Genomic Characterization of 16S rRNA Methyltransferase-Producing Enterobacterales Reveals the Emergence of Klebsiella pneumoniae ST6260 Harboring rmtF, rmtB, blaNDM-5, blaOXA-232 and blaSFO-1 Genes in a Cancer Hospital in Bulgaria
Abstract
:1. Introduction
2. Results
2.1. Identification of 16S rRNA Methyltransferase-Producing Bacterial Isolates
2.2. Identification of β-Lactamase and Plasmid-Mediated Quinolone Resistance Genes
2.3. Exploring Genomic Diversity of 16S rRNA Methyltransferase-Producing Isolates
2.3.1. Klebsiella pneumoniae
2.3.2. Enterobacter cloacae Complex
2.3.3. Serratia marcescens
2.3.4. Escherichia coli
2.3.5. Citrobacter freundii Complex
2.3.6. Klebsiella oxytoca Complex
2.3.7. Morganella morganii
2.3.8. Klebsiella aerogenes
2.3.9. Proteus mirabilis
2.3.10. Providentia stuartii
2.4. Antimicrobial Susceptibility of 16S rRNA Methyltransferase-Producing Isolates
3. Discussion
4. Materials and Methods
4.1. Bacterial Isolates, Identification and Susceptibility Testing
4.2. Screening of Aminoglycoside-Resistant Isolates and 16S rRNA Methytransferase Gene Detection
4.3. Detection of β-Lactamase and Plasmid-Mediated Quinolone Resistance Genes
4.4. Conjugation Experiments and PCR-Based Replicon Typing
4.5. Typing of the 16S rRNA Methytransferase-Producing Isolates
4.6. Whole-Genome Sequencing
4.7. Bioinformatic Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Magnet, S.; Blanchard, J.S. Molecular Insights into Aminoglycoside Action and Resistance. Chem. Rev. 2005, 105, 477–498. [Google Scholar] [CrossRef] [PubMed]
- Wachino, J.I.; Doi, Y.; Arakawa, Y. Aminoglycoside Resistance: Updates with a Focus on Acquired 16S Ribosomal RNA Methyltransferases. Infect. Dis. Clin. N. Am. 2020, 34, 887–902. [Google Scholar] [CrossRef] [PubMed]
- Doi, Y.; Wachino, J.-I.; Arakawa, Y. Aminoglycoside Resistance: The Emergence of Acquired 16S Ribosomal RNA Methyltransferases. Infect. Dis. Clin. N. Am. 2016, 30, 523–537. [Google Scholar] [CrossRef]
- Yokoyama, K.; Doi, Y.; Yamane, K.; Kurokawa, H.; Shibata, N.; Shibayama, K.; Yagi, T.; Kato, H.; Arakawa, Y. Acquisition of 16S RRNA Methylase Gene in Pseudomonas aeruginosa. Lancet 2003, 362, 1888–1893. [Google Scholar] [CrossRef] [PubMed]
- Galimand, M.; Courvalin, P.; Lambert, T. Plasmid-Mediated High-Level Resistance to Aminoglycosides in Enterobacteriaceae Due to 16S RRNA Methylation. Antimicrob. Agents Chemother. 2003, 47, 2565–2571. [Google Scholar] [CrossRef]
- Doi, Y.; Yokoyama, K.; Yamane, K.; Wachino, J.I.; Shibata, N.; Yagi, T.; Shibayama, K.; Kato, H.; Arakawa, Y. Plasmid-Mediated 16S RRNA Methylase in Serratia marcescens Conferring High-Level Resistance to Aminoglycosides. Antimicrob. Agents Chemother. 2004, 48, 491–496. [Google Scholar] [CrossRef]
- Wachino, J.I.; Yamane, K.; Shibayama, K.; Kurokawa, H.; Shibata, N.; Suzuki, S.; Doi, Y.; Kimura, K.; Ike, Y.; Arakawa, Y. Novel Plasmid-Mediated 16S RRNA Methylase, RmtC, Found in a Proteus mirabilis Isolate Demonstrating Extraordinary High-Level Resistance against Various Aminoglycosides. Antimicrob. Agents Chemother. 2006, 50, 178–184. [Google Scholar] [CrossRef]
- Doi, Y.; De Oliveira Garcia, D.; Adams, J.; Paterson, D.L. Coproduction of Novel 16S RRNA Methylase RmtD and Metallo-β-Lactamase SPM-1 in a Panresistant Pseudomonas aeruginosa Isolate from Brazil. Antimicrob. Agents Chemother. 2007, 51, 852–856. [Google Scholar] [CrossRef]
