Tailored Pre-Operative Antibiotic Prophylaxis to Prevent Post-Operative Surgical Site Infections in General Surgery
Abstract
:1. Introduction
2. The Rates and Risks of Reoperation in General Surgery
3. The Link between Recurrent Post-Operative Infections
4. Tailored Pre-Operative Antibiotic Prophylaxis
4.1. Precedent in Non-Post-Operative Infections
4.2. Pre-Operative Screening and Tailored Prophylaxis
4.3. Tailored Prophylaxis According to Institutional Data
4.4. Tailored Prophylaxis According to Individual Cultures
4.5. Review of Tailored Prophylaxis
4.6. The Pathogenesis Underlying Recurrent Post-Operative Infections
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Arias, E.; Tejada-Vera, B.; Kochanek, K.D.; Ahmad, F.B. Provisional Life Expectancy Estimates for 2021, Vital Statistics Rapid Release; No 23. National Center for Health Statistics. 31 August 2022. Available online: https://stacks.cdc.gov/view/cdc/118999 (accessed on 17 December 2023).
- Bureau of the Census. National Health Expenditure Summary, Including Share of GDP, CY 1960–2021. 2022. Available online: https://www.cms.gov/data-research/statistics-trends-and-reports/national-health-expenditure-data/nhe-fact-sheet (accessed on 17 December 2023).
- Kaiser Family Foundation. Snapshots: Comparing Projected Growth in Health Care Expenditures and the Economy. 17 April 2006. Available online: https://www.kff.org/health-costs/issue-brief/snapshots-comparing-projected-growth-in-health-care-expenditures-and-the-economy/ (accessed on 17 December 2023).
- Zijdeman, R.; Ribiera de Silva, F. Life Expectancy at Birth (Total). 2015. Available online: https://datasets.iisg.amsterdam/dataset.xhtml?persistentId=hdl:10622/LKYT53 (accessed on 17 December 2023).
- Barbieri, M.; Wilmoth, J.R.; Shkolnikov, V.M.; Glei, D.; Jasilionis, D.; Jdanov, D.; Boe, C.; Riffe, T.; Grigoriev, P.; Winant, C. Data Resource Profile: The Human Mortality Database (HMD). Int. J. Epidemiol. 2015, 44, 1549–1556. [Google Scholar] [CrossRef] [PubMed]
- Rose, J.; Weiser, T.G.; Hider, P.; Wilson, L.; Gruen, R.L.; Bickler, S.W. Estimated need for surgery worldwide based on prevalence of diseases: A modelling strategy for the WHO Global Health Estimate. Lancet Glob. Health 2015, 3, S13–S20. [Google Scholar] [CrossRef] [PubMed]
- Lee, P.H.U.; Gawande, A.A. The number of surgical procedures in an American lifetime in 3 states. J. Am. Coll. Surg. 2008, 207, S75. [Google Scholar] [CrossRef]
- Weiser, T.G.; Regenbogen, S.E.; Thompson, K.D.; Haynes, A.B.; Lipsitz, S.R.; Berry, W.R.; Gawande, A.A. An estimation of the global volume of surgery: A modelling strategy based on available data. Lancet 2008, 372, 139–144. [Google Scholar] [CrossRef] [PubMed]
- Olshansky, S.J.; Goldman, D.P.; Zheng, Y.; Rowe, J.W. Aging in America in the Twenty-first Century: Demographic Forecasts from the MacArthur Foundation Research Network on an Aging Society. Milbank Q. 2009, 87, 842–862. [Google Scholar] [CrossRef]
- Kerr, R.S. Surgery in the 2020s: Implications of advancing technology for patients and the workforce. Future Healthc. J. 2020, 7, 46–49. [Google Scholar] [CrossRef]
- Kwok, A.C.; Semel, M.E.; Lipsitz, S.R.; Bader, A.M.; Barnato, A.E.; Gawande, A.A.; Jha, A.K. The intensity and variation of surgical care at the end of life: A retrospective cohort study. Lancet 2011, 378, 1408–1413. [Google Scholar] [CrossRef]
- Barnato, A.E.; McClellan, M.B.; Kagay, C.R.; Garber, A.M. Trends in Inpatient Treatment Intensity among Medicare Beneficiaries at the End of Life. Health Serv. Res. 2004, 39, 363–376. [Google Scholar] [CrossRef]
- Li, A.; Zhu, H.; Zhou, H.; Liu, J.; Deng, Y.; Liu, Q.; Guo, C. Unplanned surgical reoperations as a quality indicator in pediatric tertiary general surgical specialties: Associated risk factors and hospitalization, a retrospective case-control analysis. Medicine 2020, 99, e19982. [Google Scholar] [CrossRef]
