Proteomics-Based RT-qPCR and Functional Analysis of 18 Genes in Metronidazole Resistance of Bacteroides fragilis
Abstract
:1. Introduction
2. Results and Discussion
2.1. Connection between the Metronidazole MICs and nim Gene Expression
2.2. Examination of the Roles of 18 Genes in Metronidazole Resistance
2.3. Examination of Addition of C4-dicarboxylic Acids on Metronidazole Resistance
2.4. Proposal for the Interactions of Redox and Other Proteins in Metronidazole Resistance
3. Materials and Methods
3.1. Bacterial Strains and Cultivation
3.2. Metronidazole MIC Measurements
3.3. RT-qPCR
3.4. Data Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wexler, H.M. Bacteroides: The good, the bad and the nitty-gritty. Clin. Microbiol. Rev. 2007, 20, 593–621. [Google Scholar] [CrossRef] [PubMed]
- Dingsdag, S.A.; Hunter, N. Metronidazole: An update on metabolism, structure-cytotoxicity and resistance mechanisms. J. Antimicrob. Chemother. 2018, 73, 265–279. [Google Scholar] [CrossRef] [PubMed]
- Nagy, E.U.E.; Nord, C.E. on behalf of the ESCMID Study Group on Antimicrobial Resistance in Anaerobic Bacteria. Antimicrobial susceptibility of Bacteroides fragilis group isolates in Europe 20 years of experience. Clin. Microbiol. Infect. 2011, 17, 371–379. [Google Scholar] [CrossRef]
- Sethi, S.; Shukla, R.; Bala, K.; Gautam, V.; Angrup, A.; Ray, P. Emerging metronidazole resistance in Bacteroides spp. and its association with the nim gene: A study from North India. J. Glob. Antimicrob. Resist. 2019, 16, 210–214. [Google Scholar] [CrossRef] [PubMed]
- Alauzet, C.; Lozniewski, A.; Marchandin, H. Metronidazole resistance and nim genes in anaerobes: A review. Anaerobe 2019, 55, 40–53. [Google Scholar] [CrossRef]
- Carlier, J.P.; Sellier, N.; Rager, M.N.; Reysset, G. Metabolism of a 5-nitroimidazole in susceptible and resistant isogenic strains of Bacteroides fragilis. Antimicrob. Agents Chemother. 1997, 41, 1495–1499. [Google Scholar] [CrossRef]
- Olaitan, A.O.; Dureja, C.; Youngblom, M.A.; Topf, M.A.; Shen, W.J.; Gonzales-Luna, A.J.; Deshpande, A.; Hevener, K.E.; Freeman, J.; Wilcox, M.H.; et al. Decoding a cryptic mechanism of metronidazole resistance among globally disseminated fluoroquinolone-resistant Clostridioides difficile. Nat. Commun. 2023, 14, 4130. [Google Scholar] [CrossRef]
- Mahmood, B.; Juhász, H.; Leitsch, D.; Sóki, J. The effects of identical nim gene-insertion sequence combinations on the expression of the nim genes and metronidazole resistance in Bacteroides fragilis strains. Anaerobe 2023, 81, 102739. [Google Scholar] [CrossRef]
- García, N.; Gutiérrez, G.; Lorenzo, M.; Vadillo, S.; Píriz, S.; Quesada, A. Gene Context and DNA Rearrangements in the Carbapenemase Locus of Division II Strains of Bacteroides fragilis. Antimicrob. Agents Chemother. 2009, 53, 2677–2678. [Google Scholar] [CrossRef]
- Paunkov, A.; Gutenbrunner, K.; Sóki, J.; Leitsch, D. Haemin deprivation renders Bacteroides fragilis hypersusceptible to metronidazole and cancels high-level metronidazole resistance. J. Antimicrob. Chemother. 2022, 77, 1027–1031. [Google Scholar] [CrossRef]
