Phenotypic and Genotypic Profiles of Extended-Spectrum Beta-Lactamase-Producing Multidrug-Resistant Klebsiella pneumoniae in Northeastern Thailand
Abstract
:1. Introduction
2. Results
2.1. Characteristics of the Recovered K. pneumoniae Isolates
2.2. Phenotypic Determination for ESBL-Producing K. pneumoniae Isolates
2.3. Antimicrobial Susceptibility Pattern of ESBL-Producing K. pneumoniae Isolates
2.4. Molecular Characterization of β-Lactamase Genes
2.5. ERIC-PCR Analysis
3. Discussion
4. Materials and Methods
4.1. Bacterial Isolation and Identification
4.2. Phenotypic Detection of ESBL-Producing K. pneumoniae
4.3. Antimicrobial Susceptibility Testing of K. pneumoniae
4.4. DNA Extraction and Quantification
4.5. Molecular Detection of Beta-Lactamase Genes by PCR
4.6. Quality Control
4.7. Enterobacterial Repetitive Intergenic Consensus–Polymerase Chain Reaction (ERIC-PCR)
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Founou, R.C.; Founou, L.L.; Essack, S.Y. Clinical and economic impact of antibiotic resistance in developing countries: A systematic review and meta-analysis. PLoS ONE 2017, 12, e0189621. [Google Scholar] [CrossRef] [PubMed]
- Lim, C.; Takahashi, E.; Hongsuwan, M.; Wuthiekanun, V.; Thamlikitkul, V.; Hinjoy, S.; Day, N.P.J.; Peacock, S.J.; Limmathurotsakul, D. Epidemiology and burden of multidrug-resistant bacterial infection in a developing country. eLife 2016, 5, e18082. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Anes, J.; Devineau, S.; Fanning, S. Klebsiella pneumoniae: Prevalence, Reservoirs, Antimicrobial Resistance, Pathogenicity, and Infection: A Hitherto Unrecognized Zoonotic Bacterium. Foodborne Pathog. Dis. 2021, 18, 63–84. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Gao, Q.; Ma, Y.; Deng, Y.; Li, S.; Shi, N.; Niu, H.; Liu, X.Y.; Cai, J. Causality of Opportunistic Pathogen Klebsiella pneumoniae to Hypertension Development. Hypertension 2022, 79, 2743–2754. [Google Scholar] [CrossRef]
- Odewale, G.; Jibola-Shittu, M.Y.; Ojurongbe, O.; Olowe, R.A.; Olowe, O.A. Genotypic Determination of Extended Spectrum β-Lactamases and Carbapenemase Production in Clinical Isolates of Klebsiella pneumoniae in Southwest Nigeria. Infect. Dis. Rep. 2023, 15, 339–353. [Google Scholar] [CrossRef]
- Yazgan, B.; Türkel, İ.; Güçkan, R.; Kılınç, Ç.; Yıldırım, T. Comparison of biofilm formation and efflux pumps in ESBL and carbapenemase producing Klebsiella pneumoniae. J. Infect. Dev. Ctries. 2018, 12, 156–163. [Google Scholar] [CrossRef]
- Yong, D.; Toleman, M.A.; Giske, C.G.; Cho, H.S.; Sundman, K.; Lee, K.; Walsh, T.R. Characterization of a new metallo-beta-lactamase gene, bla(NDM-1), and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India. Antimicrob. Agents Chemother. 2009, 53, 5046–5054. [Google Scholar] [CrossRef]
- Núñez-Samudio, V.; Pimentel-Peralta, G.; Herrera, M.; Pecchio, M.; Quintero, J.; Landires, I. Molecular Genetic Epidemiology of an Emerging Antimicrobial-Resistant Klebsiella pneumoniae Clone (ST307) Obtained from Clinical Isolates in Central Panama. Antibiotics 2022, 11, 1817. [Google Scholar] [CrossRef]