- Lee, C.S.; Hu, F.; Rivera, J.I.; Doi, Y. Escherichia coli Sequence Type 354 Coproducing CMY-2 Cephalosporinase and RmtE 16S RRNA Methyltransferase. Antimicrob. Agents Chemother. 2014, 58, 4246–4247. [Google Scholar] [CrossRef]
- Galimand, M.; Courvalin, P.; Lambert, T. RmtF, a New Member of the Aminoglycoside Resistance 16S RRNA N7 G1405 Methyltransferase Family. Antimicrob. Agents Chemother. 2012, 56, 3960–3962. [Google Scholar] [CrossRef]
- Bueno, M.F.C.; Francisco, G.R.; O’Hara, J.A.; De Oliveira Garcia, D.; Doi, Y. Coproduction of 16S RRNA Methyltransferase RmtD or RmtG with KPC-2 and CTX-M Group Extended-Spectrum β-Lactamases in Klebsiella pneumoniae. Antimicrob. Agents Chemother. 2013, 57, 2397–2400. [Google Scholar] [CrossRef] [PubMed]
- O’Hara, J.A.; McGann, P.; Snesrud, E.C.; Clifford, R.J.; Waterman, P.E.; Lesho, E.P.; Doi, Y. Novel 16S RRNA Methyltransferase RmtH Produced by Klebsiella pneumoniae Associated with War-Related Trauma. Antimicrob. Agents Chemother. 2013, 57, 2413–2416. [Google Scholar] [CrossRef] [PubMed]
- Wachino, J.I.; Shibayama, K.; Kurokawa, H.; Kimura, K.; Yamane, K.; Suzuki, S.; Shibata, N.; Ike, Y.; Arakawa, Y. Novel Plasmid-Mediated 16S RRNA M1A1408 Methyltransferase, NpmA, Found in a Clinically Isolated Escherichia coli Strain Resistant to Structurally Diverse Aminoglycosides. Antimicrob. Agents Chemother. 2007, 51, 4401–4409. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Hu, F. Research Updates of Plasmid-Mediated Aminoglycoside Resistance 16S RRNA Methyltransferase. Antibiotics 2022, 11, 906. [Google Scholar] [CrossRef] [PubMed]
- Wachino, J.I.; Arakawa, Y. Exogenously Acquired 16S RRNA Methyltransferases Found in Aminoglycoside-Resistant Pathogenic Gram-Negative Bacteria: An Update. Drug Resist. Updat. 2012, 15, 133–148. [Google Scholar] [CrossRef]
- Galimand, M.; Sabtcheva, S.; Courvalin, P.; Lambert, T. Worldwide Disseminated armA Aminoglycoside Resistance Methylase Gene Is Borne by Composite Transposon Tn1548. Antimicrob. Agents Chemother. 2005, 49, 2949–2953. [Google Scholar] [CrossRef]
- Sabtcheva, S.; Saga, T.; Kantardjiev, T.; Ivanova, M.; Ishii, Y.; Kaku, M. Nosocomial Spread of armA-Mediated High-Level Aminoglycoside Resistance in Enterobacteriaceae Isolates Producing CTX-M-3 β-Lactamase in a Cancer Hospital in Bulgaria. J. Chemother. 2008, 20, 593–599. [Google Scholar] [CrossRef]
- Grissa, I.; Bouchon, P.; Pourcel, C.; Vergnaud, G. On-Line Resources for Bacterial Micro-Evolution Studies Using MLVA or CRISPR Typing. Biochimie 2008, 90, 660–668. [Google Scholar] [CrossRef]
- Gołȩbiewski, M.; Kern-Zdanowicz, I.; Zienkiewicz, M.; Adamczyk, M.; Zyliǹska, J.; Baraniak, A.; Gniadkowski, M.; Bardowski, J.; Cegłowski, P. Complete Nucleotide Sequence of the PCTX-M3 Plasmid and Its Involvement in Spread of the Extended-Spectrum β-Lactamase Gene BlaCTX-M-3. Antimicrob. Agents Chemother. 2007, 51, 3789–3795. [Google Scholar] [CrossRef]
- Ivanov, I.; Sabtcheva, S.; Dobreva, E.; Todorova, B.; Velinov, T.Z.; Borissova, V.; Petrova, I.; Ivancheva, K.; Asseva, G.; Padeshki, P.; et al. Prevalence of Carbapenemase Genes among 16S RRNA Methyltransferase-Producing Enterobacteriaceae Isolated from Cancer Patients. Probl. Infect. Parasit. Dis. 2014, 42, 10–13. [Google Scholar]