- Paunkov, A.; Hummel, K.; Strasser, D.; Sóki, J.; Leitsch, D. Proteomic analysis of metronidazole resistance in the human facultative pathogen Bacteroides fragilis. Front. Microbiol. 2023, 14, 1158086. [Google Scholar] [CrossRef]
- Löfmark, S.; Fang, H.; Hedberg, M.; Edlund, C. Inducible metronidazole resistance and nim genes in clinical Bacteroides fragilis group isolates. Antimicrob. Agents Chemother. 2005, 49, 1253–1256. [Google Scholar] [CrossRef]
- Sóki, J.; Fodor, E.; Hecht, D.W.; Edwards, R.; Rotimi, V.O.; Kerekes, I.; Urbán, E.; Nagy, E. Molecular characterization of imipenem-resistant, cfiA-positive Bacteroides fragilis isolates from the USA, Hungary and Kuwait. J. Med. Microbiol. 2004, 53, 413–419. [Google Scholar] [CrossRef] [PubMed]
- Baaity, Z.; Jamal, W.; Rotimi, V.O.; Burián, K.; Leitsch, D.; Somogyvári, F.; Nagy, E.; Sóki, J. Molecular characterization of metronidazole resistant Bacteroides strains from Kuwait. Anaerobe 2021, 69, 102357. [Google Scholar] [CrossRef] [PubMed]
- Wareham, D.W.; Wilks, M.; Ahmed, D.; Brazier, J.S.; Miller, M. Anaerobic sepsis due to multidrug-resistant Bacteroides fragilis: Microbiological cure and clinical response with linezolid therapy. Clin. Infect. Dis. 2005, 40, e67–e68. [Google Scholar] [CrossRef] [PubMed]
- Podglajen, I.; Breuil, J.; Casin, I.; Collatz, E. Genotypic identification of two groups within the species Bacteroides fragilis by ribotyping and by analysis of PCR-generated fragment patterns and insertion sequence content. J. Bacteriol. 1995, 177, 5270–5275. [Google Scholar] [CrossRef] [PubMed]
- Sárvári, K.P.; Sóki, J.; Kristóf, K.; Juhász, E.; Miszti, C.; Latkóczy, K.; Melegh, S.Z.; Urbán, E. A multicentre survey of the antibiotic susceptibility of clinical Bacteroides species from Hungary. Infect. Dis. 2018, 50, 372–380. [Google Scholar] [CrossRef]
- Privitera, G.; Sebald, M.; Fayolle, F. Common regulatory mechanism of expression and conjugative ability of a tetracycline resistance plasmid in Bacteroides fragilis. Nature 1979, 278, 657–659. [Google Scholar] [CrossRef] [PubMed]
- Sóki, J.; Gal, M.; Brazier, J.S.; Rotimi, V.O.; Urbán, E.; Nagy, E.; Duerden, B.I. Molecular investigation of genetic elements contributing to metronidazole resistance in Bacteroides strains. J. Antimicrob. Chemother. 2006, 57, 212–220. [Google Scholar] [CrossRef] [PubMed]
- Reysset, G. Genetics of 5-nitroimidazole resistance in Bacteroides species. Anaerobe 1996, 2, 59–69. [Google Scholar] [CrossRef]
- Husain, F.; Veeranagouda, Y.; Hsi, J.; Meggersee, R.; Abratt, V.; Wexler, H.M. Two multidrug-resistant clinical isolates of Bacteroides fragilis carry a novel metronidazole resistance nim gene (nimJ). Antimicrob. Agents Chemother. 2013, 57, 3767–3774. [Google Scholar] [CrossRef]
- Vishwanath, S.; Shenoy, P.A.; Chawla, K. Antimicrobial Resistance Profile and Nim Gene Detection among Bacteroides fragilis Group Isolates in a University Hospital in South India. J. Glob. Infect. Dis. 2019, 11, 59–62. [Google Scholar] [CrossRef] [PubMed]
- Baughn, A.D.; Malamy, M.H. The essential role of fumarate reductase in haem-dependent growth stimulation of Bacteroides fragilis. Microbiology (Reading) 2003, 149, 1551–1558. [Google Scholar] [CrossRef] [PubMed]
