the following medical history, n (%) | ||||
Hypertension | 18 (43.9) | 14 (45.2) | 4 (40) | 1 |
Type 2 diabetes mellitus | 13 (31.7) | 9 (29) | 4 (40) | 0.698 |
Ischemic heart disease | 7 (17.1) | 6 (19.4) | 1 (10) | 0.660 |
Heart failure | 7 (17.1) | 7 (22.6) | 0 (0) | 0.164 |
Cerebrovascular disease | 4 (9.8) | 3 (9.7) | 1 (10) | 1 |
CKD | 16 (39.0) | 13 (41.9) | 3 (30) | 0.712 |
Solid tumors | 10 (24.4) | 8 (25.8) | 2 (20) | 0.622 |
Hematological malignancies | 16 (39.0) | 10 (32.3) | 6 (60) | 0.150 |
Source, n (%) | ||||
Respiratory | 7 (17.1) | 5 (16.1) | 2 (20) | 1 |
Urinary | 14 (34.1) | 13 (41.9) | 1 (10) | 0.123 |
Intra-abdominal | 5 (12.2) | 4 (12.9) | 1 (10) | 1 |
Skin and wounds | 1 (2.4) | 0 (0) | 1 (10) | 0.244 |
Unknown | 14 (34.1) | 9 (29.0) | 5 (50) | 0.267 |
Parameter | Adjusted OR for In-Hospital Survival | 95% CI | p Value |
---|---|---|---|
PTA > 65% | 20.49 | 3.02–245.23 | 0.005 |
modified APACHE II score | 0.83 | 0.69–0.96 | 0.024 |
UTI as a cause of bacteremia | 6.05 | 0.57–169.07 | 0.186 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nakashima, H.; Miyazaki, M.; Kuwamura, T.; Oda, K.; Haga, Y.; Imakyure, O. Relationship between Target Time above Minimum Inhibitory Concentration Achievement Rate of Meropenem Using Monte Carlo Simulation and In-Hospital Survival in Patients with Pseudomonas aeruginosa Bacteremia. Antibiotics 2024, 13, 219. https://doi.org/10.3390/antibiotics13030219
Nakashima H, Miyazaki M, Kuwamura T, Oda K, Haga Y, Imakyure O. Relationship between Target Time above Minimum Inhibitory Concentration Achievement Rate of Meropenem Using Monte Carlo Simulation and In-Hospital Survival in Patients with Pseudomonas aeruginosa Bacteremia. Antibiotics. 2024; 13(3):219. https://doi.org/10.3390/antibiotics13030219
Chicago/Turabian StyleNakashima, Hajime, Motoyasu Miyazaki, Tsuneo Kuwamura, Kazutaka Oda, Yumi Haga, and Osamu Imakyure. 2024. "Relationship between Target Time above Minimum Inhibitory Concentration Achievement Rate of Meropenem Using Monte Carlo Simulation and In-Hospital Survival in Patients with Pseudomonas aeruginosa Bacteremia" Antibiotics 13, no. 3: 219. https://doi.org/10.3390/antibiotics13030219
APA StyleNakashima, H., Miyazaki, M., Kuwamura, T., Oda, K., Haga, Y., & Imakyure, O. (2024). Relationship between Target Time above Minimum Inhibitory Concentration Achievement Rate of Meropenem Using Monte Carlo Simulation and In-Hospital Survival in Patients with Pseudomonas aeruginosa Bacteremia. Antibiotics, 13(3), 219. https://doi.org/10.3390/antibiotics13030219