In Vitro Activity of “Old” and “New” Antimicrobials against the Klebsiella pneumoniae Complex
Abstract
:1. Introduction
2. Results
2.1. Isolates Collection
2.2. Identification of Strains and Antimicrobial Susceptibility Testing
2.3. Detection of Extended-Spectrum β-Lactamases and Carbapenemases
2.4. MIC Determination
3. Materials and Methods
3.1. Bacterial Strains
3.2. Identification and Susceptibility Testing
3.3. Detection of Enzymes
3.4. MIC Determination
4. Discussion
5. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Karampatakis, T.; Tsergouli, K.; Behzadi, P. Carbapenem-Resistant Klebsiella pneumoniae: Virulence factors, molecular epidemiology and latest updates in treatment options. Antibiotics 2023, 12, 234. [Google Scholar] [CrossRef] [PubMed]
- Maatallah, M.; Vading, M.; Kabir, M.H.; Bakhrouf, A.; Kalin, M.; Nauclér, P.; Brisse, S.; Giske, C.G. Klebsiella variicola is a frequent cause of bloodstream infection in the Stockholm area, and associated with higher mortality compared to K. pneumoniae. PLoS ONE 2014, 9, e113539. [Google Scholar] [CrossRef]
- Imai, K.; Ishibashi, N.; Kodana, M.; Tarumoto, N.; Sakai, J.; Kawamura, T.; Takeuchi, S.; Taji, Y.; Ebihara, Y.; Ikebuchi, K.; et al. Clinical characteristics in blood stream infections caused by Klebsiella pneumoniae, Klebsiella variicola, and Klebsiella quasipneumoniae: A comparative study, Japan, 2014–2017. BMC Infect. Dis. 2019, 19, 946. [Google Scholar] [CrossRef]
- Rodríguez-Medina, N.; Barrios-Camacho, H.; Duran-Bedolla, J.; Garza-Ramos, U. Klebsiella variicola: An emerging pathogen in humans. Emerg. Microbes Infect. 2019, 8, 973–988. [Google Scholar] [CrossRef] [PubMed]
- European Antimicrobial Resistance Surveillance Network (EARS-Net). Available online: https://www.ecdc.europa.eu/en/about-us/partnerships-and-networks/disease-and-laboratory-networks/ears-net (accessed on 9 October 2022).
- Cantón, R.; Akóva, M.; Carmeli, Y.; Giske, C.G.; Glupczynski, Y.; Gniadkowski, M.; Livermore, D.M.; Miriagou, V.; Naas, T.; Rossolini, G.M.; et al. Rapid evolution and spread of carbapenemases among Enterobacteriaceae in Europe. Clin. Microbiol. Infect. 2012, 18, 413–431. [Google Scholar] [CrossRef]
- Oelschlaeger, P.; Ai, N.; DuPrez, K.T.; Welsh, W.J.; Toney, J.H. Evolving carbapenemases: Can medicinal chemists advance one step ahead of the coming storm? (Perspective). J. Med. Chem. 2010, 53, 3013–3027. [Google Scholar] [CrossRef]
- Baraniak, A.; Izdebski, R.; Herda, M.; Fiett, J.; Hryniewicz, W.; Gniadkowski, M.; Kern-Zdanowicz, I.; Filczak, K.; Łopaciuk, U. Emergence of Klebsiella pneumoniae ST258 with KPC-2 in Poland. Antimicrob. Agents Chemother. 2009, 53, 4565–4567. [Google Scholar] [CrossRef] [PubMed]
- Rekomendacje: Pałeczki Enterobacterales Wytwarzające Karbapenemazy (CPE)—Epidemiologia, Diagnostyka, Leczenie i Profilaktyka Zakażeń, 2022—Narodowy Program Ochrony Antybiotyków. Available online: https://www.antybiotyki.edu.pl/rekomendacje-paleczki-enterobacterales-wytwarzajace-karbapenemazy-cpe-epidemiologia-diagnostyka-leczenie-i-profilaktyka-zakazen-2022 (accessed on 22 February 2023).