- Kassahun, W.T.; Mehdorn, M.; Wagner, T.C. The effects of reoperation on surgical outcomes following surgery for major abdominal emergencies. A retrospective cohort study. Int. J. Surg. 2019, 72, 235–240. [Google Scholar] [CrossRef]
- Jukić, M.; Biuk, I.; Pogorelić, Z. The Incidence and Causes of Unplanned Reoperations as a Quality Indicator in Pediatric Surgery. Children 2022, 9, 106. [Google Scholar] [CrossRef] [PubMed]
- Michaels, A.D.; Mullen, M.G.; Guidry, C.A.; Krebs, E.D.; Turrentine, F.E.; Hedrick, T.L.; Friel, C.M. Unplanned Reoperation Following Colorectal Surgery: Indications and Operations. J. Gastrointest. Surg. 2017, 21, 1480–1485. [Google Scholar] [CrossRef] [PubMed]
- Birkmeyer, J.D. Is Unplanned Return to the Operating Room a Useful Quality Indicator in General Surgery? Arch. Surg. 2001, 136, 405–411. [Google Scholar] [CrossRef]
- Morris, A.M.; Baldwin, L.M.; Matthews, B.; Dominitz, J.A.; Barlow, W.E.; Dobie, S.A.; Billingsley, K.G. Reoperation as a quality indicator in colorectal surgery: A population-based analysis. Ann. Surg. 2007, 245, 73–79. [Google Scholar] [CrossRef]
- Ricciardi, R.; Roberts, P.L.; Read, T.E.; Marcello, P.W.; Hall, J.F.; Schoetz, D.J. How often do patients return to the operating room after colorectal resections? Color. Dis. 2012, 14, 515–521. [Google Scholar] [CrossRef]
- Beck, D.E.; Opelka, F.G.; Bailey, H.R.; Rauh, S.M.; Pashos, C.L. Incidence of small-bowel obstruction and adhesiolysis after open colorectal and general surgery. Dis. Colon. Rectum. 1999, 42, 241–248. [Google Scholar] [CrossRef]
- Strik, C.; Stommel, M.W.J.; Schipper, L.J.; Van Goor, H.; Ten Broek, R.P.G. Risk factors for future repeat abdominal surgery. Langenbeck’s Arch. Surg. 2016, 401, 829–837. [Google Scholar] [CrossRef] [PubMed]
- Colon Cancer Laparoscopic or Open Resection Study Group. Survival after laparoscopic surgery versus open surgery for colon cancer: Long-term outcome of a randomised clinical trial. Lancet Oncol. 2009, 10, 44–52. [Google Scholar] [CrossRef]
- Fazio, V.W.; Cohen, Z.; Fleshman, J.W.; van Goor, H.; Bauer, J.J.; Wolff, B.G.; Corman, M.; Beart, R.W., Jr.; Wexner, S.D.; Becker, J.M.; et al. Reduction in adhesive small-bowel obstruction by Seprafilm adhesion barrier after intestinal resection. Dis. Colon. Rectum 2006, 49, 1–11. [Google Scholar] [CrossRef]
- ten Broek, R.P.; Strik, C.; Issa, Y.; Bleichrodt, R.P.; van Goor, H. Adhesiolysis-related morbidity in abdominal surgery. Ann. Surg. 2013, 258, 98–106. [Google Scholar] [CrossRef]
- Perencevich, E.N.; Sands, K.E.; Cosgrove, S.E.; Guadagnoli, E.; Meara, E.; Platt, R. Health and Economic Impact of Surgical Site Infections Diagnosed after Hospital Discharge. Emerg. Infect. Dis. 2003, 9, 196–203. [Google Scholar] [CrossRef] [PubMed]
- Magill, S.S.; Edwards, J.R.; Bamberg, W.; Beldavs, Z.G.; Dumyati, G.; Kainer, M.A.; Lynfield, R.; Maloney, M.; McAllister-Hollod, L.; Nadle, J.; et al. Multistate Point-Prevalence Survey of Health Care–Associated Infections. N. Engl. J. Med. 2014, 370, 1198–1208. [Google Scholar] [CrossRef]
- Wick, E.C.; Vogel, J.D.; Church, J.M.; Remzi, F.; Fazio, V.W. Surgical site infections in a “high outlier” institution: Are colorectal surgeons to blame? Dis. Colon. Rectum 2009, 52, 374–379. [Google Scholar] [CrossRef] [PubMed]
- Merkow, R.P.; Ju, M.H.; Chung, J.W.; Hall, B.L.; Cohen, M.E.; Williams, M.V.; Tsai, T.C.; Ko, C.Y.; Bilimoria, K.Y. Underlying reasons associated with hospital readmission following surgery in the United States. JAMA 2015, 313, 483–495. [Google Scholar] [CrossRef] [PubMed]
- de Lissovoy, G.; Fraeman, K.; Hutchins, V.; Murphy, D.; Song, D.; Vaughn, B.B. Surgical site infection: Incidence and impact on hospital utilization and treatment costs. Am. J. Infect. Control 2009, 37, 387–397. [Google Scholar] [CrossRef] [PubMed]