- Sabtcheva, S.; Stoikov, I.; Ivanov, I.N.; Donchev, D.; Lesseva, M.; Georgieva, S.; Teneva, D.; Dobreva, E.; Christova, I. Genomic Characterization of Carbapenemase-Producing Enterobacter hormaechei, Serratia marcescens, Citrobacter freundii, Providencia stuartii, and Morganella morganii Clinical Isolates from Bulgaria. Antibiotics 2024, 13, 455. [Google Scholar] [CrossRef] [PubMed]
- Tacconelli, E.; Cataldo, M.A.; Dancer, S.J.; De Angelis, G.; Falcone, M.; Frank, U.; Kahlmeter, G.; Pan, A.; Petrosillo, N.; Rodríguez-Baño, J.; et al. ESCMID Guidelines for the Management of the Infection Control Measures to Reduce Transmission of Multidrug-Resistant Gram-Negative Bacteria in Hospitalized Patients. Clin. Microbiol. Infect. 2014, 20, 1–55. [Google Scholar] [CrossRef] [PubMed]
- Wangkheimayum, J.; Paul, D.; Dhar, D.; Nepram, R.; Chetri, S.; Bhowmik, D.; Chakravarty, A.; Bhattacharjee, A. Occurrence of Acquired 16S RRNA Methyltransferase-Mediated Aminoglycoside Resistance in Clinical Isolates of Enterobacteriaceae within a Tertiary Referral Hospital of Northeast India. Antimicrob. Agents Chemother. 2017, 61, e01037-16. [Google Scholar] [CrossRef] [PubMed]
- Yeganeh Sefidan, F.; Mohammadzadeh-Asl, Y.; Ghotaslou, R. High-Level Resistance to Aminoglycosides Due to 16S RRNA Methylation in Enterobacteriaceae Isolates. Microb. Drug Resist. 2019, 25, 1261–1265. [Google Scholar] [CrossRef] [PubMed]
- Piekarska, K.; Zacharczuk, K.; Wolkowicz, T.; Rzeczkowska, M.; Bareja, E.; Olak, M.; Gierczynski, R. Distribution of 16S RRNA Methylases Among Different Species of Aminoglycoside-Resistant Enterobacteriaceae in a Tertiary Care Hospital in Poland. Adv. Clin. Exp. Med. 2016, 25, 539–544. [Google Scholar] [CrossRef]
- Taylor, E.; Bal, A.M.; Balakrishnan, I.; Brown, N.M.; Burns, P.; Clark, M.; Diggle, M.; Donaldson, H.; Eltringham, I.; Folb, J.; et al. A Prospective Surveillance Study to Determine the Prevalence of 16S RRNA Methyltransferase-Producing Gram-Negative Bacteria in the UK. J. Antimicrob. Chemother. 2021, 76, 2428–2436. [Google Scholar] [CrossRef]
- Wei, D.D.; Wan, L.G.; Yu, Y.; Xu, Q.F.; Deng, Q.; Cao, X.W.; Liu, Y. Characterization of Extended-Spectrum β-Lactamase, Carbapenemase, and Plasmid Quinolone Determinants in Klebsiella pneumoniae Isolates Carrying Distinct Types of 16S RRNA Methylase Genes, and Their Association with Mobile Genetic Elements. Microb. Drug Resist. 2015, 21, 186–193. [Google Scholar] [CrossRef]
- Ayad, A.; Drissi, M.; de Curraize, C.; Dupont, C.; Hartmann, A.; Solanas, S.; Siebor, E.; Amoureux, L.; Neuwirth, C. Occurence of armA and RmtB Aminoglycoside Resistance 16S RRNA Methylases in Extended-Spectrum β-Lactamases Producing Escherichia coli in Algerian Hospitals. Front. Microbiol. 2016, 7, 1409. [Google Scholar] [CrossRef]
- Zhao, J.Y.; Zhu, Y.Q.; Li, Y.N.; Mu, X.D.; You, L.P.; Xu, C.; Qin, P.; Ma, J.L. Coexistence of SFO-1 and NDM-1 β-Lactamase Genes and Fosfomycin Resistance Gene FosA3 in an Escherichia coli Clinical Isolate. FEMS Microbiol. Lett. 2015, 362, 1–7. [Google Scholar] [CrossRef]
- Fournier, C.; Poirel, L.; Despont, S.; Kessler, J.; Nordmann, P. Increasing Trends of Association of 16S RRNA Methylases and Carbapenemases in Enterobacterales Clinical Isolates from Switzerland, 2017–2020. Microorganisms 2022, 10, 615. [Google Scholar] [CrossRef]
- Taylor, E.; Sriskandan, S.; Woodford, N.; Hopkins, K.L. High Prevalence of 16S RRNA Methyltransferases among Carbapenemase-Producing Enterobacteriaceae in the UK and Ireland. Int. J. Antimicrob. Agents 2018, 52, 278–282. [Google Scholar] [CrossRef] [PubMed]