- Sękowska, A.; Gospodarek, E.; Kruszyńska, E.; Hryniewicz, W.; Gniadkowski, M.; Duljasz, W.; Kusza, K.; Wawrzyniak, K. First isolation of metallo-beta-lactamase producing Klebsiella pneumoniae strain in Poland. Anestezjol. Intensywna Ter. 2010, 42, 27–30. [Google Scholar]
- Pitout, J.D.D.; Peirano, G.; Kock, M.M.; Strydom, K.-A.; Matsumura, Y. The global ascendency of OXA-48-type carbapenemases. Clin. Microbiol. Rev. 2019, 33, e00102-19. [Google Scholar] [CrossRef]
- Mikhail, S.; Singh, N.B.; Kebriaei, R.; Rice, S.A.; Stamper, K.C.; Castanheira, M.; Rybak, M.J. Evaluation of the synergy of ceftazidime-avibactam in combination with meropenem, amikacin, aztreonam, colistin, or fosfomycin against well-characterized multidrug-resistant Klebsiella pneumoniae and Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2019, 63, e00779-19. [Google Scholar] [CrossRef]
- Suich, J.; Mawer, D.; van der Woude, M.; Wearmouth, D.; Burns, P.; Smeets, T.; Barlow, G. Evaluation of in vitro activity of fosfomycin, and synergy in combination, in Gram-negative bloodstream infection isolates in a UK Teaching Hospital. J. Med. Microbiol. 2022, 71, 001524. [Google Scholar] [CrossRef]
- Huang, P.-H.; Chen, W.-Y.; Chou, S.-H.; Wang, F.-D.; Lin, Y.-T. Risk Factors for the development of colistin resistance during colistin treatment of carbapenem-resistant Klebsiella pneumoniae infections. Microbiol. Spectr. 2022, 10, e0038122. [Google Scholar] [CrossRef]
- Hao, L.; Yang, X.; Chen, H.; Mo, Z.; Li, Y.; Wei, S.; Zhao, Z. Molecular characteristics and quantitative proteomic analysis of Klebsiella pneumoniae strains with carbapenem and colistin resistance. Antibiotics 2022, 11, 1341. [Google Scholar] [CrossRef] [PubMed]
- Tompkins, K.; van Duin, D. Treatment for Carbapenem-resistant Enterobacterales infections: Recent advances and future directions. Eur. J. Clin. Microbiol. Infect. Dis. 2021, 40, 2053–2068. [Google Scholar] [CrossRef]
- Eucast: EUCAST. Available online: https://www.eucast.org/ (accessed on 3 October 2023).
- Magiorakos, A.-P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef]
- van der Zwaluw, K.; de Haan, A.; Pluister, G.N.; Bootsma, H.J.; de Neeling, A.J.; Schouls, L.M. The Carbapenem Inactivation Method (CIM), a simple and low-cost alternative for the Carba NP Test to assess phenotypic carbapenemase activity in Gram-negative rods. PLoS ONE 2015, 10, e0123690. [Google Scholar] [CrossRef] [PubMed]
- Kowalska-Krochmal, B.; Mączyńska, B.; Rurańska-Smutnicka, D.; Secewicz, A.; Krochmal, G.; Bartelak, M.; Górzyńska, A.; Laufer, K.; Woronowicz, K.; Łubniewska, J.; et al. Assessment of the susceptibility of clinical Gram-negative and Gram-positive bacterial strains to fosfomycin and significance of this antibiotic in infection treatment. Pathogens 2022, 11, 1441. [Google Scholar] [CrossRef]
- Demirci-Duarte, S.; Unalan-Altintop, T.; Gulay, Z.; Sari Kaygisiz, A.N.; Cakar, A.; Gur, D. In Vitro susceptibility of OXA-48, NDM, VIM and IMP enzyme-producing Klebsiella spp. and Escherichia coli to fosfomycin. J. Infect. Dev. Ctries. 2020, 14, 394–397. [Google Scholar] [CrossRef]