- Mangram, A.J.; Horan, T.C.; Pearson, M.L.; Silver, L.C.; Jarvis, W.R. Guideline for prevention of surgical site infection, 1999. Hospital Infection Control Practices Advisory Committee. Infect Control Hosp. Epidemiol. 1999, 20, 250–278. [Google Scholar] [CrossRef] [PubMed]
- Owens, C.D.; Stoessel, K. Surgical site infections: Epidemiology, microbiology and prevention. J. Hosp. Infect. 2008, 70 (Suppl. S2), 3–10. [Google Scholar] [CrossRef]
- Olson, M.M.; Lee, J.T., Jr. Continuous, 10-year wound infection surveillance. Results, advantages, and unanswered questions. Arch. Surg. 1990, 125, 794–803. [Google Scholar] [CrossRef]
- Foschi, D.; Yakushkina, A.O.; Cammarata, F.; Lamperti, G.; Colombo, F.; Rimoldi, S.; Antinori, S.; Sampietro, G.M. Surgical site infections caused by multi-drug resistant organisms: A case–control study in general surgery. Updates Surg. 2022, 74, 1763–1771. [Google Scholar] [CrossRef]
- Pinchera, B.; Buonomo, A.R.; Schiano Moriello, N.; Scotto, R.; Villari, R.; Gentile, I. Update on the Management of Surgical Site Infections. Antibiotics 2022, 11, 1608. [Google Scholar] [CrossRef]
- Van Walraven, C.; Musselman, R. The Surgical Site Infection Risk Score (SSIRS): A Model to Predict the Risk of Surgical Site Infections. PLoS ONE 2013, 8, e67167. [Google Scholar] [CrossRef] [PubMed]
- Gaynes, R.P.; Culver, D.H.; Horan, T.C.; Edwards, J.R.; Richards, C.; Tolson, J.S. Surgical Site Infection (SSI) Rates in the United States, 1992–1998: The National Nosocomial Infections Surveillance System Basic SSI Risk Index. Clin. Infect. Dis. 2001, 33, S69–S77. [Google Scholar] [CrossRef]
- Davis, J.M.; Wolff, B.; Cunningham, T.F.; Drusin, L.; Dineen, P. Delayed wound infection. An 11-year survey. Arch. Surg. 1982, 117, 113–117. [Google Scholar] [CrossRef] [PubMed]
- Sampsel, J.W. Delayed and recurring infection in postoperative abdominal wounds. Am. J. Surg. 1976, 132, 316–319. [Google Scholar] [CrossRef]
- Houck, J.P.; Rypins, E.B.; Sarfeh, I.J.; Juler, G.L.; Shimoda, K.J. Repair of incisional hernia. Surg. Gynecol. Obs. 1989, 169, 397–399. [Google Scholar]
- Liang, M.K.; Li, L.T.; Nguyen, M.T.; Berger, R.L.; Hicks, S.C.; Kao, L.S. Abdominal reoperation and mesh explantation following open ventral hernia repair with mesh. Am. J. Surg. 2014, 208, 670–676. [Google Scholar] [CrossRef] [PubMed]
- Baucom, R.B.; Ousley, J.; Oyefule, O.O.; Stewart, M.K.; Phillips, S.E.; Browman, K.K.; Sharp, K.W.; Holzman, M.D.; Poulose, B.K. Evaluation of long-term surgical site occurrences in ventral hernia repair: Implications of preoperative site independent MRSA infection. Hernia 2016, 20, 701–710. [Google Scholar] [CrossRef]
- Dipp Ramos, R.; O’Brien, W.J.; Gupta, K.; Itani, K.M.F. Re-Infection after Explantation of Infected Hernia Mesh: Are the Same Micro-Organisms Involved? Surg. Infect. 2021, 22, 1077–1080. [Google Scholar] [CrossRef]
- Ventral Hernia Working, G.; Breuing, K.; Butler, C.E.; Ferzoco, S.; Franz, M.; Hultman, C.S.; Kilbridge, J.F.; Rosen, M.; Silverman, R.P.; Vargo, D. Incisional ventral hernias: Review of the literature and recommendations regarding the grading and technique of repair. Surgery 2010, 148, 544–558. [Google Scholar] [CrossRef]
- Faraday, N.; Rock, P.; Lin, E.E.; Perl, T.M.; Carroll, K.; Stierer, T.; Robarts, P.; McFillin, A.; Ross, T.; Shah, A.S.; et al. Past history of skin infection and risk of surgical site infection after elective surgery. Ann. Surg. 2013, 257, 150–154. [Google Scholar] [CrossRef]
- Cohen, M.E.; Salmasian, H.; Li, J.; Liu, J.; Zachariah, P.; Wright, J.D.; Freedberg, D.E. Surgical Antibiotic Prophylaxis and Risk for Postoperative Antibiotic-Resistant Infections. J. Am. Coll. Surg. 2017, 225, 631–638.e633. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, W.J.; Gupta, K.; Itani, K.M.F. Association of Postoperative Infection with Risk of Long-term Infection and Mortality. JAMA Surg. 2020, 155, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Guidry, C.A.; Shah, P.M.; Dietch, Z.C.; Elwood, N.R.; Krebs, E.D.; Mehaffey, J.H.; Sawyer, R.G. Recent Anti-Microbial Exposure Is Associated with More Complications after Elective Surgery. Surg. Infect. 2018, 19, 473–479. [Google Scholar] [CrossRef] [PubMed]