- Pajand, O.; Rahimi, H.; Badmasti, F.; Gholami, F.; Alipour, T.; Darabi, N.; Aarestrup, F.M.; Leekitcharoenphon, P. Various Arrangements of Mobile Genetic Elements among CC147 Subpopulations of Klebsiella pneumoniae Harboring blaNDM-1: A Comparative Genomic Analysis of Carbapenem Resistant Strains. J. Biomed. Sci. 2023, 30, 73. [Google Scholar] [CrossRef] [PubMed]
- Hammerum, A.M.; Hansen, F.; Nielsen, H.L.; Jakobsen, L.; Stegger, M.; Andersen, P.S.; Jensen, P.; Nielsen, T.K.; Hansen, L.H.; Hasman, H.; et al. Use of WGS Data for Investigation of a Long-Term NDM-1-Producing Citrobacter freundii Outbreak and Secondary in vivo Spread of blaNDM-1 to Escherichia coli, Klebsiella pneumoniae and Klebsiella oxytoca. J. Antimicrob. Chemother. 2016, 71, 3117–3124. [Google Scholar] [CrossRef]
- Markovska, R.; Schneider, I.; Keuleyan, E.; Ivanova, D.; Lesseva, M.; Stoeva, T.; Sredkova, M.; Bauernfeind, A.; Mitov, I. Dissemination of a Multidrug-Resistant VIM-1- and CMY-99-Producing Proteus mirabilis Clone in Bulgaria. Microb. Drug Resist. 2017, 23, 345–350. [Google Scholar] [CrossRef] [PubMed]
- Poirel, L.; Savov, E.; Nazli, A.; Trifonova, A.; Todorova, I.; Gergova, I.; Nordmann, P. Outbreak Caused by NDM-1- and RmtB-Producing Escherichia coli in Bulgaria. Antimicrob. Agents Chemother. 2014, 58, 2472–2474. [Google Scholar] [CrossRef] [PubMed]
- Markovska, R.; Stankova, P.; Popivanov, G.; Gergova, I.; Mihova, K.; Mutafchiyski, V.; Boyanova, L. Emergence of BlaNDM-5 and BlaOXA-232 Positive Colistin- and Carbapenem-Resistant Klebsiella pneumoniae in a Bulgarian Hospital. Antibiotics 2024, 13, 677. [Google Scholar] [CrossRef]
- Berçot, B.; Poirel, L.; Nordmann, P. Updated Multiplex Polymerase Chain Reaction for Detection of 16S RRNA Methylases: High Prevalence among NDM-1 Producers. Diagn. Microbiol. Infect. Dis. 2011, 71, 442–445. [Google Scholar] [CrossRef]
- Davis, M.A.; Baker, K.N.K.; Orfe, L.H.; Shah, D.H.; Besser, T.E.; Call, D.R. Discovery of a Gene Conferring Multiple-Aminoglycoside Resistance in Escherichia coli. Antimicrob. Agents Chemother. 2010, 54, 2666–2669. [Google Scholar] [CrossRef]
- Hidalgo, L.; Hopkins, K.L.; Gutierrez, B.; Ovejero, C.M.; Shukla, S.; Douthwaite, S.; Prasad, K.N.; Woodford, N.; Gonzalez-Zorn, B. Association of the Novel Aminoglycoside Resistance Determinant RmtF with NDM Carbapenemase in Enterobacteriaceae Isolated in India and the UK. J. Antimicrob. Chemother. 2013, 68, 1543–1550. [Google Scholar] [CrossRef]
- Gröbner, S.; Linke, D.; Schütz, W.; Fladerer, C.; Madlung, J.; Autenrieth, I.B.; Witte, W.; Pfeifer, Y. Emergence of Carbapenem-Non-Susceptible Extended-Spectrum β-Lactamase-Producing Klebsiella pneumoniae Isolates at the University Hospital of Tübingen, Germany. J. Med. Microbiol. 2009, 58, 912–922. [Google Scholar] [CrossRef]
- Cole, J.M.; Schuetz, A.N.; Hill, C.E.; Nolte, F.S. Development and Evaluation of a Real-Time PCR Assay for Detection of Klebsiella pneumoniae Carbapenemase Genes. J. Clin. Microbiol. 2009, 47, 322–326. [Google Scholar] [CrossRef] [PubMed]
- Poirel, L.; Naas, T.; Nordmann, P. Pyrosequencing as a Rapid Tool for Identification of GES-Type Extended-Spectrum β-Lactamases. J. Clin. Microbiol. 2006, 44, 3008–3011. [Google Scholar] [CrossRef]