- Castanheira, M.; Simner, P.J.; Bradford, P.A. Extended-spectrum β-lactamases: An update on their characteristics, epidemiology and detection. JAC-Antimicrob. Resist. 2021, 3, dlab092. [Google Scholar] [CrossRef]
- D’Andrea, M.M.; Arena, F.; Pallecchi, L.; Rossolini, G.M. CTX-M-type β-lactamases: A successful story of antibiotic resistance. Int. J. Med. Microbiol. 2013, 303, 305–317. [Google Scholar] [CrossRef]
- Husna, A.; Rahman, M.M.; Badruzzaman, A.T.M.; Sikder, M.H.; Islam, M.R.; Rahman, M.T.; Alam, J.; Ashour, H.M. Extended-Spectrum β-Lactamases (ESBL): Challenges and Opportunities. Biomedicines 2023, 11, 2937. [Google Scholar] [CrossRef] [PubMed]
- Mazumder, R.; Abdullah, A.; Ahmed, D.; Hussain, A. High Prevalence of blaCTX-M-15 Gene among Extended-Spectrum β-Lactamase-Producing Escherichia coli Isolates Causing Extraintestinal Infections in Bangladesh. Antibiotics 2020, 9, 796. [Google Scholar] [CrossRef] [PubMed]
- Siriphap, A.; Kitti, T.; Khuekankaew, A.; Boonlao, C.; Thephinlap, C.; Thepmalee, C.; Suwannasom, N.; Khoothiam, K. High prevalence of extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae isolates: A 5-year retrospective study at a Tertiary Hospital in Northern Thailand. Front. Cell. Infect. Microbiol. 2022, 12, 955774. [Google Scholar] [CrossRef] [PubMed]
- Kiratisin, P.; Apisarnthanarak, A.; Laesripa, C.; Saifon, P. Molecular characterization and epidemiology of extended-spectrum-beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae isolates causing health care-associated infection in Thailand, where the CTX-M family is endemic. Antimicrob. Agents Chemother. 2008, 52, 2818–2824. [Google Scholar] [CrossRef]
- Sawatwong, P.; Sapchookul, P.; Whistler, T.; Gregory, C.J.; Sangwichian, O.; Makprasert, S.; Jorakate, P.; Srisaengchai, P.; Thamthitiwat, S.; Promkong, C.; et al. High Burden of Extended-Spectrum β-Lactamase-Producing Escherichia coli and Klebsiella pneumoniae Bacteremia in Older Adults: A Seven-Year Study in Two Rural Thai Provinces. Am. J. Trop. Med. Hyg. 2019, 100, 943–951. [Google Scholar] [CrossRef]
- Ko, W.C.; Stone, G.G. In vitro activity of ceftazidime-avibactam and comparators against Gram-negative bacterial isolates collected in the Asia-Pacific region as part of the INFORM program (2015–2017). Ann. Clin. Microbiol. Antimicrob. 2020, 19, 14. [Google Scholar] [CrossRef]
- Elsayed, A.G.A.; Badr, D.F.; El Kheir, N.Y.A.; Zaki, M.E.S.; Mossad, A.E.M.; Mahmoud, E.M.F. Prevalence of extended-spectrum beta-lactamase and molecular detection of blaTEM, blaSHV, and blaCTX-M genotypes among gram-negative Bacilli isolates from hospital acquired infections in pediatrics, one institutional study. Ital. J. Pediatr. 2024, 50, 31. [Google Scholar] [CrossRef]
- Jesumirhewe, C.; Springer, B.; Allerberger, F.; Ruppitsch, W. Whole genome sequencing of extended-spectrum β-lactamase genes in Enterobacteriaceae isolates from Nigeria. PLoS ONE 2020, 15, e0231146. [Google Scholar] [CrossRef]