- Veeranagouda, Y.; Husain, F.; Boente, R.; Moore, J.; Smith, C.J.; Rocha, E.R.; Patrick, S.; Wexler, H.M. Deficiency of the ferrous iron transporter FeoAB is linked with metronidazole resistance in Bacteroides fragilis. J. Antimicrob. Chemother. 2014, 69, 2634–2643. [Google Scholar] [CrossRef] [PubMed]
- Pumbwe, L.; Chang, A.; Smith, R.L.; Wexler, H.M. BmeRABC5 is a multidrug efflux system that can confer metronidazole resistance in Bacteroides fragilis. Microb. Drug Resist. 2007, 13, 96–101. [Google Scholar] [CrossRef]
- Diniz, C.G.; Farias, L.M.; Carvalho, M.A.; Rocha, E.R.; Smith, C.J. Differential gene expression in a Bacteroides fragilis metronidazole-resistant mutant. J. Antimicrob. Chemother. 2004, 54, 100–108. [Google Scholar] [CrossRef] [PubMed]
- Steffens, L.S.; Nicholson, S.; Paul, L.V.; Nord, C.E.; Patrick, S.; Abratt, V.R. Bacteroides fragilis RecA protein overexpression causes resistance to metronidazole. Res. Microbiol. 2010, 161, 346–354. [Google Scholar] [CrossRef]
- Samarawickrema, N.A.; Brown, D.M.; Upcroft, J.A.; Thammapalerd, N.; Upcroft, P. Involvement of superoxide dismutase and pyruvate:ferredoxin oxidoreductase in mechanisms of metronidazole resistance in Entamoeba histolytica. J. Antimicrob. Chemother. 1997, 40, 833–840. [Google Scholar] [CrossRef]
- Patel, E.H.; Paul, L.V.; Casanueva, A.I.; Patrick, S.; Abratt, V.R. Overexpression of the rhamnose catabolism regulatory protein, RhaR: A novel mechanism for metronidazole resistance in Bacteroides thetaiotaomicron. J. Antimicrob. Chemother. 2009, 64, 267–273. [Google Scholar] [CrossRef]
- Huynen, M.A.; Dandekar, T.; Bork, P. Variation and evolution of the citric-acid cycle: A genomic perspective. Trends Microbiol. 1999, 7, 281–291. [Google Scholar] [CrossRef]
- Baughn, A.D.; Malamy, M.H. A mitochondrial-like aconitase in the bacterium Bacteroides fragilis: Implications for the evolution of the mitochondrial Krebs cycle. Proc. Natl. Acad. Sci. USA 2002, 99, 4662–4667. [Google Scholar] [CrossRef] [PubMed]
- Boekhoud, I.M.; Sidorov, I.; Nooij, S.; Harmanus, C.; Bos-Sanders, I.; Viprey, V.; Spittal, W.; Clark, E.; Davies, K.; Freeman, J.; et al. Haem is crucial for medium-dependent metronidazole resistance in clinical isolates of Clostridioides difficile. J. Antimicrob. Chemother. 2021, 76, 1731–1740. [Google Scholar] [CrossRef] [PubMed]
- Janausch, I.G.; Zientz, E.; Tran, Q.H.; Kröger, A.; Unden, G. C4-dicarboxylate carriers and sensors in bacteria. Biochim. Biophys. Acta 2002, 1553, 39–56. [Google Scholar] [CrossRef] [PubMed]
- Narikawa, S.; Suzuki, T.; Yamamoto, M.; Nakamura, M. Lactate dehydrogenase activity as a cause of metronidazole resistance in Bacteroides fragilis NCTC 11295. J. Antimicrob. Chemother. 1991, 28, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Paunkov, A.; Sóki, J.; Leitsch, D. Modulation of Iron Import and Metronidazole Resistance in Bacteroides fragilis Harboring a nimA Gene. Front. Microbiol. 2022, 13, 898453. [Google Scholar] [CrossRef] [PubMed]