- Goudarzi, H.; Mirsamadi, E.S.; Ghalavand, Z.; Hakemi Vala, M.; Mirjalali, H.; Hashemi, A. Rapid Detection and Molecular Survey of BlaVIM, BlaIMP and BlaNDM Genes among Clinical Isolates of Acinetobacter baumannii Using New Multiplex Real-Time PCR and Melting Curve Analysis. BMC Microbiol. 2019, 19, 122. [Google Scholar] [CrossRef]
- Mendes, R.E.; Kiyota, K.A.; Monteiro, J.; Castanheira, M.; Andrade, S.S.; Gales, A.C.; Pignatari, A.C.C.; Tufik, S. Rapid Detection and Identification of Metallo-β-Lactamase-Encoding Genes by Multiplex Real-Time PCR Assay and Melt Curve Analysis. J. Clin. Microbiol. 2007, 45, 544–547. [Google Scholar] [CrossRef] [PubMed]
- Stoikov, I.; Ivanov, I.N.; Donchev, D.; Teneva, D.; Dobreva, E.; Hristova, R.; Sabtcheva, S. Genomic Characterization of IMP-Producing Pseudomonas aeruginosa in Bulgaria Reveals the Emergence of IMP-100, a Novel Plasmid-Mediated Variant Coexisting with a Chromosomal VIM-4. Microorganisms 2023, 11, 2270. [Google Scholar] [CrossRef]
- Woodford, N.; Fagan, E.J.; Ellington, M.J. Multiplex PCR for Rapid Detection of Genes Encoding CTX-M Extended-Spectrum β-Lactamases. J. Antimicrob. Chemother. 2005, 57, 154–155. [Google Scholar] [CrossRef] [PubMed]
- Mlynarcik, P.; Chalachanova, A.; Vagnerovă, I.; Holy, O.; Zatloukalova, S.; Kolar, M. PCR Detection of Oxacillinases in Bacteria. Microb. Drug Resist. 2020, 26, 1023–1037. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Pérez, F.J.; Hanson, N.D. Detection of Plasmid-Mediated AmpC β-Lactamase Genes in Clinical Isolates by Using Multiplex PCR. J. Clin. Microbiol. 2002, 40, 2153–2162. [Google Scholar] [CrossRef]
- Cattoir, V.; Poirel, L.; Rotimi, V.; Soussy, C.-J.J.; Nordmann, P. Multiplex PCR for Detection of Plasmid-Mediated Quinolone Resistance Qnr Genes in ESBL-Producing Enterobacterial Isolates. J. Antimicrob. Chemother. 2007, 60, 394–397. [Google Scholar] [CrossRef]
- Wang, M.; Guo, Q.; Xu, X.; Wang, X.; Ye, X.; Wu, S.; Hooper, D.C.; Wang, M. New Plasmid-Mediated Quinolone Resistance Gene, qnrC, Found in a Clinical Isolate of Proteus mirabilis. Antimicrob. Agents Chemother. 2009, 53, 1892–1897. [Google Scholar] [CrossRef]
- Cavaco, L.M.; Hasman, H.; Xia, S.; Aarestrup, F.M. qnrD, a Novel Gene Conferring Transferable Quinolone Resistance in Salmonella enterica Serovar Kentucky and Bovismorbificans Strains of Human Origin. Antimicrob. Agents Chemother. 2009, 53, 603–608. [Google Scholar] [CrossRef] [PubMed]
- Yamane, K.; Wachino, J.I.; Suzuki, S.; Arakawa, Y. Plasmid-Mediated qepA Gene among Escherichia coli Clinical Isolates from Japan. Antimicrob. Agents Chemother. 2008, 52, 1564–1566. [Google Scholar] [CrossRef] [PubMed]
- Ivanov, I.; Sabtcheva, S.; Saga, T.; Ishii, Y.; Kaku, M.; Kantardjiev, T. A Rapid and Versatile Assay for Screening of Aac(6’)-Ib-Cr in Multidrug-Resistant Enterocbacteriaceae. Probl. Inf. Parasit. Dis. 2018, 46, 5–8. [Google Scholar]
- Livermore, D.M.; Jones, C.S. Characterization of NPS-1, a Novel Plasmid-Mediated Beta-Lactamase, from Two Pseudomonas aeruginosa Isolates. Antimicrob. Agents Chemother. 1986, 29, 99–103. [Google Scholar] [CrossRef]
- Jiang, X.; Xu, Y.; Li, Y.; Zhang, K.; Liu, L.; Wang, H.; Tian, J.; Ying, H.; Shi, L.; Yu, T. Characterization and Horizontal Transfer of qacH-Associated Class 1 Integrons in Escherichia coli Isolated from Retail Meats. Int. J. Food Microbiol. 2017, 258, 12–17. [Google Scholar] [CrossRef]
- Ruekit, S.; Wangchuk, S.; Dorji, T.; Tshering, K.P.; Pootong, P.; Nobthai, P.; Serichantalergs, O.; Poramathikul, K.; Bodhidatta, L.; Mason, C.J. Molecular Characterization and PCR-Based Replicon Typing of Multidrug Resistant Shigella Sonnei Isolates from an Outbreak in Thimphu, Bhutan. BMC Res. Notes 2014, 7, 95. [Google Scholar] [CrossRef]
- Donchev, D.; Ivanov, I.N.; Stoikov, I.; Sabtcheva, S.; Kalchev, Y.; Murdjeva, M.; Dobreva, E.; Hristova, R. Improvement and Validation of a Multi-Locus Variable Number of Tandem Repeats Analysis (MLVA8+) for Klebsiella pneumoniae, Klebsiella variicola, and Klebsiella quasipneumoniae. Microorganisms 2023, 11, 444. [Google Scholar] [CrossRef]
- Skirrow, M.B. The Dienes (Mutual Inhibition) Test in the Investigation of Proteus Infections. J. Med. Microbiol. 1969, 2, 471–477. [Google Scholar] [CrossRef]
- Pfaller, M.A.; Mujeeb, I.; Hollis, R.J.; Jones, R.N.; Doern, G.V. Evaluation of the Discriminatory Powers of the Dienes Test and Ribotyping as Typing Methods for Proteus mirabilis. J. Clin. Microbiol. 2000, 38, 1077–1080. [Google Scholar] [CrossRef]
- Adler, A.; Hussein, O.; Ben-david, D.; Masarwa, S.; Navon-venezia, S.; Schwaber, M.J.; Carmeli, Y.; on behalf of the Post-Acute-Care Hospital Carbapenem-Resistant Enterobacteriaceae Working Group. Persistence of Klebsiella pneumoniae ST258 as the Predominant Clone of Carbapenemase-Producing Enterobacteriaceae in Post-Acute-Care Hospitals in Israel, 2008–2013. J. Antimicrob. Chemother. 2015, 70, 89–92. [Google Scholar] [CrossRef]
- Alvarez-Arevalo, M.; Sterndorff, E.B.; Faurdal, D.; Jørgensen, T.S.; Mourched, A.-S.; Vuksanovic, O.; Saha, S.; Weber, T. Extraction and Oxford Nanopore Sequencing of Genomic DNA from Filamentous Actinobacteria. STAR Protoc. 2023, 4, 101955. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. Fastp: An Ultra-Fast All-in-One FASTQ Preprocessor. Bioinformatics 2018, 34, i884–i890. [Google Scholar] [CrossRef] [PubMed]
- Wick, R.R.; Judd, L.M.; Gorrie, C.L.; Holt, K.E. Unicycler: Resolving Bacterial Genome Assemblies from Short and Long Sequencing Reads. PLoS Comput. Biol. 2017, 13, e1005595. [Google Scholar] [CrossRef] [PubMed]
- Wick, R.R.; Judd, L.M.; Cerdeira, L.T.; Hawkey, J.; Méric, G.; Vezina, B.; Wyres, K.L.; Holt, K.E. Trycycler: Consensus Long-Read Assemblies for Bacterial Genomes. Genome Biol. 2021, 22, 266. [Google Scholar] [CrossRef]
- Jolley, K.A.; Bray, J.E.; Maiden, M.C.J. Open-Access Bacterial Population Genomics: BIGSdb Software, the PubMLST.Org Website and Their Applications. Wellcome Open Res. 2018, 3, 124. [Google Scholar] [CrossRef]
- Schwengers, O.; Jelonek, L.; Dieckmann, M.A.; Beyvers, S.; Blom, J.; Goesmann, A. Bakta: Rapid and Standardized Annotation of Bacterial Genomes via Alignment-Free Sequence Identification. Microb. Genom. 2021, 7, 000685. [Google Scholar] [CrossRef]
- Feldgarden, M.; Brover, V.; Gonzalez-Escalona, N.; Frye, J.G.; Haendiges, J.; Haft, D.H.; Hoffmann, M.; Pettengill, J.B.; Prasad, A.B.; Tillman, G.E.; et al. AMRFinderPlus and the Reference Gene Catalog Facilitate Examination of the Genomic Links among Antimicrobial Resistance, Stress Response, and Virulence. Sci. Rep. 2021, 11, 12728. [Google Scholar] [CrossRef]
- Bortolaia, V.; Kaas, R.S.; Ruppe, E.; Roberts, M.C.; Schwarz, S.; Cattoir, V.; Philippon, A.; Allesoe, R.L.; Rebelo, A.R.; Florensa, A.F.; et al. ResFinder 4.0 for Predictions of Phenotypes from Genotypes. J. Antimicrob. Chemother. 2020, 75, 3491–3500. [Google Scholar] [CrossRef]
- Carattoli, A.; Zankari, E.; Garciá-Fernández, A.; Larsen, M.V.; Lund, O.; Villa, L.; Aarestrup, F.M.; Hasman, H. In Silico Detection and Typing of Plasmids Using PlasmidFinder and Plasmid Multilocus Sequence Typing. Antimicrob. Agents Chemother. 2014, 58, 3895–3903. [Google Scholar] [CrossRef]
- Shakya, M.; Ahmed, S.A.; Davenport, K.W.; Flynn, M.C.; Lo, C.-C.C.; Chain, P.S.G.G. Standardized Phylogenetic and Molecular Evolutionary Analysis Applied to Species across the Microbial Tree of Life. Sci. Rep. 2020, 10, 1723. [Google Scholar] [CrossRef]
- Letunic, I.; Bork, P. Interactive Tree Of Life (ITOL) v5: An Online Tool for Phylogenetic Tree Display and Annotation. Nucleic Acids Res. 2021, 49, W293–W296. [Google Scholar] [CrossRef] [PubMed]
Transconjugants from Indicated Donors (No.) * | Transferred Resistance Genes and Plasmid Incompatibility Group | ||
---|---|---|---|
16S RMTase Gene | Associated Resistance Genes | Replicon (s) | |
Transconjugants from donors harboring armA, blaCTX-M-3 and blaNDM-1 | |||
S. marcescens 4487 | armA | blaCTX-M-3, aadA2 | IncL/M |
S. marcescens 4949 | armA | blaCTX-M-3, blaNDM-1, aadA2, qnrB9 | IncL/M |
C. freundii (3) * | armA | blaCTX-M-3, blaNDM-1, aadA2, qnrB9 | IncL/M |
E. coli 52491 | armA | blaCTX-M-3, blaNDM-1, blaCMY-4, aadA2, qnrB9 | IncL/M |
E. coli 52492 | armA | blaCTX-M-3, blaOXA-1, aac(6′)-Ib-cr | IncL/M |
- | blaNDM-1, qnrB9 | IncA/C | |
K. pneumoniae 740 | armA | blaCTX-M-3, blaNDM-1, aadA2, aac(6′)-Ib-cr, qnrS1 | IncL/M |
Transconjugant from donor harboring armA, blaCTX-M-15 and blaNDM-1 | |||
M. morganii 4395 | armA | blaNDM-1, blaOXA-1, aadA2, qnrB1 | IncT |
Transconjugants from donors harboring armA, blaCTX-M-3 and blaVIM-4 | |||
S. marcescens 2942 | armA | blaCTX-M-3 | IncL/M |
S. marcescens 1281 | armA | blaCTX-M-3 | IncL/M |
C. freundii 2748 | armA | blaCTX-M-3, blaVIM-4 | IncL/M |
Transconjugant from donor harboring armA, blaCMY-4 and blaVIM-86 | |||
P. stuartii 3347 | armA | blaVIM-86, blaCMY-4, blaOXA-1, aac(6′)-Ib-cr | IncA/C |
Transconjugant from donor harboring armA, blaCTX-M-15 and blaoxa-48 | |||
E. hormaechei 3113 | armA | blaOXA-48, blaOXA-1, aadA2, aac(6′)-Ib-cr, qnrB1 | IncL/M |
Transconjugants from donors harboring rmtB, rmtF, blaNDM-5, blaOXA-232 and blaSFO-1 | |||
K. pneumoniae (2) * | rmtF | blaSFO-1 | IncFIB, IncFII |
K. pneumoniae 3161 | rmtF | blaSFO-1, blaOXA-9 | IncFIB |
K. pneumoniae 3112 | rmtF | blaOXA-9 | IncFIB |
K. pneumoniae (4) * | - | blaOXA-232 | Col |
Transconjugants from Indicated Donors (No.)* | Transferred Resistance Genes and Plasmid Incompatibility Group | ||
---|---|---|---|
16S RMTase Gene | Associated Resistance Genes | Replicon | |
Transconjugants from donors harboring armA and blaCTX-M-3 | |||
K. pneumoniae (14) * | armA | blaCTX-M-3, aadA2 | IncL/M |
K. pneumoniae (3) * | armA | blaCTX-M-3, blaOXA-10, aac(6′)-Ib-cr | untypable |
K. pneumoniae 1698 | armA | blaCTX-M-3 | IncL/M |
E. hormaechei (14) * | armA | blaCTX-M-3, aadA2 | IncL/M |
E. hormaechei (7) * | armA | blaCTX-M-3, blaOXA-1, aac(6′)-Ib-cr | IncL/M |
E. hormaechei (2) * | armA | blaCTX-M-3 | IncL/M |
E. hormaechei 401 | armA | blaCTX-M-3, aadA2, blaOXA-1, aac(6′)-Ib-cr, qnrB1 | IncL/M |
E. asburiae 146 | armA | blaCTX-M-3, aadA2 | IncL/M |
S. marcescens (14) * | armA | blaCTX-M-3, aadA2 | IncL/M |
S. marcescens 2921 | armA | blaCTX-M-3 | IncL/M |
S. marcescens 5327 | armA | blaCTX-M-3 | IncA/C |
S. marcescens 3247 | armA | blaCTX-M-3, blaOXA-1, aac(6′)-Ib-cr | IncL/M |
E. coli (8) * | armA | blaCTX-M-3, aadA2 | IncL/M |
C. freundii (2) * | armA | blaCTX-M-3, aadA2 | IncL/M |
C. freundii (2) * | armA | blaCTX-M-3, blaOXA-1, aac(6′)-Ib-cr | IncL/M |
C. freundii 1739 | armA | blaCTX-M-3, aadA2, qnrB38 | IncL/M |
C. freundii 3757 | armA | blaCTX-M-3, blaOXA-1, aac(6′)-Ib-cr, qnrB9 | IncL/M |
C. portucalensis 2648 | armA | blaCTX-M-3, aadA2 | IncL/M |
K. michiganensis (3) * | armA | blaCTX-M-3, aadA2 | IncL/M |
K. oxytoca 1673 | armA | blaCTX-M-3, aadA2 | IncL/M |
K. oxytoca 1765 | armA | blaCTX-M-3, blaOXA-1, aac(6′)-Ib-cr | IncL/M |
M. morganii 1990 | armA | blaCTX-M-3, aadA2 | IncL/M |
M. morganii 2789 | armA | blaCTX-M-3 | IncL/M |
M. morganii 2117 | armA | blaCTX-M-3, blaOXA-1, aac(6′)-Ib-cr | IncL/M |
K. aerogenes (3) * | armA | blaCTX-M-3, aadA2 | IncL/M |
Transconjugants from donors harboring armA and blaCTX-M-15 | |||
K. pneumoniae 2010 | armA | blaCTX-M-15, aadA2 | IncL/M |
K. pneumoniae 510 | armA | blaCTX-M-15, aadA2 | untypable |
K. pneumoniae 727 | armA | blaCTX-M-15, blaOXA-1, aac(6′)-Ib-cr | untypable |
K. pneumoniae 2280 | armA | blaCTX-M-15, blaOXA-10, aac(6′)-Ib-cr, qnrB1 | untypable |
K. pneumoniae 2158 | armA | blaCTX-M-15, blaOXA-1, aadA2, aac(6′)-Ib-cr | IncR |
S. marcescens 3560 | armA | blaCTX-M-15, aadA2 | IncL/M |
C. freundii 979 | armA | blaCTX-M-15 | IncL/M |
C. freundii 2739 | armA | blaCTX-M-15, aac(6′)-Ib-cr | IncFIB |
K. michiganensis 2117 | armA | blaCTX-M-15, blaOXA-1, aac(6′)-Ib-cr | IncL/M |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sabtcheva, S.; Stoikov, I.; Georgieva, S.; Donchev, D.; Hodzhev, Y.; Dobreva, E.; Christova, I.; Ivanov, I.N. Genomic Characterization of 16S rRNA Methyltransferase-Producing Enterobacterales Reveals the Emergence of Klebsiella pneumoniae ST6260 Harboring rmtF, rmtB, blaNDM-5, blaOXA-232 and blaSFO-1 Genes in a Cancer Hospital in Bulgaria. Antibiotics 2024, 13, 950. https://doi.org/10.3390/antibiotics13100950
Sabtcheva S, Stoikov I, Georgieva S, Donchev D, Hodzhev Y, Dobreva E, Christova I, Ivanov IN. Genomic Characterization of 16S rRNA Methyltransferase-Producing Enterobacterales Reveals the Emergence of Klebsiella pneumoniae ST6260 Harboring rmtF, rmtB, blaNDM-5, blaOXA-232 and blaSFO-1 Genes in a Cancer Hospital in Bulgaria. Antibiotics. 2024; 13(10):950. https://doi.org/10.3390/antibiotics13100950
Chicago/Turabian StyleSabtcheva, Stefana, Ivan Stoikov, Sylvia Georgieva, Deyan Donchev, Yordan Hodzhev, Elina Dobreva, Iva Christova, and Ivan N. Ivanov. 2024. "Genomic Characterization of 16S rRNA Methyltransferase-Producing Enterobacterales Reveals the Emergence of Klebsiella pneumoniae ST6260 Harboring rmtF, rmtB, blaNDM-5, blaOXA-232 and blaSFO-1 Genes in a Cancer Hospital in Bulgaria" Antibiotics 13, no. 10: 950. https://doi.org/10.3390/antibiotics13100950
APA StyleSabtcheva, S., Stoikov, I., Georgieva, S., Donchev, D., Hodzhev, Y., Dobreva, E., Christova, I., & Ivanov, I. N. (2024). Genomic Characterization of 16S rRNA Methyltransferase-Producing Enterobacterales Reveals the Emergence of Klebsiella pneumoniae ST6260 Harboring rmtF, rmtB, blaNDM-5, blaOXA-232 and blaSFO-1 Genes in a Cancer Hospital in Bulgaria. Antibiotics, 13(10), 950. https://doi.org/10.3390/antibiotics13100950