- Nkengkana, O.A.; Founou, R.C.; Founou, L.L.; Dimani, B.D.; Koudoum, P.L.; Zemtsa, J.R.; Mbossi, A.; Mawout, C.S.; Tegang, L.T.; Noubom, M. Phenotypic and genotypic characterization of multidrug resistant and extended-spectrum β-lactamase-producing Enterobacterales isolated from clinical samples in the western region in Cameroon. BMC Infect. Dis. 2023, 23, 819. [Google Scholar] [CrossRef]
- Moges, F.; Gizachew, M.; Dagnew, M.; Amare, A.; Sharew, B.; Eshetie, S.; Abebe, W.; Million, Y.; Feleke, T.; Tiruneh, M. Multidrug resistance and extended-spectrum beta-lactamase producing Gram-negative bacteria from three Referral Hospitals of Amhara region, Ethiopia. Ann. Clin. Microbiol. Antimicrob. 2021, 20, 16. [Google Scholar] [CrossRef]
- Bobbadi, S.; Bobby, M.N.; Chinnam, B.K.; Reddy, P.N.; Kandhan, S. Phenotypic and genetic screening of Klebsiella pneumoniae isolates from human UTI patients for beta-lactamases and their genetic diversity analysis by ERIC and REP PCRs. Braz. J. Microbiol. [Publ. Braz. Soc. Microbiol.] 2023, 54, 1723–1736. [Google Scholar] [CrossRef] [PubMed]
- Manandhar, S.; Zellweger, R.M.; Maharjan, N.; Dongol, S.; Prajapati, K.G.; Thwaites, G.; Basnyat, B.; Dixit, S.M.; Baker, S.; Karkey, A. A high prevalence of multi-drug resistant Gram-negative bacilli in a Nepali tertiary care hospital and associated widespread distribution of Extended-Spectrum Beta-Lactamase (ESBL) and carbapenemase-encoding genes. Ann. Clin. Microbiol. Antimicrob. 2020, 19, 48. [Google Scholar] [CrossRef] [PubMed]
- Oka, K.; Tetsuka, N.; Morioka, H.; Iguchi, M.; Kawamura, K.; Hayashi, K.; Yanagiya, T.; Morokuma, Y.; Watari, T.; Kiyosuke, M.; et al. Genetic and epidemiological analysis of ESBL-producing Klebsiella pneumoniae in three Japanese university hospitals. J. Infect. Chemother. Off. J. Jpn. Soc. Chemother. 2022, 28, 1286–1294. [Google Scholar] [CrossRef] [PubMed]
- Romyasamit, C.; Sornsenee, P.; Kawila, S.; Saengsuwan, P. Extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae: Insights from a tertiary hospital in Southern Thailand. Microbiol. Spectr. 2024, 12, e00213-24. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, I.; Carvalho, J.A.; Martínez-Álvarez, S.; Sadi, M.; Capita, R.; Alonso-Calleja, C.; Rabbi, F.; Dapkevicius, M.d.L.N.E.; Igrejas, G.; Torres, C.; et al. Characterization of ESBL-Producing Escherichia coli and Klebsiella pneumoniae Isolated from Clinical Samples in a Northern Portuguese Hospital: Predominance of CTX-M-15 and High Genetic Diversity. Microorganisms 2021, 9, 1914. [Google Scholar] [CrossRef]
- Ibrahim, Y.; Sani, Y.; Saleh, Q.; Saleh, A.; Hakeem, G. Phenotypic Detection of Extended Spectrum Beta lactamase and Carbapenemase Co-producing Clinical Isolates from Two Tertiary Hospitals in Kano, North West Nigeria. Ethiop. J. Health Sci. 2017, 27, 3–10. [Google Scholar] [CrossRef]
- Kateregga, J.N.; Kantume, R.; Atuhaire, C.; Lubowa, M.N.; Ndukui, J.G. Phenotypic expression and prevalence of ESBL-producing Enterobacteriaceae in samples collected from patients in various wards of Mulago Hospital, Uganda. BMC Pharmacol. Toxicol. 2015, 16, 14. [Google Scholar] [CrossRef]
- Obeng-Nkrumah, N.; Twum-Danso, K.; Krogfelt, K.A.; Newman, M.J. High levels of extended-spectrum beta-lactamases in a major teaching hospital in Ghana: The need for regular monitoring and evaluation of antibiotic resistance. Am. J. Trop. Med. Hyg. 2013, 89, 960–964. [Google Scholar] [CrossRef]
- Denisuik, A.J.; Karlowsky, J.A.; Adam, H.J.; Baxter, M.R.; Lagacé-Wiens, P.R.S.; Mulvey, M.R.; Hoban, D.J.; Zhanel, G.G. Dramatic rise in the proportion of ESBL-producing Escherichia coli and Klebsiella pneumoniae among clinical isolates identified in Canadian hospital laboratories from 2007 to 2016. J. Antimicrob. Chemother. 2019, 74, IV64–IV71. [Google Scholar] [CrossRef]
- Fils, P.E.L.; Cholley, P.; Gbaguidi-Haore, H.; Hocquet, D.; Sauget, M.; Bertrand, X. ESBL-producing Klebsiella pneumoniae in a University hospital: Molecular features, diffusion of epidemic clones and evaluation of cross-transmission. PLoS ONE 2021, 16, e0247875. [Google Scholar] [CrossRef]
- Al-Marzooq, F.; Mohd Yusof, M.Y.; Tay, S.T. Molecular Analysis of Antibiotic Resistance Determinants and Plasmids in Malaysian Isolates of Multidrug Resistant Klebsiella pneumoniae. PLoS ONE 2015, 10, e0133654. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, A.B.; Anwar, K.A. Phenotypic and genotypic detection of extended spectrum beta lactamase enzyme in Klebsiella pneumoniae. PLoS ONE 2022, 17, e0267221. [Google Scholar] [CrossRef] [PubMed]
- Müller-Schulte, E.; Tuo, M.N.; Akoua-Koffi, C.; Schaumburg, F.; Becker, S.L. High prevalence of ESBL-producing Klebsiella pneumoniae in clinical samples from central Côte d’Ivoire. Int. J. Infect. Dis. IJID Off. Publ. Int. Soc. Infect. Dis. 2020, 91, 207–209. [Google Scholar] [CrossRef] [PubMed]
- Donkor, E.S.; Muhsen, K.; Johnson, S.A.M.; Kotey, F.C.N.; Dayie, N.T.K.D.; Tetteh-Quarcoo, P.B.; Tette, E.M.A.; Osei, M.M.; Egyir, B.; Nii-Trebi, N.I.; et al. Multicenter Surveillance of Antimicrobial Resistance among Gram-Negative Bacteria Isolated from Bloodstream Infections in Ghana. Antibiotics 2023, 12, 255. [Google Scholar] [CrossRef] [PubMed]
- Ghenea, A.E.; Zlatian, O.M.; Cristea, O.M.; Ungureanu, A.; Mititelu, R.R.; Balasoiu, A.T.; Vasile, C.M.; Salan, A.I.; Iliuta, D.; Popescu, M.; et al. TEM,CTX-M,SHV Genes in ESBL-Producing Escherichia coli and Klebsiella pneumoniae Isolated from Clinical Samples in a County Clinical Emergency Hospital Romania-Predominance of CTX-M-15. Antibiotics 2022, 11, 503. [Google Scholar] [CrossRef]
- Desta, K.; Woldeamanuel, Y.; Azazh, A.; Mohammod, H.; Desalegn, D.; Shimelis, D.; Gulilat, D.; Lamisso, B.; Makonnen, E.; Worku, A.; et al. High Gastrointestinal Colonization Rate with Extended-Spectrum β-Lactamase-Producing Enterobacteriaceae in Hospitalized Patients: Emergence of Carbapenemase-Producing K. pneumoniae in Ethiopia. PLoS ONE 2016, 11, e0161685. [Google Scholar] [CrossRef]
- Tola, M.A.; Abera, N.A.; Gebeyehu, Y.M.; Dinku, S.F.; Tullu, K.D. High prevalence of extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae fecal carriage among children under five years in Addis Ababa, Ethiopia. PLoS ONE 2021, 16, e0258117. [Google Scholar] [CrossRef]
- Duru, C.; Olanipekun, G.; Odili, V.; Kocmich, N.; Rezac, A.; Ajose, T.O.; Medugu, N.; Umoru, D.; Onuchukwu, C.; Munir, H.; et al. Molecular characterization of invasive Enterobacteriaceae from pediatric patients in Central and Northwestern Nigeria. PLoS ONE 2020, 15, e0230037. [Google Scholar] [CrossRef]
- Watanabe, N.; Watari, T.; Otsuka, Y.; Ito, M.; Yamagata, K.; Fujioka, M. Antimicrobial resistance and AmpC production in ESBL-producing Klebsiella pneumoniae and Klebsiella quasipneumoniae: A retrospective study in Japanese clinical isolates. PLoS ONE 2024, 19, e0303353. [Google Scholar] [CrossRef]
- Da Nogueira, K.S.; Conte, D.; Maia, F.V.; Dalla-Costa, L.M. Distribution of extended-spectrum β-lactamase types in a Brazilian tertiary hospital. Rev. Soc. Bras. Med. Trop. 2015, 48, 162–169. [Google Scholar] [CrossRef]
- Zhang, J.; Zhou, K.; Zheng, B.; Zhao, L.; Shen, P.; Ji, J.; Wei, Z.; Li, L.; Zhou, J.; Xiao, Y. High Prevalence of ESBL-Producing Klebsiella pneumoniae Causing Community-Onset Infections in China. Front. Microbiol. 2016, 7, 1830. [Google Scholar] [CrossRef] [PubMed]
- Castanheira, M.; Kimbrough, J.H.; Devries, S.; Mendes, R.E.; Sader, H.S. Trends of β-Lactamase Occurrence among Escherichia coli and Klebsiella pneumoniae in United States Hospitals during a 5-Year Period and Activity of Antimicrobial Agents against Isolates Stratified by β-Lactamase Type. Open Forum Infect. Dis. 2023, 10, ofad038. [Google Scholar] [CrossRef] [PubMed]
- Tetteh, F.K.M.; Ablordey, A.; Obeng-Nkrumah, N.; Opintan, J.A. Extended-spectrum beta-lactamases in clinical isolates of Escherichia coli and Klebsiella pneumoniae recovered from patients at the Tamale Teaching Hospital, Ghana. PLoS ONE 2024, 19, e0300596. [Google Scholar] [CrossRef] [PubMed]
- Anudit, C.; Saraisuwan, P.; Kimterng, C.; Puangmanee, C.; Bamphensin, N.; Kerdsin, A. Dissemination of Urinary Escherichia coli Phylogroup B2 in Provincial and Community Hospitals in Uthai Thani, Central Thailand. Jpn. J. Infect. Dis. 2024, 77, 220–226. [Google Scholar] [CrossRef] [PubMed]
- Abbott, S. Klebsiella, Enterobacter, Citrobacter, Serratia, Plesiomonas, and Other Enterobacteriaceae, 10th ed.; Versalovic, J., Carroll, K.C., Funke, G., Jorgensen, J.H., Landry, M.L., Warnock, D.W., Eds.; ASM Press: Washington, DC, USA, 2011. [Google Scholar]
- Hatrongjit, R.; Chopjitt, P.; Boueroy, P.; Kerdsin, A. Multiplex PCR Detection of Common Carbapenemase Genes and Identification of Clinically Relevant Escherichia coli and Klebsiella pneumoniae Complex. Antibiotics 2022, 12, 76. [Google Scholar] [CrossRef]
- Monstein, H.J.; Östholm-Balkhed, Å.; Nilsson, M.V.; Nilsson, M.; Dornbusch, K.; Nilsson, L.E. Multiplex PCR amplification assay for the detection of blaSHV, blaTEM and blaCTX-M genes in Enterobacteriaceae. APMIS Acta Pathol. Microbiol. Immunol. Scand. 2007, 115, 1400–1408. [Google Scholar] [CrossRef]
- Woodford, N.; Fagan, E.J.; Ellington, M.J. Multiplex PCR for rapid detection of genes encoding CTX-M extended-spectrum (beta)-lactamases. J. Antimicrob. Chemother. 2006, 57, 154–155. [Google Scholar] [CrossRef]
- Versalovic, J.; Koeuth, T.; Lupski, J.R.; Plaza, O.B. 1nstitute for Molecular Genetics and department of Pediatrics, Baylor College of Medicine. Cell 1991, 19, 6823–6831. [Google Scholar]
- Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing, M100, 32nd ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2023. [Google Scholar]
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. Off. Publ. Eur. Soc. Clin. Microbiol. Infect. Dis. 2012, 18, 268–281. [Google Scholar] [CrossRef]
- Hampl, V.; Pavlíček, A.; Flegr, J. Construction and bootstrap analysis of DNA fingerprinting-based phylogenetic trees with the freeware program FreeTree: Application to trichomonad parasites. Int. J. Syst. Evol. Microbiol. 2001, 51, 731–735. [Google Scholar] [CrossRef]
- Letunic, I.; Bork, P. Interactive Tree Of Life (iTOL) v5: An online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 2021, 49, W293–W296. [Google Scholar] [CrossRef] [PubMed]
Pattern Number | Antimicrobial Resistance Patterns | Number of Isolates | Type of Resistance | |
---|---|---|---|---|
1 | AP+CTX+CAZ+C+TM+ATH+CIP | 1 | MDR | |
2 | AP+CTX+CAZ+CIP | 1 | MDR | |
3 | AP+CTX+CAZ+IMP+MEM+T+ATH+NI+CIP | 1 | MDR | |
4 | AP+CTX+CAZ+T+TM+ATH+NI+CIP | 1 | MDR | |
5 | AP+CTX+FOT+C+TM+ATH+NI+CIP | 1 | MDR | |
6 | AP+CTX+T+TM+ATH+NI+CIP | 1 | MDR | |
7 | AP+PTZ+CTX+CAZ+C+T+TM+ATH+NI+CIP | 1 | MDR | |
8 | AP+PTZ+CTX+CAZ+GM+C+CIP | 1 | MDR | |
9 | AP+PTZ+CTX+CAZ+GM+C+T+TM+ATH+CIP | 1 | MDR | |
10 | AP+PTZ+CTX+CAZ+GM+C+T+TM+ATH+NI+CIP | 1 | XDR | |
11 | AP+PTZ+CTX+CAZ+GM+C+TM+ATH+CIP | 7 | MDR | |
12 | AP+PTZ+CTX+CAZ+GM+C+TM+ATH+NI+CIP | 1 | MDR | |
13 | AP+PTZ+CTX+CAZ+GM+T+ATH+NI+CIP | 1 | MDR | |
14 | AP+PTZ+CTX+CAZ+GM+TM+ATH+CIP | 1 | MDR | |
15 | AP+PTZ+CTX+CAZ+IMP+MEM+ATH+NI+CIP | 1 | MDR | |
16 | AP+PTZ+CTX+CAZ+IMP+MEM+C+ATH+NI+CIP | 2 | MDR | |
17 | AP+PTZ+CTX+CAZ+IMP+MEM+C+T+ATH+NI+CIP | 1 | MDR | |
18 | AP+PTZ+CTX+CAZ+IMP+MEM+C+T+TM+ATH+NI+CIP | 2 | XDR | |
19 | AP+PTZ+CTX+CAZ+IMP+MEM+C+TM+ATH+NI+CIP | 1 | MDR | |
20 | AP+PTZ+CTX+CAZ+IMP+MEM+GM+C+T+TM+ATH+NI+CIP | 1 | XDR | |
21 | AP+PTZ+CTX+CAZ+IMP+MEM+T+TM+ATH+CIP | 3 | MDR | |
22 | AP+PTZ+CTX+CAZ+IMP+MEM+T+TM+ATH+NI+CIP | 1 | MDR | |
23 | AP+PTZ+CTX+CAZ+T | 1 | MDR | |
24 | AP+PTZ+CTX+CAZ+T+TM+ATH+CIP | 4 | MDR | |
25 | AP+PTZ+CTX+CAZ+T+TM+ATH+NI+CIP | 3 | MDR | |
26 | AP+PTZ+CTX+CAZ+TM+ATH+NI+CIP | 1 | MDR | |
27 | AP+PTZ+CTX+FOT+C+TM+CIP | 1 | MDR | |
28 | AP+PTZ+CTX+GM+C+T+TM+ATH+NI+CIP | 4 | XDR | |
29 | AP+PTZ+CTX+GM+T+ATH+NI+CIP | 1 | MDR | |
30 | AP+PTZ+CTX+GM+TM+ATH+CIP | 1 | MDR | |
31 | AP+PTZ+CTX+IMP+MEM+TM+ATH+NI+CIP | 1 | MDR | |
32 | AP+PTZ+CTX+T+TM+ATH+CIP | 1 | MDR | |
33 | AP+PTZ+CTX+T+TM+ATH+NI+CIP | 3 | MDR | |
34 | AP+PTZ+CTX+TM+ATH+NI+CIP | 1 | MDR | |
Total | 54 | 54 (100) | 8 (14.81) |
ESBL Gene Pattern | ESBL-Producing K. pneumoniae n (%) |
---|---|
blaTEM | 2 (3.7) |
blaCTX-M1 | 1 (1.9) |
blaTEM+blaSHV | 1 (1.9) |
blaTEM+blaCTX-M | 4 (7.4) |
blaCTX-M+blaSHV | 23 (42.6) |
blaTEM+blaCTX-M1+blaSHV | 23 (42.6) |
Total | 54 |
Total blaTEM | 30 (55.5) |
Total blaCTX-M | 51 (94.4) |
Total blaSHV | 47 (87.0) |
Gene | Primer Sequence (5′-3-) | Product Size (bp) | Reference |
---|---|---|---|
K. pneumoniae | F: CGGATCCTGGTCATTAAGCTG | 217 | [46] |
R: ATTGCATCTTCAGCTGATACCTTT | |||
blaTEM | F: ACGCTCACCGGCTCCAGATTAT | 445 | [47] |
R: TCGCCGCATACACTATTCTCAGA | |||
blaCTX-M | F: ATGTGAGYACCAGTAARGTGAT | 593 | |
R: TGGGTRAARTARGTSACCAGAAT | |||
blaSHV | F: TGCTTTGTTATTCGGGCCAA | 747 | |
R: ATGCGTTATATTCGCTGTG | |||
blaCTX-M-1 | F: AAAAATCACTGCGCCAGTTC | 415 | [48] |
R: AGCTTATTCATCGCCACGTT | |||
blaCTX-M-2 | F: CGACGCTACCCCTGCTAT T | 552 | |
R: CCAGCGTCAGATTTTTCAGG | |||
blaCTX-M-8 | F: TCGCGTTAAGCGGATGATGC | 666 | |
R: AACCCACGATGTGGGTAGC | |||
blaCTX-M-9 | F: CAAAGAGAGTGCAACGGATG | 205 | |
R: ATTGGAAAGCGTTCATCACC | |||
blaCTX-M-25 | F: GCACGATGACATTCGGG | 327 | |
R: AACCCACGATGTGGGTAGC | |||
ERIC | F: AAGTAAGTGACTGGGGTGAGCG | [49] | |
R: ATGTAAGCTCCTGGGGATTCAA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chaisaeng, S.; Phetburom, N.; Kasemsiri, P.; Putthanachote, N.; Wangnadee, N.; Boueroy, P.; Kerdsin, A.; Chopjitt, P. Phenotypic and Genotypic Profiles of Extended-Spectrum Beta-Lactamase-Producing Multidrug-Resistant Klebsiella pneumoniae in Northeastern Thailand. Antibiotics 2024, 13, 917. https://doi.org/10.3390/antibiotics13100917
Chaisaeng S, Phetburom N, Kasemsiri P, Putthanachote N, Wangnadee N, Boueroy P, Kerdsin A, Chopjitt P. Phenotypic and Genotypic Profiles of Extended-Spectrum Beta-Lactamase-Producing Multidrug-Resistant Klebsiella pneumoniae in Northeastern Thailand. Antibiotics. 2024; 13(10):917. https://doi.org/10.3390/antibiotics13100917
Chicago/Turabian StyleChaisaeng, Sumontha, Nattamol Phetburom, Pachara Kasemsiri, Nuntiput Putthanachote, Naowarut Wangnadee, Parichart Boueroy, Anusak Kerdsin, and Peechanika Chopjitt. 2024. "Phenotypic and Genotypic Profiles of Extended-Spectrum Beta-Lactamase-Producing Multidrug-Resistant Klebsiella pneumoniae in Northeastern Thailand" Antibiotics 13, no. 10: 917. https://doi.org/10.3390/antibiotics13100917
APA StyleChaisaeng, S., Phetburom, N., Kasemsiri, P., Putthanachote, N., Wangnadee, N., Boueroy, P., Kerdsin, A., & Chopjitt, P. (2024). Phenotypic and Genotypic Profiles of Extended-Spectrum Beta-Lactamase-Producing Multidrug-Resistant Klebsiella pneumoniae in Northeastern Thailand. Antibiotics, 13(10), 917. https://doi.org/10.3390/antibiotics13100917