- Aprile, A.; Scalia, G.; Stefani, S.; Mezzatesta, M.L. In Vitro fosfomycin study on concordance of susceptibility testing methods against ESBL and carbapenem-resistant Enterobacteriaceae. J. Glob. Antimicrob. Resist. 2020, 23, 286–289. [Google Scholar] [CrossRef] [PubMed]
- Appel, T.M.; Mojica, M.F.; De La Cadena, E.; Pallares, C.J.; Radice, M.A.; Castañeda-Méndez, P.; Jaime-Villalón, D.A.; Gales, A.C.; Munita, J.M.; Villegas, M.V. In Vitro susceptibility to ceftazidime/avibactam and comparators in clinical isolates of Enterobacterales from Five Latin American Countries. Antibiotics 2020, 9, 62. [Google Scholar] [CrossRef]
- Zarakolu, P.; Eser, Ö.K.; Otlu, B.; Gürpınar, Ö.; Özakın, C.; Akalın, H.; Köksal, İ.; Ünal, S. In-Vitro activity of fosfomycin against Escherichia coli and Klebsiella pneumoniae bloodstream isolates and frequency of OXA-48, NDM, KPC, VIM, IMP types of carbapenemases in the carbapenem-resistant groups. J. Chemother. 2022, 34, 235–240. [Google Scholar] [CrossRef]
- Galani, I.; Adamou, P.; Karaiskos, I.; Giamarellou, H.; Souli, M. Evaluation of ComASPTM Colistin (formerly SensiTestTM Colistin), a commercial broth microdilution-based method to evaluate the colistin minimum inhibitory concentration for carbapenem-resistant Klebsiella pneumoniae Isolates. J. Glob. Antimicrob. Resist. 2018, 15, 123–126. [Google Scholar] [CrossRef]
- Pruss, A.; Kwiatkowski, P.; Masiuk, H.; Jursa-Kulesza, J.; Bilska, I.; Lubecka, A.; Cettler, M.; Roszkowska, P.; Dołęgowska, B. Analysis of the prevalence of colistin resistance among clinical strains of Klebsiella pneumoniae. Ann. Agric. Environ. Med. 2022, 29, 518–522. [Google Scholar] [CrossRef]
- Kazmierczak, K.M.; de Jonge, B.L.M.; Stone, G.G.; Sahm, D.F. In vitro activity of ceftazidime/avibactam against isolates of Enterobacteriaceae collected in European Countries: INFORM Global Surveillance 2012–15. J. Antimicrob. Chemother. 2018, 73, 2782–2788. [Google Scholar] [CrossRef]
- Pena, I.; Picazo, J.J.; Rodríguez-Avial, C.; Rodríguez-Avial, I. Carbapenemase-producing Enterobacteriaceae in a Tertiary Hospital in Madrid, Spain: High percentage of colistin resistance among VIM-1-producing Klebsiella pneumoniae ST11 isolates. Int. J. Antimicrob. Agents 2014, 43, 460–464. [Google Scholar] [CrossRef]
- Lu, Y.; Feng, Y.; McNally, A.; Zong, Z. Occurrence of colistin-resistant hypervirulent Klebsiella variicola. J. Antimicrob. Chemother. 2018, 73, 3001–3004. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.J.; Jo, J.; Ko, K.S. Lipid A modification-induced colistin-resistant Klebsiella variicola from healthy adults. J. Med. Microbiol. 2023, 72, 001680. [Google Scholar] [CrossRef] [PubMed]
- Sękowska, A. Wrażliwość wielolekoopornych szczepów Klebsiella pneumoniae na połączenie ceftazydymu z awibaktamem. Forum Zakażeń 2019, 10, 269–273. [Google Scholar] [CrossRef]
- Wilson, W.R.; Kline, E.G.; Jones, C.E.; Morder, K.T.; Mettus, R.T.; Doi, Y.; Nguyen, M.H.; Clancy, C.J.; Shields, R.K. Effects of KPC variant and porin genotype on the in vitro activity of meropenem-vaborbactam against carbapenem-resistant Enterobacteriaceae. Antimicrob. Agents Chemother. 2019, 63, e02048-18. [Google Scholar] [CrossRef] [PubMed]
- Bianco, G.; Boattini, M.; Comini, S.; Casale, R.; Iannaccone, M.; Cavallo, R.; Costa, C. Occurrence of multi-carbapenemases producers among carbapenemase-producing Enterobacterales and in vitro activity of combinations including cefiderocol, ceftazidime-avibactam, meropenem-vaborbactam, and aztreonam in the COVID-19 Era. Eur. J. Clin. Microbiol. Infect. Dis. 2022, 41, 573–580. [Google Scholar] [CrossRef] [PubMed]
- Sader, H.S.; Mendes, R.E.; Duncan, L.; Kimbrough, J.H.; Carvalhaes, C.G.; Castanheira, M. Ceftazidime-avibactam, meropenem-vaborbactam, and imipenem-relebactam activities against multidrug-resistant Enterobacterales from United States Medical Centers (2018–2022). Diagn. Microbiol. Infect. Dis. 2023, 106, 115945. [Google Scholar] [CrossRef] [PubMed]
- Gaibani, P.; Lombardo, D.; Bussini, L.; Bovo, F.; Munari, B.; Giannella, M.; Bartoletti, M.; Viale, P.; Lazzarotto, T.; Ambretti, S. Epidemiology of meropenem/vaborbactam resistance in KPC-producing Klebsiella pneumoniae causing bloodstream infections in Northern Italy, 2018. Antibiotics 2021, 10, 536. [Google Scholar] [CrossRef] [PubMed]
- Camargo, C.H.; Yamada, A.Y.; de Souza, A.R.; Reis, A.D.; Santos, M.B.N.; de Assis, D.B.; de Carvalho, E.; Takagi, E.H.; Cunha, M.P.V.; Tiba-Casas, M.R. Genomic diversity of NDM-producing Klebsiella species from Brazil, 2013–2022. Antibiotics 2022, 11, 1395. [Google Scholar] [CrossRef] [PubMed]
- Ge, H.; Qiao, J.; Xu, H.; Liu, R.; Zhao, J.; Chen, R.; Li, C.; Chen, M.; Guo, X. Emergence of OXA-484-producing Klebsiella variicola in China. IDR 2023, 16, 1767–1775. [Google Scholar] [CrossRef]
- Huang, L.; Fu, L.; Hu, X.; Liang, X.; Gong, G.; Xie, C.; Zhang, F.; Wang, Y.; Zhou, Y. Co-occurrence of Klebsiella variicola and Klebsiella pneumoniae both carrying bla KPC from a respiratory Intensive Care Unit Patient. Infect. Drug Resist. 2021, 14, 4503–4510. [Google Scholar] [CrossRef]
- Zurfluh, K.; Poirel, L.; Nordmann, P.; Klumpp, J.; Stephan, R. First detection of Klebsiella variicola producing OXA-181 carbapenemase in fresh vegetable imported from Asia to Switzerland. Antimicrob. Resist. Infect. Control. 2015, 4, 38. [Google Scholar] [CrossRef]
Enzymes Produced by Klebsiella pneumoniae Complex Strains (n = 160) |
---|
OXA-48-, CTX-M1-positive K. pneumoniae strains (n = 2) |
OXA-181-, CTX-M1-positive K. pneumoniae strains (n = 7) |
KPC-, CTX-M1-positive K. pneumoniae strains (n = 12) |
KPC-positive K. pneumoniae strains (n = 5) |
NDM-, CTX-M1-positive K. pneumoniae strains (n = 33) |
NDM-positive K. pneumoniae strains (n = 7) |
VIM-, CTX-M1-positive K. pneumoniae strains (n = 7) |
VIM-positive K. pneumoniae strains (n = 8) |
NDM-, OXA-181-, CTX-M1-positive K. pneumoniae strains (n = 13) |
NDM-, OXA-181-, CTX-M1-, CTX-M9-positive K. pneumoniae strains (n = 1) |
VIM-, NDM-, CTX-M1-positive K. pneumoniae strains (n = 1) |
ESβLs-positive K. pneumoniae strains (n = 42) |
ESβLs-positive K. variicola strains (n = 22) |
Antimicrobial | K. pneumoniae Carbapenemase-Positive Strains (n = 96) | K. pneumoniae ESβLs-Positive Strains (n = 42) | K. variicola ESβLs-Positive Strains (n = 22) | |||
---|---|---|---|---|---|---|
MIC50 | MIC90 | MIC50 | MIC90 | MIC50 | MIC90 | |
Fosfomycin | 24 | 48 | 12 | 32 | 4 | 16 |
Colistin | 0.75 | 8 | 0.5 | 4 | 1.5 | 4 |
Ceftazidime- avibactam | 16 | 128 | 0.75 | 2 | 0.5 | 0.5 |
Meropenem- vaborbactam | 24 | 128 | 0.25 | 1.5 | 0.25 | 0.5 |
MIC Value (mg/L) | K. pneumoniae Carbapenemase-Positive Strains (n = 96) | K. pneumoniae ESβLs-Positive Strains (n = 42) | K. variicola ESβLs-Positive Strains (n = 22) |
---|---|---|---|
4 | 3 | 4 | 5 |
8 | 5 | 6 | 4 |
16 | 16 | 12 | 6 |
32 | 24 | 10 | 6 |
48 | 1 | 0 | 0 |
64 | 17 | 2 | 0 |
128 | 18 | 4 | 1 |
256 | 7 | 1 | 0 |
>256 | 5 | 3 | 0 |
MIC Value (mg/L) | K. pneumoniae Carbapenemase-Positive Strains (n = 96) | K. pneumoniae ESβLs-Positive Strains (n = 42) | K. variicola ESβLs-Positive Strains (n = 22) |
---|---|---|---|
0.25 | 2 | 1 | 4 |
0.5 | 29 | 20 | 5 |
1 | 25 | 8 | 2 |
2 | 3 | 2 | 3 |
8 | 11 | 6 | 8 |
16 | 13 | 5 | 0 |
>16 | 12 | 0 | 0 |
MIC Value (mg/L) | K. pneumoniae Carbapenemase-Positive Strains (n = 96) | K. pneumoniae ESβLs-Positive Strains (n = 42) | K. variicola ESβLs-Positive Strains (n = 22) | |||
---|---|---|---|---|---|---|
CZA | MV | CZA | MV | CZA | MV | |
0.032 | 0 | 1 | 0 | 1 | 0 | 1 |
0.047 | 0 | 1 | 1 | 2 | 2 | 0 |
0.064 | 0 | 1 | 0 | 1 | 1 | 2 |
0.094 | 0 | 1 | 0 | 1 | 0 | 3 |
0.125 | 0 | 0 | 0 | 6 | 0 | 0 |
0.19 | 0 | 0 | 0 | 2 | 0 | 0 |
0.25 | 0 | 1 | 5 | 0 | 0 | 4 |
0.38 | 1 | 0 | 1 | 3 | 4 | 2 |
0.5 | 2 | 1 | 3 | 6 | 5 | 4 |
0.75 | 3 | 1 | 3 | 1 | 4 | 3 |
1 | 4 | 4 | 12 | 3 | 3 | 1 |
1.5 | 11 | 6 | 7 | 0 | 0 | 1 |
2 | 8 | 6 | 6 | 6 | 3 | 1 |
3 | 1 | 1 | 0 | 2 | 0 | 0 |
4 | 4 | 2 | 2 | 3 | 0 | 0 |
8 | 1 | 3 | 1 | 2 | 0 | 0 |
12 | 0 | 0 | 0 | 1 | 0 | 0 |
16 | 2 | 2 | 0 | 0 | 0 | 0 |
32 | 4 | 2 | 0 | 0 | 0 | 0 |
48 | 1 | 8 | 0 | 0 | 0 | 0 |
64 | 3 | 5 | 1 | 0 | 0 | 0 |
96 | 1 | 2 | 0 | 0 | 0 | 0 |
128 | 6 | 3 | 0 | 0 | 0 | 0 |
256 | 16 | 18 | ||||
>256 | 28 | 27 | 0 | 2 | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sękowska, A. In Vitro Activity of “Old” and “New” Antimicrobials against the Klebsiella pneumoniae Complex. Antibiotics 2024, 13, 126. https://doi.org/10.3390/antibiotics13020126
Sękowska A. In Vitro Activity of “Old” and “New” Antimicrobials against the Klebsiella pneumoniae Complex. Antibiotics. 2024; 13(2):126. https://doi.org/10.3390/antibiotics13020126
Chicago/Turabian StyleSękowska, Alicja. 2024. "In Vitro Activity of “Old” and “New” Antimicrobials against the Klebsiella pneumoniae Complex" Antibiotics 13, no. 2: 126. https://doi.org/10.3390/antibiotics13020126
APA StyleSękowska, A. (2024). In Vitro Activity of “Old” and “New” Antimicrobials against the Klebsiella pneumoniae Complex. Antibiotics, 13(2), 126. https://doi.org/10.3390/antibiotics13020126