- de Freitas, M.C.; Resende, J.A.; Ferreira-Machado, A.B.; Saji, G.D.; de Vasconcelos, A.T.; da Silva, V.L.; Nicolás, M.F.; Diniz, C.G. Exploratory Investigation of Bacteroides fragilis Transcriptional Response during In vitro Exposure to Subinhibitory Concentration of Metronidazole. Front. Microbiol. 2016, 7, 1465. [Google Scholar] [CrossRef]
- Leitsch, D.; Kolarich, D.; Wilson, I.B.; Altmann, F.; Duchêne, M. Nitroimidazole action in Entamoeba histolytica: A central role for thioredoxin reductase. PLoS Biol. 2007, 5, e211. [Google Scholar] [CrossRef]
B. fragilis | MTZ a MIC (µg/mL) | nim (IS) | nim experession (Rq b) | cfiA | Ref. |
---|---|---|---|---|---|
GBR13 | >256 | E (ISBf6) | 0.352 | + | [12] |
388/2 | >256 | E (ISBf6) | 1.778 | + | [13] |
Q5 | 256 | E (ISBf6) | 1.411 | + | [14] |
20584 | 256 | E (ISBf6) | 1 | + | This study |
Q6 | 256 | E (ISBf6) | 0.187 | - | [14] |
DOR18i3 | 256 | D (IS1169) | 0.403 | + | This study |
18807i2 | (0.5−) > 256 c | - | n.a. | - | This study |
Q11 | 64 | E (ISBf6) | 0.856 | + | [14] |
WI1 | 32 | - | n.a. | + | [15] |
KSB-R | 32 | B (IS1186) | 0.109 | + | [16] |
SY46 | 0.25 | - | n.a. | - | [17] |
SZ69 | 0.25 | - | n.a. | + | [17] |
638R | 0.125 | - | n.a. | - | [18] |
SZ26 | 0.125 | - | n.a. | + | [17] |
SE61 | 0.064 | - | n.a. | - | [17] |
S3 | acr5 | acr15 | crpF | frdC | feoAB | fldA | fprA | frdA | galK | gatMZ | ldh | mdh | nanH | porMZ | pgk | relA | MIC b | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
L20 | 0.486 | −0.318 | 0.243 | −0.346 | 0.725 | 0.0393 | −0.479 | 0.421 | 0.789 | 0.154 | 0.149 | −0.0964 | 0.621 | −0.393 | 0.257 | 0.704 | 0.679 | −0.423 |
0.0639 | 0.24 | 0.374 | 0.199 | 0.00178 | 0.883 | 0.0685 | 0.113 | 2 × 10−7 | 0.575 | 0.584 | 0.724 | 0.0129 | 0.142 | 0.346 | 0.00302 | 0.00504 | 0.113 | |
S3 | 0.214 | 0.429 | −0.296 | 0.511 | −0.175 | 0.025 | 0.275 | 0.443 | 0.579 | 0.31 | 0.0286 | 0.421 | −0.321 | 0.414 | 0.643 | 0.614 | −0.25 | |
0.433 | 0.107 | 0.275 | 0.0498 | 0.523 | 0.923 | 0.312 | 0.0946 | 0.0231 | 0.252 | 0.913 | 0.113 | 0.235 | 0.12 | 0.00934 | 0.0143 | 0.359 | ||
acr5 | 0.461 | 0.136 | −0.343 | −0.113 | 0.393 | 0.05 | −0.132 | 0.486 | −0.125 | 0.211 | −0.111 | 0.25 | 0.443 | −0.0536 | −0.168 | 0.227 | ||
0.0808 | 0.62 | 0.204 | 0.676 | 0.142 | 0.852 | 0.629 | 0.0639 | 0.648 | 0.441 | 0.686 | 0.359 | 0.0946 | 0.842 | 0,54 | 0.41 | |||
acr15 | 0.4 | −0.0179 | −0.0536 | 0.0821 | 0.307 | 0.546 | 0.629 | −0.133 | 0.664 | 0.0107 | 0.343 | 0.639 | 0.125 | 0.104 | 0.132 | |||
0.134 | 0.944 | 0.842 | 0.763 | 0.257 | 0.0339 | 0.0116 | 0.629 | 0.00654 | 0.964 | 0.204 | 0.00988 | 0.648 | 0.705 | 0.629 | ||||
crpF | −0.3 | 0.211 | 0.0929 | −0.214 | 0.0429 | 0.075 | −0.262 | 0.646 | −0.25 | 0.468 | 0.439 | −0.368 | −0.25 | 0.491 | ||||
0.269 | 0.441 | 0.734 | 0.433 | 0.873 | 0.783 | 0.339 | 0.00882 | 0.359 | 0.0757 | 0.0975 | 0.171 | 0.359 | 0.0597 | |||||
frdC | 0.179 | −0.336 | 0.486 | 0.593 | −0.193 | 0.528 | −0.311 | 0.7 | −0.614 | 0.25 | 0.75 | 0.814 | −0.669 | |||||
0.514 | 0.214 | 0.0639 | 0.0192 | 0.481 | 0.0413 | 0.252 | 0.00326 | 0.0143 | 0.359 | 0.000786 | 2 × 10−7 | 0.00614 | ||||||
feoAB | 0.259 | 0.45 | −0.132 | −0.37 | −0.0403 | 0.247 | 0.182 | −0.316 | 0.39 | −0.218 | 0.261 | −0.0118 | ||||||
0.339 | 0.0889 | 0.629 | 0.167 | 0.883 | 0.367 | 0.506 | 0.24 | 0.146 | 0.426 | 0.339 | 0.964 | |||||||
fldA | −0.05 | −0.536 | 0.118 | −0.0685 | 0.468 | −0.207 | 0.286 | 0.143 | −0.386 | −0.0429 | 0.274 | |||||||
0.852 | 0.0382 | 0.667 | 0.802 | 0.0757 | 0.449 | 0.293 | 0.602 | 0.15 | 0.873 | 0.312 | ||||||||
fprA | 0.218 | −0.179 | 0.27 | −0.0536 | 0.575 | −0.454 | 0.386 | 0.461 | 0.471 | −0.426 | ||||||||
0.426 | 0.514 | 0.319 | 0.842 | 0.0241 | 0.0861 | 0.15 | 0.0808 | 0.0732 | 0.11 | |||||||||
frdA | 0.279 | 0.157 | 0.143 | 0.393 | −0.1 | 0.357 | 0.55 | 0.489 | −0.361 | |||||||||
0.306 | 0.566 | 0.602 | 0.142 | 0.714 | 0.185 | 0.0325 | 0.0618 | 0,18 | ||||||||||
galK | −0.475 | 0.482 | −0.25 | 0.382 | 0.339 | 0.0643 | −0.075 | 0.457 | ||||||||||
0.0708 | 0.0662 | 0.359 | 0.154 | 0.209 | 0.812 | 0.783 | 0.0834 | |||||||||||
gatMZ | −0.5 | 0.596 | −0.58 | −0.00403 | 0.463 | 0.483 | −0.683 | |||||||||||
0.0556 | 0.0183 | 0.0231 | 0.985 | 0.0782 | 0.0662 | 0.00471 | ||||||||||||
ldh | −0.3 | 0.564 | 0.421 | −0.346 | −0.0893 | 0.517 | ||||||||||||
0.269 | 0.0275 | 0.113 | 0.199 | 0.743 | 0.0463 | |||||||||||||
mdh | −0.689 | 0.364 | 0.836 | 0.825 | −0.528 | |||||||||||||
0.00409 | 0.176 | 2 × 10−7 | 2 × 10−7 | 0.0413 | ||||||||||||||
nanH | −0.0214 | −0.521 | −0.543 | 0.446 | ||||||||||||||
0.934 | 0.0446 | 0.0353 | 0.0917 | |||||||||||||||
porMZ | 0.254 | 0,45 | 0.0798 | |||||||||||||||
0.353 | 0.0889 | 0.773 | ||||||||||||||||
pgk | 0.786 | −0.586 | ||||||||||||||||
2 × 10−7 | 0.0211 | |||||||||||||||||
relA | −0.629 | |||||||||||||||||
0.0116 |
L20 | S3 | acr5 | acr15 | crpF | frdC | feoAB | fldA | fprA | frdA | galK | gat | ldh | mdh | nanH | por | pgk | relA | MIC | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
nim | n.s.a | n.s. | n.s. | n.s. | n.s. | 0.006 | n.s. | n.s. | n.s. | n.s. | n.s. | 0.029 | n.s. | 0.001 | 0.04 | n.s. | 0.001 | 0.001 | 0.001 |
cfiA | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahmood, B.; Paunkov, A.; Kupc, M.; Burián, K.; Nagy, E.; Leitsch, D.; Sóki, J. Proteomics-Based RT-qPCR and Functional Analysis of 18 Genes in Metronidazole Resistance of Bacteroides fragilis. Antibiotics 2024, 13, 207. https://doi.org/10.3390/antibiotics13030207
Mahmood B, Paunkov A, Kupc M, Burián K, Nagy E, Leitsch D, Sóki J. Proteomics-Based RT-qPCR and Functional Analysis of 18 Genes in Metronidazole Resistance of Bacteroides fragilis. Antibiotics. 2024; 13(3):207. https://doi.org/10.3390/antibiotics13030207
Chicago/Turabian StyleMahmood, Bakhtiyar, Ana Paunkov, Malgorzata Kupc, Katalin Burián, Elisabeth Nagy, David Leitsch, and József Sóki. 2024. "Proteomics-Based RT-qPCR and Functional Analysis of 18 Genes in Metronidazole Resistance of Bacteroides fragilis" Antibiotics 13, no. 3: 207. https://doi.org/10.3390/antibiotics13030207
APA StyleMahmood, B., Paunkov, A., Kupc, M., Burián, K., Nagy, E., Leitsch, D., & Sóki, J. (2024). Proteomics-Based RT-qPCR and Functional Analysis of 18 Genes in Metronidazole Resistance of Bacteroides fragilis. Antibiotics, 13(3), 207. https://doi.org/10.3390/antibiotics13030207