The Yield of One vs. Two Blood Cultures in Children: Under-Detection and Over-Testing
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Study Design and Data Collection
4.2. Definitions and Inclusion Criteria
4.3. Laboratory Methods
4.4. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ladhani, S.; Pebody, R.G.; Ramsay, M.E.; Lamagni, T.L.; Johnson, A.P.; Sharland, M. Continuing impact of infectious diseases on childhood deaths in England and Wales, 2003–2005. Pediatr. Infect. Dis. J. 2010, 29, 310–313. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez-Gutiérrez, B.; Salamanca, E.; de Cueto, M.; Hsueh, P.-R.; Viale, P.; Paño-Pardo, J.R.; Venditti, M.; Tumbarello, M.; Daikos, G.; Cantón, R.; et al. Effect of appropriate combination therapy on mortality of patients with bloodstream infections due to carbapenemase-producing Enterobacteriaceae (INCREMENT): A retrospective cohort study. Lancet Infect. Dis. 2017, 17, 726–734. [Google Scholar] [CrossRef]
- Irwin, A.D.; Drew, R.J.; Marshall, P.; Nguyen, K.; Hoyle, E.; Macfarlane, K.A.; Wong, H.F.; Mekonnen, E.; Hicks, M.; Steele, T.; et al. Etiology of childhood bacteremia and timely antibiotics administration in the emergency department. Pediatrics 2015, 135, 635–642. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Roberts, D.; Wood, K.E.; Light, B.; Parrillo, J.E.; Sharma, S.; Suppes, R.; Feinstein, D.; Zanotti, S.; Taiberg, L.; et al. Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock. Crit. Care Med. 2006, 34, 1589–1596. [Google Scholar] [CrossRef]
- Huber, S.; Hetzer, B.; Crazzolara, R.; Orth-Höller, D. The correct blood volume for paediatric blood cultures: A conundrum? Clin. Microbiol. Infect. 2020, 26, 168–173. [Google Scholar] [CrossRef] [PubMed]
- Coorevits, L.; Van den Abeele, A.-M. Evaluation of the BD BACTEC FX blood volume monitoring system as a continuous quality improvement measure. Eur. J. Clin. Microbiol. Infect. Dis. 2015, 34, 1459–1466. [Google Scholar] [CrossRef] [PubMed]
- Dien Bard, J.; McElvania TeKippe, E. Diagnosis of bloodstream infections in children. J. Clin. Microbiol. 2016, 54, 1418–1424. [Google Scholar] [CrossRef]
- Stewart, J.D.; Graham, M.; Kotsanas, D.; Woolley, I.; Korman, T.M. Intermittent negative blood cultures in Staphylococcus aureus bacteremia; A retrospective study of 1071 episodes. Open Forum Infect. Dis. 2019, 6, ofz494. [Google Scholar] [CrossRef]
- Collazos-Blanco, A.; Pérez-García, F.; Sánchez-Carrillo, C.; de Egea, V.; Muñoz, P.; Bouza, E. Estimation of missed bloodstream infections without the third blood culture set: A retrospective observational single-centre study. Clin. Microbiol. Infect. 2019, 25, 469–473. [Google Scholar] [CrossRef]
- Lee, A.; Mirrett, S.; Reller, L.B.; Weinstein, M.P. Detection of bloodstream infections in adults: How many blood cultures are needed? J. Clin. Microbiol. 2007, 45, 3546–3548. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute (CLSI). Principles and Procedures for Blood Cultures; Approved Guideline; CLSI document 47-A; CLSI: Wayne, PA, USA, 2007; ISBN 1-56238-641-7. [Google Scholar]
- Miller, J.M.; Binnicker, M.J.; Campbell, S.; Carroll, K.C.; Chapin, K.C.; Gilligan, P.H.; Gonzalez, M.D.; Jerris, R.C.; Kehl, S.C.; Patel, R.; et al. A guide to utilization of the microbiology laboratory for diagnosis of infectious diseases: 2018 update by the Infectious Diseases Society of America and the American Society for Microbiology. Clin. Infect. Dis. 2018, 67, e1–e94. [Google Scholar] [CrossRef] [PubMed]
- Alonso-Menchén, D.; Muñoz, P.; Sánchez-Carrillo, C.; Pérez-Latorre, L.; Bouza, E. Unresolved issues in the epidemiology and diagnosis of bacteremia: An opinion paper. Rev. Esp. Quimioter. 2022, 35, 519–537. [Google Scholar] [CrossRef] [PubMed]
- Tran, P.; Dowell, E.; Hamilton, S.; Dolan, S.A.; Messacar, K.; Dominguez, S.R.; Todd, J. Two blood cultures with age-appropriate volume enhance suspected sepsis decision-making. Open Forum Infect. Dis. 2020, 7, ofaa028. [Google Scholar] [CrossRef] [PubMed]
- Kaditis, A.G.; O’Marcaigh, A.S.; Rhodes, K.H.; Weaver, A.L.; Henry, N.K. Yield of positive blood cultures in pediatric oncology patients by a new method of blood culture collection. Pediatr. Infect. Dis. J. 1996, 15, 615–620. [Google Scholar] [CrossRef] [PubMed]
- Tomar, P.; Garg, A.; Gupta, R.; Singh, A.; Gupta, N.K.; Upadhyay, A. Simultaneous two-site blood culture for diagnosis of neonatal sepsis. Indian Pediatr. 2017, 54, 199–203. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, S.; Bhagat, I.; DeCristofaro, J.D.; Wiswell, T.E.; Spitzer, A.R. A study of the role of multiple site blood cultures in the evaluation of neonatal sepsis. J. Perinatol. 2006, 26, 18–22. [Google Scholar] [CrossRef] [PubMed]
- Lamy, B.; Roy, P.; Carret, G.; Flandrois, J.; Delignette-Muller, M.L. What is the relevance of obtaining multiple blood samples for culture? A comprehensive model to optimize the strategy for diagnosing bacteremia. Clin. Infect. Dis. 2002, 35, 842–850. [Google Scholar] [CrossRef]
- Connell, T.G.; Rele, M.; Cowley, D.; Buttery, J.P.; Curtis, N. How reliable is a negative blood culture result? Volume of blood submitted for culture in routine practice in a children’s hospital. Pediatrics 2007, 119, 891–896. [Google Scholar] [CrossRef]
- Dietzman, D.E.; Fischer, G.W.; Schoenknecht, F.D. Neonatal escherichia coli septicemia—Bacterial counts in blood. J. Pediatr. 1974, 85, 128–130. [Google Scholar] [CrossRef]
- Kellogg, J.A.; Manzella, J.P.; Bankert, D.A. Frequency of low-level bacteremia in children from birth to fifteen years of age. J. Clin. Microbiol. 2000, 38, 2181–2185. [Google Scholar] [CrossRef]
- Kellogg, J.A.; Ferrentino, F.L.; Goodstein, M.H.; Liss, J.; Shapiro, S.L.; Bankert, D.A. Frequency of low level bacteremia in infants from birth to two months of age. Pediatr. Infect. Dis. J. 1997, 16, 381–385. [Google Scholar] [CrossRef] [PubMed]
- Eliakim-Raz, N.; Bates, D.W.; Leibovici, L. Predicting bacteraemia in validated models—A systematic review. Clin. Microbiol. Infect. 2015, 21, 295–301. [Google Scholar] [CrossRef]
- Shapiro, N.I.; Wolfe, R.E.; Wright, S.B.; Moore, R.; Bates, D.W. Who needs a blood culture? A prospectively derived and validated prediction rule. J. Emerg. Med. 2008, 35, 255–264. [Google Scholar] [CrossRef] [PubMed]
- Long, B.; Koyfman, A. Best clinical practice: Blood culture utility in the emergency department. J. Emerg. Med. 2016, 51, 529–539. [Google Scholar] [CrossRef] [PubMed]
- Fabre, V.; Sharara, S.L.; Salinas, A.B.; Carroll, K.C.; Desai, S.; Cosgrove, S.E. Does this patient need blood cultures? A scoping review of indications for blood cultures in adult nonneutropenic inpatients. Clin. Infect. Dis. 2020, 71, 1339–1347. [Google Scholar] [CrossRef] [PubMed]
- Bradley, J.S.; Byington, C.L.; Shah, S.S.; Alverson, B.; Carter, E.R.; Harrison, C.; Kaplan, S.L.; Mace, S.E.; McCracken, G.H.; Moore, M.R.; et al. The management of community-acquired pneumonia in infants and children older than 3 months of age: Clinical practice guidelines by the Pediatric Infectious Diseases Society and the Infectious Diseases Society of America. Clin. Infect. Dis. 2011, 53, e25–e76. [Google Scholar] [CrossRef] [PubMed]
- Parikh, K.; Davis, A.B.; Pavuluri, P. Do we need this blood culture? Hosp. Pediatr. 2014, 4, 78–84. [Google Scholar] [CrossRef]
- National Healthcare Safety Network, Centers for Disease Control and Prevention. Bloodstream Infection Event (Central Line-Associated Bloodstream Infection and Non-Central Line Associated Bloodstream Infection); Centers for Disease Control and Prevention: Atlanta, GA, USA, 2023. Available online: https://www.cdc.gov/nhsn/pdfs/pscmanual/4psc_clabscurrent.pdf (accessed on 1 November 2023).
- Mullan, P.C.; Scott, S.; Chamberlain, J.M.; Pettinichi, J.; Palacious, K.; Weber, A.; Payne, A.S.; Badolato, G.M.; Brown, K. Decreasing blood culture contaminants in a pediatric emergency department: An interrupted time series analysis. Pediatr. Qual. Saf. 2018, 3, e104. [Google Scholar] [CrossRef]
- Bates, D.W.; Goldman, L.; Lee, T.H. Contaminant blood cultures and resource utilization. The true consequences of false-positive results. JAMA 1991, 265, 365–369. [Google Scholar] [CrossRef]
- Schechner, V.; Wulffhart, L.; Temkin, E.; Feldman, S.F.; Nutman, A.; Shitrit, P.; Schwaber, M.J.; Carmeli, Y. One-year mortality and years of potential life lost following bloodstream infection among adults: A nation-wide population based study. Lancet Reg. Health-Eur. 2022, 23, 100511. [Google Scholar] [CrossRef]
- Woods-Hill, C.Z.; Fackler, J.; Nelson McMillan, K.; Ascenzi, J.; Martinez, D.A.; Toerper, M.F.; Voskertchian, A.; Colantuoni, E.; Klaus, S.A.; Levin, S.; et al. Association of a clinical practice guideline with blood culture use in critically ill children. JAMA Pediatr. 2017, 171, 157. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention (United States). 2019 NHSN Organism List. 2019. Available online: https://www.cdc.gov/nhsn/pdfs/validation/2019/2019-NHSN-Organisms-List-Validation.xlsx (accessed on 1 November 2023).
Single-Culture Episodes | Two-Culture Episodes | ||
---|---|---|---|
Pathogen | n (%) | Pathogen | n (%) |
Escherichia coli | 197 (11.3) | Klebsiella pneumoniae | 272 (15.5) |
Staphylococcus aureus | 194 (11.2) | Escherichia coli | 242 (13.8) |
Streptococcus pneumoniae | 138 (7.9) | Staphylococcus aureus | 229 (13.0) |
Brucella spp. | 118 (6.8) | Pseudomonas aeruginosa | 112 (6.4) |
Acinetobacter spp. | 107 (6.2) | Enterobacter spp. | 87 (4.9) |
Klebsiella pneumoniae | 105 (6.0) | Enterococcus faecalis | 78 (4.4) |
Streptococcus agalactiae | 69 (4.0) | Streptococcus agalactiae | 68 (3.9) |
Haemophilus influenzae | 67 (3.9) | Acinetobacter spp. | 66 (3.8) |
Pseudomonas aeruginosa | 64 (3.7) | Candida spp. | 66 (3.8) |
Moraxella spp. | 64 (3.7) | Streptococcus pneumoniae | 64 (3.6) |
Other | 615 (35.4) | Other | 474 (27.0) |
Total 1 | 1738 (100) | Total1 | 1758 (100) |
1 Culture | 2 Cultures | ||
---|---|---|---|
n (%) | n (%) | p1 | |
Full sample | 160,964 (90.1) | 17,738 (9.9) | |
Ward | <0.001 | ||
Emergency department | 85,213 (98.2) | 1604 (1.8) | |
Pediatric intensive care | 7672 (70.0) | 3281 (30.0) | |
Neonatal intensive care | 11,075 (86.5) | 1727 (13.5) | |
Other | 57,004 (83.7) | 11,126 (16.3) | |
Age group | <0.001 | ||
<1 month | 37,924 (88.5) | 4925 (11.5) | |
1–12 months | 39,886 (93.4) | 2833 (6.6) | |
1–11 years | 72,371 (90.6) | 7535 (9.4) | |
12–18 years | 9983 (81.4) | 2280 (18.6) | |
Unknown | 800 (82.9) | 165 (17.1) | |
Blood culture timing | <0.001 | ||
First 3 hospital days | 109,374 (93.6) | 7519 (6.4) | |
After day 3 | 12,408 (64.3) | 6885 (35.7) | |
Unknown | 39,182 (92.2) | 3334 (7.8) |
1 Culture | 2 Cultures | |
---|---|---|
n (%) with True Pathogen | n (%) with True Pathogen | |
Full sample | 1687/160,964 (1.0) | 1576/17,738 (8.9) |
Ward | ||
Emergency department | 685/85,213 (0.8) | 199/1604 (12.4) |
Pediatric intensive care | 175/7672 (2.3) | 353/3281 (10.8) |
Neonatal intensive care | 121/11,075 (1.1) | 155/1727 (9.0) |
Other | 706/57,004 (1.2) | 869/11,126 (7.8) |
Age group | ||
<1 month | 367/37,924 (1.0) | 371/4925 (7.5) |
1–12 months | 427/39,886 (1.1) | 363/2833 (12.8) |
1–11 years | 708/72,371 (1.0) | 640/7535 (8.5) |
12–18 years | 176/9983 (1.8) | 191/2280(8.4) |
Unknown | 9/800 (1.1) | 11/165 (6.7) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zalmanovich, A.; Temkin, E.; Biran, D.; Carmeli, Y. The Yield of One vs. Two Blood Cultures in Children: Under-Detection and Over-Testing. Antibiotics 2024, 13, 113. https://doi.org/10.3390/antibiotics13020113
Zalmanovich A, Temkin E, Biran D, Carmeli Y. The Yield of One vs. Two Blood Cultures in Children: Under-Detection and Over-Testing. Antibiotics. 2024; 13(2):113. https://doi.org/10.3390/antibiotics13020113
Chicago/Turabian StyleZalmanovich, Anat, Elizabeth Temkin, Dikla Biran, and Yehuda Carmeli. 2024. "The Yield of One vs. Two Blood Cultures in Children: Under-Detection and Over-Testing" Antibiotics 13, no. 2: 113. https://doi.org/10.3390/antibiotics13020113
APA StyleZalmanovich, A., Temkin, E., Biran, D., & Carmeli, Y. (2024). The Yield of One vs. Two Blood Cultures in Children: Under-Detection and Over-Testing. Antibiotics, 13(2), 113. https://doi.org/10.3390/antibiotics13020113