- Guidry, C.A.; Sawyer, R.G. Prevalence of Recent Antimicrobial Exposure among Elective Surgical Patients. Surg. Infect. 2017, 18, 799–802. [Google Scholar] [CrossRef] [PubMed]
- Riccio, L.M.; Popovsky, K.A.; Hranjec, T.; Politano, A.D.; Rosenberger, L.H.; Tura, K.C.; Sawyer, R.G. Association of Excessive Duration of Antibiotic Therapy for Intra-Abdominal Infection with Subsequent Extra-Abdominal Infection and Death: A Study of 2552 Consecutive Infections. Surg. Infect. 2014, 15, 417–424. [Google Scholar] [CrossRef]
- Khan, K.R.; Kumari, J.; Haider, S.M.W.; Fawwad, S.B.U.; Kumar, N.; Nizar, R.; Kumar, D.; Sangam; Hasan, M.; Mumtaz, H. The Prevalence and Etiology of Surgical Site Infections Following Gastrointestinal Tract Surgery: A Cross-Sectional Study from a Tertiary Care Hospital. Cureus 2022, 14, e27320. [Google Scholar] [CrossRef]
- Feldt, S.L.; Keskey, R.; Krishnan, P.; Hyman, N.H.; Shogan, B.D. Is Previous Postoperative Infection an Independent Risk Factor for Postoperative Infection after Second Unrelated Abdominal Operation? J. Am. Coll. Surg. 2022, 235, 285–292. [Google Scholar] [CrossRef]
- Song, F.; Glenny, A.M. Antimicrobial prophylaxis in colorectal surgery: A systematic review of randomized controlled trials. Br. J. Surg. 2003, 85, 1232–1241. [Google Scholar] [CrossRef]
- Nelson, R.L.; Gladman, E.; Barbateskovic, M. Antimicrobial prophylaxis for colorectal surgery. Cochrane Database Syst. Rev. 2014, 2015, 8. [Google Scholar] [CrossRef]
- Klinker, K.P.; Hidayat, L.K.; Deryke, C.A.; Depestel, D.D.; Motyl, M.; Bauer, K.A. Antimicrobial stewardship and antibiograms: Importance of moving beyond traditional antibiograms. Ther. Adv. Infect. Dis. 2021, 8, 204993612110113. [Google Scholar] [CrossRef]
- Hawn, M.T.; Vick, C.C.; Richman, J.; Holman, W.; Deierhoi, R.J.; Graham, L.A.; Henderson, W.G.; Itani, K.M. Surgical site infection prevention: Time to move beyond the surgical care improvement program. Ann. Surg. 2011, 254, 494–499, discussion 499–501. [Google Scholar] [CrossRef] [PubMed]
- MacFadden, D.R.; Ridgway, J.P.; Robicsek, A.; Elligsen, M.; Daneman, N. Predictive utility of prior positive urine cultures. Clin. Infect. Dis. 2014, 59, 1265–1271. [Google Scholar] [CrossRef] [PubMed]
- Macfadden, D.R.; Coburn, B.; Shah, N.; Robicsek, A.; Savage, R.; Elligsen, M.; Daneman, N. Decision-support models for empiric antibiotic selection in Gram-negative bloodstream infections. Clin. Microbiol. Infect. 2019, 25, e101–e108. [Google Scholar] [CrossRef] [PubMed]
- Linsenmeyer, K.; Strymish, J.; Gupta, K. Two Simple Rules for Improving the Accuracy of Empiric Treatment of Multidrug-Resistant Urinary Tract Infections. Antimicrob. Agents Chemother. 2015, 59, 7593–7596. [Google Scholar] [CrossRef] [PubMed]
- Khasawneh, R.A.; Almomani, B.A.; Al-Shatnawi, S.F.; Al-Natour, L. Clinical utility of prior positive cultures to optimize empiric antibiotic therapy selection: A cross-sectional analysis. New Microbes New Infect. 2023, 55, 101182. [Google Scholar] [CrossRef]
- Frakking, F.N.J.; Rottier, W.C.; Dorigo-Zetsma, J.W.; Van Hattem, J.M.; Van Hees, B.C.; Kluytmans, J.A.J.W.; Lutgens, S.P.M.; Prins, J.M.; Thijsen, S.F.T.; Verbon, A.; et al. Appropriateness of Empirical Treatment and Outcome in Bacteremia Caused by Extended-Spectrum-β-Lactamase-Producing Bacteria. Antimicrob. Agents Chemother. 2013, 57, 3092–3099. [Google Scholar] [CrossRef] [PubMed]
- Ousley, J.; Baucom, R.B.; Stewart, M.K.; Phillips, S.E.; Holzman, M.D.; Ehrenfeld, J.M.; Sharp, K.W.; Nealon, W.H.; Poulose, B.K. Previous Methicillin-Resistant Staphylococcus aureus Infection Independent of Body Site Increases Odds of Surgical Site Infection after Ventral Hernia Repair. J. Am. Coll. Surg. 2015, 221, 470–477. [Google Scholar] [CrossRef]
- Pofahl, W.E.; Ramsey, K.M.; Nobles, D.L.; Cochran, M.K.; Goettler, C. Importance of methicillin-resistant Staphylococcus aureus eradication in carriers to prevent postoperative methicillin-resistant Staphylococcus aureus surgical site infection. Am. Surg. 2011, 77, 27–31. [Google Scholar] [CrossRef]
- Branch-Elliman, W.; Ripollone, J.E.; O’Brien, W.J.; Itani, K.M.F.; Schweizer, M.L.; Perencevich, E.; Strymish, J.; Gupta, K. Risk of surgical site infection, acute kidney injury, and Clostridium difficile infection following antibiotic prophylaxis with vancomycin plus a beta-lactam versus either drug alone: A national propensity-score-adjusted retrospective cohort study. PLoS Med. 2017, 14, e1002340. [Google Scholar] [CrossRef]
- Schweizer, M.; Perencevich, E.; McDanel, J.; Carson, J.; Formanek, M.; Hafner, J.; Braun, B.; Herwaldt, L. Effectiveness of a bundled intervention of decolonization and prophylaxis to decrease Gram positive surgical site infections after cardiac or orthopedic surgery: Systematic review and meta-analysis. BMJ 2013, 346, f2743. [Google Scholar] [CrossRef]
- Reineke, S.; Carrel, T.P.; Eigenmann, V.; Gahl, B.; Fuehrer, U.; Seidl, C.; Reineke, D.; Roost, E.; Bächli, M.; Marschall, J.; et al. Adding vancomycin to perioperative prophylaxis decreases deep sternal wound infections in high-risk cardiac surgery patients. Eur. J. Cardio-Thorac. Surg. 2018, 53, 428–434. [Google Scholar] [CrossRef] [PubMed]
- Smith, E.B.; Wynne, R.; Joshi, A.; Liu, H.; Good, R.P. Is it time to include vancomycin for routine perioperative antibiotic prophylaxis in total joint arthroplasty patients? J. Arthroplast. 2012, 27, 55–60. [Google Scholar] [CrossRef] [PubMed]
- Engelman, R.; Shahian, D.; Shemin, R.; Guy, T.S.; Bratzler, D.; Edwards, F.; Jacobs, M.; Fernando, H.; Bridges, C. The Society of Thoracic Surgeons Practice Guideline Series: Antibiotic Prophylaxis in Cardiac Surgery, Part II: Antibiotic Choice**For the full text of the STS Guideline on Antibiotic Prophylaxis in Cardiac Surgery, as well as other titles in the STS Prac. Ann. Thorac. Surg. 2007, 83, 1569–1576. [Google Scholar] [CrossRef] [PubMed]
- Bratzler, D.W.; Houck, P.M.; Surgical Infection Prevention Guideline Writers, W. Antimicrobial prophylaxis for surgery: An advisory statement from the National Surgical Infection Prevention Project. Am. J. Surg. 2005, 189, 395–404. [Google Scholar] [CrossRef]
- World Health Organization. WHO Guidelines Approved by the Guidelines Review Committee. Global Guidelines for the Prevention of Surgical Site Infection; WHO Document Production Services: Geneva, Switzerland, 2016; ISBN 978-92-4-154988-2. [Google Scholar]
- Pfeffer, I.; Zemel, M.; Kariv, Y.; Mishali, H.; Adler, A.; Braun, T.; Klein, A.; Matalon, M.K.; Klausner, J.; Carmeli, Y.; et al. Prevalence and risk factors for carriage of extended-spectrum beta-lactamase-producing Enterobacteriaceae among patients prior to bowel surgery. Diagn. Microbiol. Infect. Dis. 2016, 85, 377–380. [Google Scholar] [CrossRef] [PubMed]
- Dubinsky-Pertzov, B.; Temkin, E.; Harbarth, S.; Fankhauser-Rodriguez, C.; Carevic, B.; Radovanovic, I.; Ris, F.; Kariv, Y.; Buchs, N.C.; Schiffer, E.; et al. Carriage of Extended-spectrum Beta-lactamase–producing Enterobacteriaceae and the Risk of Surgical Site Infection After Colorectal Surgery: A Prospective Cohort Study. Clin. Infect. Dis. 2019, 68, 1699–1704. [Google Scholar] [CrossRef]
- Golzarri, M.F.; Silva-Sanchez, J.; Cornejo-Juarez, P.; Barrios-Camacho, H.; Chora-Hernandez, L.D.; Velazquez-Acosta, C.; Vilar-Compte, D. Colonization by fecal extended-spectrum beta-lactamase-producing Enterobacteriaceae and surgical site infections in patients with cancer undergoing gastrointestinal and gynecologic surgery. Am. J. Infect. Control 2019, 47, 916–921. [Google Scholar] [CrossRef] [PubMed]
- De Pastena, M.; Paiella, S.; Azzini, A.M.; Marchegiani, G.; Malleo, G.; Ciprani, D.; Mazzariol, A.; Secchettin, E.; Bonamini, D.; Gasparini, C.; et al. Preoperative surveillance rectal swab is associated with an increased risk of infectious complications in pancreaticoduodenectomy and directs antimicrobial prophylaxis: An antibiotic stewardship strategy? HPB 2018, 20, 555–562. [Google Scholar] [CrossRef]
- Roberts, M.J.; Williamson, D.A.; Hadway, P.; Doi, S.A.; Gardiner, R.A.; Paterson, D.L. Baseline prevalence of antimicrobial resistance and subsequent infection following prostate biopsy using empirical or altered prophylaxis: A bias-adjusted meta-analysis. Int. J. Antimicrob. Agents 2014, 43, 301–309. [Google Scholar] [CrossRef]
- Wolf, J.S., Jr.; Bennett, C.J.; Dmochowski, R.R.; Hollenbeck, B.K.; Pearle, M.S.; Schaeffer, A.J.; Urologic Surgery Antimicrobial Prophylaxis Best Practice Policy Panel. Best practice policy statement on urologic surgery antimicrobial prophylaxis. J. Urol. 2008, 179, 1379–1390. [Google Scholar] [CrossRef] [PubMed]
- Nunez-Pereira, S.; Pellise, F.; Rodriguez-Pardo, D.; Pigrau, C.; Sanchez, J.M.; Bago, J.; Villanueva, C.; Caceres, E. Individualized antibiotic prophylaxis reduces surgical site infections by gram-negative bacteria in instrumented spinal surgery. Eur. Spine J. 2011, 20 (Suppl. S3), 397–402. [Google Scholar] [CrossRef]
- Nutman, A.; Temkin, E.; Harbarth, S.; Carevic, B.; Ris, F.; Fankhauser-Rodriguez, C.; Radovanovic, I.; Dubinsky-Pertzov, B.; Cohen-Percia, S.; Kariv, Y.; et al. Personalized Ertapenem Prophylaxis for Carriers of Extended-spectrum β-Lactamase–producing Enterobacteriaceae Undergoing Colorectal Surgery. Clin. Infect. Dis. 2020, 70, 1891–1897. [Google Scholar] [CrossRef] [PubMed]
- Banach, D.B.; Peaper, D.R.; Fortune, B.E.; Emre, S.; Dembry, L.M. The clinical and molecular epidemiology of pre-transplant vancomycin-resistant enterococci colonization among liver transplant recipients. Clin. Transpl. 2016, 30, 306–311. [Google Scholar] [CrossRef]
- McNeil, S.A.; Malani, P.N.; Chenoweth, C.E.; Fontana, R.J.; Magee, J.C.; Punch, J.D.; Mackin, M.L.; Kauffman, C.A. Vancomycin-resistant enterococcal colonization and infection in liver transplant candidates and recipients: A prospective surveillance study. Clin. Infect. Dis. 2006, 42, 195–203. [Google Scholar] [CrossRef] [PubMed]
- Bert, F.; Larroque, B.; Paugam-Burtz, C.; Dondero, F.; Durand, F.; Marcon, E.; Belghiti, J.; Moreau, R.; Nicolas-Chanoine, M.H. Pretransplant fecal carriage of extended-spectrum beta-lactamase-producing Enterobacteriaceae and infection after liver transplant, France. Emerg. Infect. Dis. 2012, 18, 908–916. [Google Scholar] [CrossRef] [PubMed]
- Logre, E.; Bert, F.; Khoy-Ear, L.; Janny, S.; Giabicani, M.; Grigoresco, B.; Toussaint, A.; Dondero, F.; Dokmak, S.; Roux, O.; et al. Risk Factors and Impact of Perioperative Prophylaxis on the Risk of Extended-spectrum beta-Lactamase-producing Enterobacteriaceae-related Infection Among Carriers Following Liver Transplantation. Transplantation 2021, 105, 338–345. [Google Scholar] [CrossRef]
- Bratzler, D.W.; Dellinger, E.P.; Olsen, K.M.; Perl, T.M.; Auwaerter, P.G.; Bolon, M.K.; Fish, D.N.; Napolitano, L.M.; Sawyer, R.G.; Slain, D.; et al. Clinical practice guidelines for antimicrobial prophylaxis in surgery. Am. J. Health Syst. Pharm. 2013, 70, 195–283. [Google Scholar] [CrossRef]
- De Pastena, M.; Paiella, S.; Marchegiani, G.; Malleo, G.; Ciprani, D.; Gasparini, C.; Secchettin, E.; Salvia, R.; Bassi, C. Postoperative infections represent a major determinant of outcome after pancreaticoduodenectomy: Results from a high-volume center. Surgery 2017, 162, 792–801. [Google Scholar] [CrossRef]
- Rosenberger, L.H.; Politano, A.D.; Sawyer, R.G. The Surgical Care Improvement Project and Prevention of Post-Operative Infection, Including Surgical Site Infection. Surg. Infect. 2011, 12, 163–168. [Google Scholar] [CrossRef]
- Donald, G.W.; Sunjaya, D.; Lu, X.; Chen, F.; Clerkin, B.; Eibl, G.; Li, G.; Tomlinson, J.S.; Donahue, T.R.; Reber, H.A.; et al. Perioperative antibiotics for surgical site infection in pancreaticoduodenectomy: Does the SCIP-approved regimen provide adequate coverage? Surgery 2013, 154, 190–196. [Google Scholar] [CrossRef]
- Sano, S.; Sugiura, T.; Kawamura, I.; Okamura, Y.; Ito, T.; Yamamoto, Y.; Ashida, R.; Ohgi, K.; Kurai, H.; Uesaka, K. Third-generation cephalosporin for antimicrobial prophylaxis in pancreatoduodenectomy in patients with internal preoperative biliary drainage. Surgery 2019, 165, 559–564. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, K.; Nakamura, T.; Imai, S.; Kushiya, H.; Miyasaka, D.; Nakanishi, Y.; Asano, T.; Noji, T.; Tsuchikawa, T.; Okamura, K.; et al. The use of broad-spectrum antibiotics reduces the incidence of surgical site infection after pancreatoduodenectomy. Surg. Today 2018, 48, 825–834. [Google Scholar] [CrossRef] [PubMed]
- Kondo, K.; Chijiiwa, K.; Ohuchida, J.; Kai, M.; Fujii, Y.; Otani, K.; Hiyoshi, M.; Nagano, M.; Imamura, N. Selection of prophylactic antibiotics according to the microorganisms isolated from surgical site infections (SSIs) in a previous series of surgeries reduces SSI incidence after pancreaticoduodenectomy. J. Hepato-Biliary-Pancreat. Sci. 2013, 20, 286–293. [Google Scholar] [CrossRef]
- De Pastena, M.; Paiella, S.; Azzini, A.M.; Zaffagnini, A.; Scarlini, L.; Montagnini, G.; Maruccio, M.; Filippini, C.; Romeo, F.; Mazzariol, A.; et al. Antibiotic Prophylaxis with Piperacillin-Tazobactam Reduces Post-Operative Infectious Complication after Pancreatic Surgery: An Interventional, Non-Randomized Study. Surg. Infect. 2021, 22, 536–542. [Google Scholar] [CrossRef] [PubMed]
- Cengiz, T.B.; Jarrar, A.; Power, C.; Joyce, D.; Anzlovar, N.; Morris-Stiff, G. Antimicrobial Stewardship Reduces Surgical Site Infection Rate, as well as Number and Severity of Pancreatic Fistulae after Pancreatoduodenectomy. Surg. Infect. 2020, 21, 212–217. [Google Scholar] [CrossRef]
- Pham, H.; Chen, A.; Nahm, C.B.; Lam, V.; Pang, T.; Richardson, A.J. The Role of Targeted Versus Standard Antibiotic Prophylaxis in Pancreatoduodenectomy in Reducing Postoperative Infectious Complications: A Systematic Review and Meta-analysis. Ann. Surg. 2022, 275, 315–323. [Google Scholar] [CrossRef]
- Stack, C.M.; Gold, H.S.; Wright, S.B.; Baldini, L.M.; Snyder, G.M. Perioperative antimicrobial prophylaxis and prevention of hepatobiliary surgical site infections. Infect. Control Hosp. Epidemiol. 2018, 39, 1037–1041. [Google Scholar] [CrossRef]
- Fong, Z.V.; McMillan, M.T.; Marchegiani, G.; Sahora, K.; Malleo, G.; De Pastena, M.; Loehrer, A.P.; Lee, G.C.; Ferrone, C.R.; Chang, D.C.; et al. Discordance Between Perioperative Antibiotic Prophylaxis and Wound Infection Cultures in Patients Undergoing Pancreaticoduodenectomy. JAMA Surg. 2016, 151, 432. [Google Scholar] [CrossRef]
- Leng, X.S.; Zhao, Y.J.; Qiu, H.Z.; Cao, Y.K.; Zhu, W.H.; Shen, J.F.; Paschke, A.; Dai, W.M.; Caldwell, N.; Wang, J. Ertapenem prophylaxis of surgical site infections in elective colorectal surgery in China: A multicentre, randomized, double-blind, active-controlled study. J. Antimicrob. Chemother. 2014, 69, 3379–3386. [Google Scholar] [CrossRef]
- Milsom, J.W.; Smith, D.L.; Corman, M.L.; Howerton, R.A.; Yellin, A.E.; Luke, D.R. Double-blind comparison of single-dose alatrofloxacin and cefotetan as prophylaxis of infection following elective colorectal surgery. Trovafloxacin Surgical Group. Am. J. Surg. 1998, 176, 46S–52S. [Google Scholar] [CrossRef]
- Park, J.W.; Lee, J.K.; Lee, K.T.; Lee, K.H.; Sung, Y.K.; Kang, C.I. How to interpret the bile culture results of patients with biliary tract infections. Clin. Res. Hepatol. Gastroenterol. 2014, 38, 300–309. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Ou, G.; Lian, G.; Luo, H.; Huang, K.; Huang, Y. Effect of Preoperative Biliary Drainage on Complications Following Pancreatoduodenectomy: A Meta-Analysis. Medicine 2015, 94, e1199. [Google Scholar] [CrossRef] [PubMed]
- Gong, L.; Huang, X.; Wang, L.; Xiang, C. The effect of preoperative biliary stents on outcomes after pancreaticoduodenectomy: A meta-analysis. Medicine 2020, 99, e22714. [Google Scholar] [CrossRef] [PubMed]
- Herzog, T.; Belyaev, O.; Hessam, S.; Suelberg, D.; Janot, M.; Schrader, H.; Schmidt, W.E.; Anders, A.; Uhl, W.; Mueller, C.A. Bacteribilia with resistant microorganisms after preoperative biliary drainage--the influence of bacteria on postoperative outcome. Scand. J. Gastroenterol. 2012, 47, 827–835. [Google Scholar] [CrossRef] [PubMed]
- Sudo, T.; Murakami, Y.; Uemura, K.; Hayashidani, Y.; Hashimoto, Y.; Ohge, H.; Sueda, T. Specific antibiotic prophylaxis based on bile cultures is required to prevent postoperative infectious complications in pancreatoduodenectomy patients who have undergone preoperative biliary drainage. World J. Surg. 2007, 31, 2230–2235. [Google Scholar] [CrossRef]
- Howard, T.J.; Yu, J.; Greene, R.B.; George, V.; Wairiuko, G.M.; Moore, S.A.; Madura, J.A. Influence of bactibilia after preoperative biliary stenting on postoperative infectious complications. J. Gastrointest. Surg. 2006, 10, 523–531. [Google Scholar] [CrossRef]
- Cortes, A.; Sauvanet, A.; Bert, F.; Janny, S.; Sockeel, P.; Kianmanesh, R.; Ponsot, P.; Ruszniewski, P.; Belghiti, J. Effect of bile contamination on immediate outcomes after pancreaticoduodenectomy for tumor. J. Am. Coll. Surg. 2006, 202, 93–99. [Google Scholar] [CrossRef]
- Sandini, M.; Honselmann, K.C.; Cereda, M.; Angrisani, M.; Gavazzi, F.; Wellner, U.; Bolm, L.; Keck, T.; Zerbi, A.; Gianotti, L. The Relative Role of Bile Bacterial Isolation on Outcome in Stent-Bearing Patients Undergoing Pancreatoduodenectomy. J. Gastrointest. Surg. 2020, 24, 2269–2276. [Google Scholar] [CrossRef]
- Maxwell, D.W.; Jajja, M.R.; Ferez-Pinzon, A.; Pouch, S.M.; Cardona, K.; Kooby, D.A.; Maithel, S.K.; Russell, M.C.; Sarmiento, J.M. Bile cultures are poor predictors of antibiotic resistance in postoperative infections following pancreaticoduodenectomy. HPB 2020, 22, 969–978. [Google Scholar] [CrossRef]
- Groen, J.V.; Droogh, D.H.M.; De Boer, M.G.J.; Van Asten, S.A.V.; Van Prehn, J.; Inderson, A.; Vahrmeijer, A.L.; Bonsing, B.A.; Mieog, J.S.D. Clinical implications of bile cultures obtained during pancreatoduodenectomy: A cohort study and meta-analysis. HPB 2021, 23, 1123–1133. [Google Scholar] [CrossRef]
- Sudo, T.; Murakami, Y.; Uemura, K.; Hashimoto, Y.; Kondo, N.; Nakagawa, N.; Ohge, H.; Sueda, T. Perioperative antibiotics covering bile contamination prevent abdominal infectious complications after pancreatoduodenectomy in patients with preoperative biliary drainage. World J. Surg. 2014, 38, 2952–2959. [Google Scholar] [CrossRef] [PubMed]
- Povoski, S.P.; Karpeh, M.S., Jr.; Conlon, K.C.; Blumgart, L.H.; Brennan, M.F. Preoperative biliary drainage: Impact on intraoperative bile cultures and infectious morbidity and mortality after pancreaticoduodenectomy. J. Gastrointest. Surg. 1999, 3, 496–505. [Google Scholar] [CrossRef] [PubMed]
- Povoski, S.P.; Karpeh, M.S., Jr.; Conlon, K.C.; Blumgart, L.H.; Brennan, M.F. Association of preoperative biliary drainage with postoperative outcome following pancreaticoduodenectomy. Ann. Surg. 1999, 230, 131–142. [Google Scholar] [CrossRef]
- Sugawara, G.; Ebata, T.; Yokoyama, Y.; Igami, T.; Takahashi, Y.; