Methicillin Resistance Elements in the Canine Pathogen Staphylococcus pseudintermedius and Their Association with the Peptide Toxin PSM-mec
Abstract
:1. Introduction
2. Results
2.1. Selection of Isolates for SCCmec Characterization
2.2. Characterization of SCCmec Elements
2.2.1. ST84/Agr Group I and ST64/Agr Group II
2.2.2. ST71/Agr Group III
2.2.3. ST68/Agr Group IV
2.3. Detection of PSM-mec in Culture Filtrates
3. Discussion
4. Materials and Methods
4.1. Bacterial Strains and Culture
4.2. Minimal Inhibitory Concentration (MIC) Assay
4.3. DNA Isolation, Sequencing, Genome Assembly, and Alignment
4.4. Comparative Genomics
4.5. Detection of mecA using Real-Time PCR
4.6. Analysis of PSM-mec Production by RP-HPLC/MS
4.7. Data Availability
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gonzalez-Martin, M.; Corbera, J.A.; Suarez-Bonnet, A.; Tejedor-Junco, M.T. Virulence factors in coagulase-positive staphylococci of veterinary interest other than Staphylococcus aureus. Vet. Q. 2020, 40, 118–131. [Google Scholar] [CrossRef]
- Bannoehr, J.; Guardabassi, L. Staphylococcus pseudintermedius in the dog: Taxonomy, diagnostics, ecology, epidemiology and pathogenicity. Vet. Dermatol. 2012, 23, 253–266, e251–e252. [Google Scholar] [CrossRef]
- Cheung, G.Y.C.; Otto, M. Virulence Mechanisms of Staphylococcal Animal Pathogens. Int. J. Mol. Sci. 2023, 24, 14587. [Google Scholar] [CrossRef] [PubMed]
- Borjesson, S.; Gomez-Sanz, E.; Ekstrom, K.; Torres, C.; Gronlund, U. Staphylococcus pseudintermedius can be misdiagnosed as Staphylococcus aureus in humans with dog bite wounds. Eur. J. Clin. Microbiol. 2015, 34, 839–844. [Google Scholar] [CrossRef] [PubMed]
- Moses, I.B.; Santos, F.F.; Gales, A.C. Human Colonization and Infection by Staphylococcus pseudintermedius: An Emerging and Underestimated Zoonotic Pathogen. Microorganisms 2023, 11, 581. [Google Scholar] [CrossRef] [PubMed]
- Guimaraes, L.; Teixeira, I.M.; da Silva, I.T.; Antunes, M.; Pesset, C.; Fonseca, C.; Santos, A.L.; Cortes, M.F.; Penna, B. Epidemiologic case investigation on the zoonotic transmission of Methicillin-resistant Staphylococcus pseudintermedius among dogs and their owners. J. Infect. Public Health 2023, 16 (Suppl. S1), 183–189. [Google Scholar] [CrossRef] [PubMed]
- Devriese, L.A.; Vancanneyt, M.; Baele, M.; Vaneechoutte, M.; De Graef, E.; Snauwaert, C.; Cleenwerck, I.; Dawyndt, P.; Swings, J.; Decostere, A.; et al. Staphylococcus pseudintermedius sp. nov., a coagulase-positive species from animals. Int. J. Syst. Evol. Microbiol. 2005, 55, 1569–1573. [Google Scholar] [CrossRef] [PubMed]
- Somayaji, R.; Priyantha, M.A.R.; Rubin, J.E.; Church, D. Human infections due to Staphylococcus pseudintermedius, an emerging zoonosis of canine origin: Report of 24 cases. Diagn. Microbiol. Infect. Dis. 2016, 85, 471–476. [Google Scholar] [CrossRef] [PubMed]
- Hartman, B.J.; Tomasz, A. Low-affinity penicillin-binding protein associated with beta-lactam resistance in Staphylococcus aureus. J. Bacteriol. 1984, 158, 513–516. [Google Scholar] [CrossRef]
- Ito, T.; Okuma, K.; Ma, X.X.; Yuzawa, H.; Hiramatsu, K. Insights on antibiotic resistance of Staphylococcus aureus from its whole genome: Genomic island SCC. Drug Resist. Updat. 2003, 6, 41–52. [Google Scholar] [CrossRef]
- Uehara, Y. Current Status of Staphylococcal Cassette Chromosome mec (SCCmec). Antibiotics 2022, 11, 86. [Google Scholar] [CrossRef]
- International Working Group on the Classification of Staphylococcal Cassette Chromosome Elements. Classification of staphylococcal cassette chromosome mec (SCCmec): Guidelines for reporting novel SCCmec elements. Antimicrob. Agents Chemother. 2009, 53, 4961–4967. [Google Scholar] [CrossRef] [PubMed]
- Krapf, M.; Muller, E.; Reissig, A.; Slickers, P.; Braun, S.D.; Muller, E.; Ehricht, R.; Monecke, S. Molecular characterisation of methicillin-resistant Staphylococcus pseudintermedius from dogs and the description of their SCCmec elements. Vet. Microbiol. 2019, 233, 196–203. [Google Scholar] [CrossRef] [PubMed]
- Monecke, S.; Jatzwauk, L.; Muller, E.; Nitschke, H.; Pfohl, K.; Slickers, P.; Reissig, A.; Ruppelt-Lorz, A.; Ehricht, R. Diversity of SCCmec Elements in Staphylococcus aureus as Observed in South-Eastern Germany. PLoS ONE 2016, 11, e0162654. [Google Scholar] [CrossRef] [PubMed]
- Srednik, M.E.; Perea, C.A.; Giacoboni, G.I.; Hicks, J.A.; Schlater, L.K. First report of Staphylococcus pseudintermedius ST71-SCCmec III and ST45-PsiSCCmec(57395) from canine pyoderma in Argentina. BMC Res. Notes 2023, 16, 19. [Google Scholar] [CrossRef] [PubMed]
- Srednik, M.E.; Perea, C.A.; Giacoboni, G.I.; Hicks, J.A.; Foxx, C.L.; Harris, B.; Schlater, L.K. Genomic Features of Antimicrobial Resistance in Staphylococcus pseudintermedius Isolated from Dogs with Pyoderma in Argentina and the United States: A Comparative Study. Int. J. Mol. Sci. 2023, 24, 11361. [Google Scholar] [CrossRef] [PubMed]
- Duim, B.; Verstappen, K.; Kalupahana, R.S.; Ranathunga, L.; Fluit, A.C.; Wagenaar, J.A. Methicillin-resistant Staphylococcus pseudintermedius among dogs in the description of novel SCCmec variants. Vet. Microbiol. 2018, 213, 136–141. [Google Scholar] [CrossRef] [PubMed]
- Worthing, K.A.; Schwendener, S.; Perreten, V.; Saputra, S.; Coombs, G.W.; Pang, S.; Davies, M.R.; Abraham, S.; Trott, D.J.; Norris, J.M. Characterization of Staphylococcal Cassette Chromosome mec Elements from Methicillin-Resistant Staphylococcus pseudintermedius Infections in Australian Animals. mSphere 2018, 3, e00491-18. [Google Scholar] [CrossRef]
- Kasai, T.; Saegusa, S.; Shirai, M.; Murakami, M.; Kato, Y. New categories designated as healthcare-associated and community-associated methicillin-resistant Staphylococcus pseudintermedius in dogs. Microbiol. Immunol. 2016, 60, 540–551. [Google Scholar] [CrossRef]
- Bruce, S.A.; Smith, J.T.; Mydosh, J.L.; Ball, J.; Needle, D.B.; Gibson, R.; Andam, C.P. Accessory Genome Dynamics of Local and Global Staphylococcus pseudintermedius Populations. Front. Microbiol. 2022, 13, 798175. [Google Scholar] [CrossRef]
- Smith, J.T.; Amador, S.; McGonagle, C.J.; Needle, D.; Gibson, R.; Andam, C.P. Population genomics of Staphylococcus pseudintermedius in companion animals in the United States. Commun. Biol. 2020, 3, 282. [Google Scholar] [CrossRef] [PubMed]
- Ben Zakour, N.L.; Bannoehr, J.; van den Broek, A.H.; Thoday, K.L.; Fitzgerald, J.R. Complete genome sequence of the canine pathogen Staphylococcus pseudintermedius. J. Bacteriol. 2011, 193, 2363–2364. [Google Scholar] [CrossRef] [PubMed]
- Riley, M.C.; Perreten, V.; Bemis, D.A.; Kania, S.A. Complete Genome Sequences of Three Important Methicillin-Resistant Clinical Isolates of Staphylococcus pseudintermedius. Genome Announc. 2016, 4, e01194-16. [Google Scholar] [CrossRef] [PubMed]
- Little, S.V.; Bryan, L.K.; Hillhouse, A.E.; Cohen, N.D.; Lawhon, S.D. Characterization of agr Groups of Staphylococcus pseudintermedius Isolates from Dogs in Texas. mSphere 2019, 4, e00033-19. [Google Scholar] [CrossRef]
- Abouelkhair, M.A.; Bemis, D.A.; Kania, S.A. Characterization of recombinant wild-type and nontoxigenic protein A from Staphylococcus pseudintermedius. Virulence 2018, 9, 1050–1061. [Google Scholar] [CrossRef]
- Futagawa-Saito, K.; Makino, S.; Sunaga, F.; Kato, Y.; Sakurai-Komada, N.; Ba-Thein, W.; Fukuyasu, T. Identification of first exfoliative toxin in Staphylococcus pseudintermedius. FEMS Microbiol. Lett. 2009, 301, 176–180. [Google Scholar] [CrossRef]
- Iyori, K.; Hisatsune, J.; Kawakami, T.; Shibata, S.; Murayama, N.; Ide, K.; Nagata, M.; Fukata, T.; Iwasaki, T.; Oshima, K.; et al. Identification of a novel Staphylococcus pseudintermedius exfoliative toxin gene and its prevalence in isolates from canines with pyoderma and healthy dogs. FEMS Microbiol. Lett. 2010, 312, 169–175. [Google Scholar] [CrossRef]
- Abouelkhair, M.A.; Bemis, D.A.; Giannone, R.J.; Frank, L.A.; Kania, S.A. Characterization of a leukocidin identified in Staphylococcus pseudintermedius. PLoS ONE 2018, 13, e0204450. [Google Scholar] [CrossRef]
- Edwards, V.M.; Deringer, J.R.; Callantine, S.D.; Deobald, C.F.; Berger, P.H.; Kapur, V.; Stauffacher, C.V.; Bohach, G.A. Characterization of the canine type C enterotoxin produced by Staphylococcus intermedius pyoderma isolates. Infect. Immun. 1997, 65, 2346–2352. [Google Scholar] [CrossRef]
- Maali, Y.; Badiou, C.; Martins-Simoes, P.; Hodille, E.; Bes, M.; Vandenesch, F.; Lina, G.; Diot, A.; Laurent, F.; Trouillet-Assant, S. Understanding the Virulence of Staphylococcus pseudintermedius: A Major Role of Pore-Forming Toxins. Front. Cell Infect. Microbiol. 2018, 8, 221. [Google Scholar] [CrossRef]
- Cheung, G.Y.; Joo, H.S.; Chatterjee, S.S.; Otto, M. Phenol-soluble modulins--critical determinants of staphylococcal virulence. FEMS Microbiol. Rev. 2014, 38, 698–719. [Google Scholar] [CrossRef]
- Wang, R.; Braughton, K.R.; Kretschmer, D.; Bach, T.H.; Queck, S.Y.; Li, M.; Kennedy, A.D.; Dorward, D.W.; Klebanoff, S.J.; Peschel, A.; et al. Identification of novel cytolytic peptides as key virulence determinants for community-associated MRSA. Nat. Med. 2007, 13, 1510–1514. [Google Scholar] [CrossRef]
- Periasamy, S.; Joo, H.S.; Duong, A.C.; Bach, T.H.; Tan, V.Y.; Chatterjee, S.S.; Cheung, G.Y.; Otto, M. How Staphylococcus aureus biofilms develop their characteristic structure. Proc. Natl. Acad. Sci. USA 2012, 109, 1281–1286. [Google Scholar] [CrossRef]
- Le, K.Y.; Villaruz, A.E.; Zheng, Y.; He, L.; Fisher, E.L.; Nguyen, T.H.; Ho, T.V.; Yeh, A.J.; Joo, H.S.; Cheung, G.Y.C.; et al. Role of Phenol-Soluble Modulins in Staphylococcus epidermidis Biofilm Formation and Infection of Indwelling Medical Devices. J. Mol. Biol. 2019, 431, 3015–3027. [Google Scholar] [CrossRef]
- Peschel, A.; Otto, M. Phenol-soluble modulins and staphylococcal infection. Nat. Rev. Microbiol. 2013, 11, 667–673. [Google Scholar] [CrossRef]
- Novick, R.P.; Ross, H.F.; Projan, S.J.; Kornblum, J.; Kreiswirth, B.; Moghazeh, S. Synthesis of staphylococcal virulence factors is controlled by a regulatory RNA molecule. EMBO J. 1993, 12, 3967–3975. [Google Scholar] [CrossRef]
- Le, K.Y.; Otto, M. Quorum-sensing regulation in staphylococci-an overview. Front. Microbiol. 2015, 6, 1174. [Google Scholar] [CrossRef]
- Monecke, S.; Engelmann, I.; Archambault, M.; Coleman, D.C.; Coombs, G.W.; Cortez de Jackel, S.; Pelletier-Jacques, G.; Schwarz, S.; Shore, A.C.; Slickers, P.; et al. Distribution of SCCmec-associated phenol-soluble modulin in staphylococci. Mol. Cell Probes 2012, 26, 99–103. [Google Scholar] [CrossRef] [PubMed]
- Shore, A.C.; Coleman, D.C. Staphylococcal cassette chromosome mec: Recent advances and new insights. Int. J. Med. Microbiol. 2013, 303, 350–359. [Google Scholar] [CrossRef] [PubMed]
- Queck, S.Y.; Khan, B.A.; Wang, R.; Bach, T.H.; Kretschmer, D.; Chen, L.; Kreiswirth, B.N.; Peschel, A.; Deleo, F.R.; Otto, M. Mobile genetic element-encoded cytolysin connects virulence to methicillin resistance in MRSA. PLoS Pathog. 2009, 5, e1000533. [Google Scholar] [CrossRef] [PubMed]
- Kaito, C.; Saito, Y.; Ikuo, M.; Omae, Y.; Mao, H.; Nagano, G.; Fujiyuki, T.; Numata, S.; Han, X.; Obata, K.; et al. Mobile genetic element SCCmec-encoded psm-mec RNA suppresses translation of agrA and attenuates MRSA virulence. PLoS Pathog. 2013, 9, e1003269. [Google Scholar] [CrossRef]
- Cheung, G.Y.; Villaruz, A.E.; Joo, H.S.; Duong, A.C.; Yeh, A.J.; Nguyen, T.H.; Sturdevant, D.E.; Queck, S.Y.; Otto, M. Genome-wide analysis of the regulatory function mediated by the small regulatory psm-mec RNA of methicillin-resistant Staphylococcus aureus. Int. J. Med. Microbiol. 2014, 304, 637–644. [Google Scholar] [CrossRef]
- Chatterjee, S.S.; Chen, L.; Joo, H.S.; Cheung, G.Y.; Kreiswirth, B.N.; Otto, M. Distribution and regulation of the mobile genetic element-encoded phenol-soluble modulin PSM-mec in methicillin-resistant Staphylococcus aureus. PLoS ONE 2011, 6, e28781. [Google Scholar] [CrossRef] [PubMed]
- Queck, S.Y.; Jameson-Lee, M.; Villaruz, A.E.; Bach, T.H.; Khan, B.A.; Sturdevant, D.E.; Ricklefs, S.M.; Li, M.; Otto, M. RNAIII-independent target gene control by the agr quorum-sensing system: Insight into the evolution of virulence regulation in Staphylococcus aureus. Mol. Cell 2008, 32, 150–158. [Google Scholar] [CrossRef] [PubMed]
- Qin, L.; Da, F.; Fisher, E.L.; Tan, D.C.; Nguyen, T.H.; Fu, C.L.; Tan, V.Y.; McCausland, J.W.; Sturdevant, D.E.; Joo, H.S.; et al. Toxin Mediates Sepsis Caused by Methicillin-Resistant Staphylococcus epidermidis. PLoS Pathog. 2017, 13, e1006153. [Google Scholar] [CrossRef] [PubMed]
- Kaya, H.; Hasman, H.; Larsen, J.; Stegger, M.; Johannesen, T.B.; Allesoe, R.L.; Lemvigh, C.K.; Aarestrup, F.M.; Lund, O.; Larsen, A.R. SCCmecFinder, a Web-Based Tool for Typing of Staphylococcal Cassette Chromosome mec in Staphylococcus aureus Using Whole-Genome Sequence Data. mSphere 2018, 3, e00612-17. [Google Scholar] [CrossRef] [PubMed]
- Hanssen, A.M.; Sollid, J.U. Multiple staphylococcal cassette chromosomes and allelic variants of cassette chromosome recombinases in Staphylococcus aureus and coagulase-negative staphylococci from Norway. Antimicrob. Agents Chemother. 2007, 51, 1671–1677. [Google Scholar] [CrossRef] [PubMed]
- Descloux, S.; Rossano, A.; Perreten, V. Characterization of new staphylococcal cassette chromosome mec (SCCmec) and topoisomerase genes in fluoroquinolone- and methicillin-resistant Staphylococcus pseudintermedius. J. Clin. Microbiol. 2008, 46, 1818–1823. [Google Scholar] [CrossRef]
- Qin, L.; McCausland, J.W.; Cheung, G.Y.; Otto, M. PSM-Mec-A Virulence Determinant that Connects Transcriptional Regulation, Virulence, and Antibiotic Resistance in Staphylococci. Front. Microbiol. 2016, 7, 1293. [Google Scholar] [CrossRef]
- Aoyagi, T.; Kaito, C.; Sekimizu, K.; Omae, Y.; Saito, Y.; Mao, H.; Inomata, S.; Hatta, M.; Endo, S.; Kanamori, H.; et al. Impact of psm-mec in the mobile genetic element on the clinical characteristics and outcome of SCCmec-II methicillin-resistant Staphylococcus aureus bacteraemia in Japan. Clin. Microbiol. Infect. 2014, 20, 912–919. [Google Scholar] [CrossRef]
- Kaito, C.; Saito, Y.; Nagano, G.; Ikuo, M.; Omae, Y.; Hanada, Y.; Han, X.; Kuwahara-Arai, K.; Hishinuma, T.; Baba, T.; et al. Transcription and translation products of the cytolysin gene psm-mec on the mobile genetic element SCCmec regulate Staphylococcus aureus virulence. PLoS Pathog. 2011, 7, e1001267. [Google Scholar] [CrossRef] [PubMed]
- Tabuchi, F.; Lulitanond, A.; Lulitanond, V.; Thunyaharn, S.; Kaito, C. Epidemiological study on the relationship between toxin production and psm-mec mutations in MRSA isolates in Thailand. Microbiol. Immunol. 2020, 64, 219–225. [Google Scholar] [CrossRef]
- Boyle-Vavra, S.; Ereshefsky, B.; Wang, C.C.; Daum, R.S. Successful multiresistant community-associated methicillin-resistant Staphylococcus aureus lineage from Taipei, Taiwan, that carries either the novel Staphylococcal chromosome cassette mec (SCCmec) type VT or SCCmec type IV. J. Clin. Microbiol. 2005, 43, 4719–4730. [Google Scholar] [CrossRef]
- Black, C.C.; Solyman, S.M.; Eberlein, L.C.; Bemis, D.A.; Woron, A.M.; Kania, S.A. Identification of a predominant multilocus sequence type, pulsed-field gel electrophoresis cluster, and novel staphylococcal chromosomal cassette in clinical isolates of mecA-containing, methicillin-resistant Staphylococcus pseudintermedius. Vet. Microbiol. 2009, 139, 333–338. [Google Scholar] [CrossRef] [PubMed]
- McCarthy, A.J.; Harrison, E.M.; Stanczak-Mrozek, K.; Leggett, B.; Waller, A.; Holmes, M.A.; Lloyd, D.H.; Lindsay, J.A.; Loeffler, A. Genomic insights into the rapid emergence and evolution of MDR in Staphylococcus pseudintermedius. J. Antimicrob. Chemother. 2015, 70, 997–1007. [Google Scholar] [CrossRef]
- Otto, M.; Gotz, F. Analysis of quorum sensing activity in staphylococci by RP-HPLC of staphylococcal delta-toxin. Biotechniques 2000, 28, 1088–1096. [Google Scholar] [CrossRef]
- Jarraud, S.; Mougel, C.; Thioulouse, J.; Lina, G.; Meugnier, H.; Forey, F.; Nesme, X.; Etienne, J.; Vandenesch, F. Relationships between Staphylococcus aureus genetic background, virulence factors, agr groups (alleles), and human disease. Infect. Immun. 2002, 70, 631–641. [Google Scholar] [CrossRef] [PubMed]
- Fowler, V.G., Jr.; Sakoulas, G.; McIntyre, L.M.; Meka, V.G.; Arbeit, R.D.; Cabell, C.H.; Stryjewski, M.E.; Eliopoulos, G.M.; Reller, L.B.; Corey, G.R.; et al. Persistent bacteremia due to methicillin-resistant Staphylococcus aureus infection is associated with agr dysfunction and low-level in vitro resistance to thrombin-induced platelet microbicidal protein. J. Infect. Dis. 2004, 190, 1140–1149. [Google Scholar] [CrossRef]
- He, L.; Zhang, F.; Jian, Y.; Lv, H.; Hamushan, M.; Liu, J.; Liu, Y.; Wang, H.; Tang, J.; Han, P.; et al. Key role of quorum-sensing mutations in the development of Staphylococcus aureus clinical device-associated infection. Clin. Transl. Med. 2022, 12, e801. [Google Scholar] [CrossRef]
- Traber, K.E.; Lee, E.; Benson, S.; Corrigan, R.; Cantera, M.; Shopsin, B.; Novick, R.P. agr function in clinical Staphylococcus aureus isolates. Microbiology 2008, 154, 2265–2274. [Google Scholar] [CrossRef]
- Murray, N.E. Type I restriction systems: Sophisticated molecular machines (a legacy of Bertani and Weigle). Microbiol. Mol. Biol. Rev. 2000, 64, 412–434. [Google Scholar] [CrossRef] [PubMed]
- Sussenbach, J.S.; Steenbergh, P.H.; Rost, J.A.; van Leeuwen, W.J.; van Embden, J.D. A second site-specific restriction endonuclease from Staphylococcus aureus. Nucleic Acids Res. 1978, 5, 1153–1163. [Google Scholar] [CrossRef] [PubMed]
- Pingoud, A.; Fuxreiter, M.; Pingoud, V.; Wende, W. Type II restriction endonucleases: Structure and mechanism. Cell Mol. Life Sci. 2005, 62, 685–707. [Google Scholar] [CrossRef] [PubMed]
- Sorek, R.; Kunin, V.; Hugenholtz, P. CRISPR--a widespread system that provides acquired resistance against phages in bacteria and archaea. Nat. Rev. Microbiol. 2008, 6, 181–186. [Google Scholar] [CrossRef] [PubMed]
- Rossi, C.C.; Andrade-Oliveira, A.L.; Giambiagi-deMarval, M. CRISPR tracking reveals global spreading of antimicrobial resistance genes by Staphylococcus of canine origin. Vet. Microbiol. 2019, 232, 65–69. [Google Scholar] [CrossRef] [PubMed]
- Alibayov, B.; Baba-Moussa, L.; Sina, H.; Zdenkova, K.; Demnerova, K. Staphylococcus aureus mobile genetic elements. Mol. Biol. Rep. 2014, 41, 5005–5018. [Google Scholar] [CrossRef]
- Phumthanakorn, N.; Schwendener, S.; Dona, V.; Chanchaithong, P.; Perreten, V.; Prapasarakul, N. Genomic insights into methicillin-resistant Staphylococcus pseudintermedius isolates from dogs and humans of the same sequence types reveals diversity in prophages and pathogenicity islands. PLoS ONE 2021, 16, e0254382. [Google Scholar] [CrossRef]
- Sasaki, T.; Tsubakishita, S.; Tanaka, Y.; Sakusabe, A.; Ohtsuka, M.; Hirotaki, S.; Kawakami, T.; Fukata, T.; Hiramatsu, K. Multiplex-PCR method for species identification of coagulase-positive staphylococci. J. Clin. Microbiol. 2010, 48, 765–769. [Google Scholar] [CrossRef]
- Musser, J.M.; Kapur, V. Clonal analysis of methicillin-resistant Staphylococcus aureus strains from intercontinental sources: Association of the mec gene with divergent phylogenetic lineages implies dissemination by horizontal transfer and recombination. J. Clin. Microbiol. 1992, 30, 2058–2063. [Google Scholar] [CrossRef]
- Fitzgerald, J.R.; Sturdevant, D.E.; Mackie, S.M.; Gill, S.R.; Musser, J.M. Evolutionary genomics of Staphylococcus aureus: Insights into the origin of methicillin-resistant strains and the toxic shock syndrome epidemic. Proc. Natl. Acad. Sci. USA 2001, 98, 8821–8826. [Google Scholar] [CrossRef]
- Klingenberg, C.; Ronnestad, A.; Anderson, A.S.; Abrahamsen, T.G.; Zorman, J.; Villaruz, A.; Flaegstad, T.; Otto, M.; Sollid, J.E. Persistent strains of coagulase-negative staphylococci in a neonatal intensive care unit: Virulence factors and invasiveness. Clin. Microbiol. Infect. 2007, 13, 1100–1111. [Google Scholar] [CrossRef] [PubMed]
- CLSI Supplement VET01S; Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals. CLSI: Wayne, PA, USA, 2023.
- Couvin, D.; Bernheim, A.; Toffano-Nioche, C.; Touchon, M.; Michalik, J.; Neron, B.; Rocha, E.P.C.; Vergnaud, G.; Gautheret, D.; Pourcel, C. CRISPRCasFinder, an update of CRISRFinder, includes a portable version, enhanced performance and integrates search for Cas proteins. Nucleic Acids Res. 2018, 46, W246–W251. [Google Scholar] [CrossRef] [PubMed]
- Siguier, P.; Perochon, J.; Lestrade, L.; Mahillon, J.; Chandler, M. ISfinder: The reference centre for bacterial insertion sequences. Nucleic Acids Res. 2006, 34, D32–D36. [Google Scholar] [CrossRef] [PubMed]
- Thomas, L.C.; Gidding, H.F.; Ginn, A.N.; Olma, T.; Iredell, J. Development of a real-time Staphylococcus aureus and MRSA (SAM-) PCR for routine blood culture. J. Microbiol. Methods 2007, 68, 296–302. [Google Scholar] [CrossRef]
- Da, F.; Joo, H.S.; Cheung, G.Y.C.; Villaruz, A.E.; Rohde, H.; Luo, X.; Otto, M. Phenol-Soluble Modulin Toxins of Staphylococcus haemolyticus. Front. Cell Infect. Microbiol. 2017, 7, 206. [Google Scholar] [CrossRef]
Isolate Number | Disease Type | Source | Accession Number | MLST a | Agr Group b | Collection Date | mecA PCR c | Oxacillin d | Penicillin d | SCCmec Type | psm-mec e | PSM-mec f | D-Toxin g |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
11-025 | Surgical | This study | SAMN38979304 | 84 | I | 4/14/08 | + h | >2 | >8 | NA45 | - i | - | - |
11-033 | Pyoderma | This study | SAMN38979305 | 84 | I | 5/19/08 | + | >2 | >8 | NA45 | - | - | + |
18-007 | Surgical | This study | SAMN38979306 | 84 | I | 12/15/09 | + | >2 | >8 | NA45 | - | - | + |
29-086 | Pyoderma | This study | SAMN38979307 | 84 | I | 11/24/10 | + | >2 | >8 | NA45 | - | - | + |
31-086 | Urine | This study | SAMN38979308 | 84 | I | 3/22/11 | + | 0.5 | 8 | NA45 | - | - | + |
11-041 | Pyoderma | This study | SAMN38979297 | 64 | II | 6/9/08 | + | >2 | >8 | NA45int | - | - | + |
29-036 | Pyoderma | This study | SAMN38979298 | 64 | II | 10/29/10 | + | >2 | >8 | NA45int | - | - | + |
30-027 | Healthy | This study | SAMN38979299 | 64 | II | 12/16/10 | + | 2 | >8 | NA45int | - | - | + |
36-067 | Surgical | This study | SAMN38979300 | 64 | II | 9/9/11 | + | 2 | >8 | NA45 | - | - | + |
42-072 | Urine | This study | SAMN38979301 | 64 | II | 1/3/13 | + | 2 | >8 | NA45int | - | - | + |
11-092 | Surgical | [24] | 283734.1320 | 71 | III | 10/28/08 | + | >2 | >8 | III(KM1381) | + | - | - |
16-041 | Urine | [24] | 283734.1335 | 71 | III | 10/14/09 | + | >2 | >8 | III(KM1381) | + | + | + |
16-047 | Surgical | [24] | 283734.1336 | 71 | III | 10/16/09 | + | >2 | >8 | III(KM1381) | + | + | + |
27-080 | Surgical | [24] | 283734.1356 | 71 | III | 8/19/10 | + | >2 | >8 | III(KM1381) | + | - | - |
28-009 | Surgical | This study | SAMN38979303 | 71 | III | 9/1/10 | + | >2 | >8 | III(KM1381) | + | + | + |
38-020 | Surgical | [24] | 283734.1438 | 71 | III | 11/21/11 | + | >2 | >8 | III(KM1381) | + | + | + |
39-094 | Pyoderma | [24] | 283734.1458 | 71 | III | 3/16/12 | + | >2 | >8 | III(KM1381) | + | + | + |
10-098 | Pyoderma | [24] | 283734.1315 | 68 | IV | 2/26/08 | + | 0.5 | >8 | VT | - | - | + |
11-012 | Pyoderma | [24] | 283734.1316 | 68 | IV | 3/17/08 | + | >2 | >8 | VT | - | - | + |
13-061 | Surgical | [24] | 283734.1330 | 68 | IV | 12/30/08 | + | 0.5 | >8 | VT | - | - | + |
16-021 | Urine | [24] | 283734.1334 | 68 | IV | 9/21/09 | + | 2 | >8 | VT | - | - | + |
19-007 | Surgical | This study | SAMN38979302 | 68 | IV | 2/2/10 | + | 0.5 | >8 | VT | - | - | + |
22-078 | Urine | [24] | 283734.1344 | 68 | IV | 3/2/10 | + | 1 | >8 | VT | - | - | + |
27-010 | Surgical | [24] | 283734.1350 | 68 | IV | 7/14/10 | + | 1 | >8 | VT | - | - | + |
27-023 | Urine | [24] | 283734.1352 | 68 | IV | 7/20/10 | + | 0.5 | >8 | VT | - | - | + |
32-003 | Surgical | [24] | 283734.1385 | 68 | IV | 3/29/11 | + | >2 | >8 | VT | - | - | + |
33-021 | Surgical | [24] | 283734.1393 | 68 | IV | 4/28/11 | + | >2 | >8 | VT | - | - | + |
34-031 | Urine | [24] | 283734.1401 | 68 | IV | 6/16/11 | + | 2 | >8 | VT | - | - | + |
39-002 | Urine | [24] | 283734.1452 | 68 | IV | 1/6/12 | + | 0.5 | >8 | VT | - | - | + |
37-032 | Pyoderma | [24] | 283734.1401 | 850 | II | 10/6/11 | - | ≤0.25 | 0.5 | NA | - | - | +f |
32-012 | Healthy | [24] | 283734.1452 | 871 | II | 4/1/11 | - | ≤0.25 | 0.5 | NA | - | - | + |
ED99 | Pyoderma | [24] | CP002478.1 | 25 | III | N/A | - | ≤0.25 | 1 | NA | - | - | + |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheung, G.Y.C.; Lee, J.H.; Liu, R.; Lawhon, S.D.; Yang, C.; Otto, M. Methicillin Resistance Elements in the Canine Pathogen Staphylococcus pseudintermedius and Their Association with the Peptide Toxin PSM-mec. Antibiotics 2024, 13, 130. https://doi.org/10.3390/antibiotics13020130
Cheung GYC, Lee JH, Liu R, Lawhon SD, Yang C, Otto M. Methicillin Resistance Elements in the Canine Pathogen Staphylococcus pseudintermedius and Their Association with the Peptide Toxin PSM-mec. Antibiotics. 2024; 13(2):130. https://doi.org/10.3390/antibiotics13020130
Chicago/Turabian StyleCheung, Gordon Y. C., Ji Hyun Lee, Ryan Liu, Sara D. Lawhon, Ching Yang, and Michael Otto. 2024. "Methicillin Resistance Elements in the Canine Pathogen Staphylococcus pseudintermedius and Their Association with the Peptide Toxin PSM-mec" Antibiotics 13, no. 2: 130. https://doi.org/10.3390/antibiotics13020130
APA StyleCheung, G. Y. C., Lee, J. H., Liu, R., Lawhon, S. D., Yang, C., & Otto, M. (2024). Methicillin Resistance Elements in the Canine Pathogen Staphylococcus pseudintermedius and Their Association with the Peptide Toxin PSM-mec. Antibiotics, 13(2), 130. https://doi.org/10.3390/antibiotics13020130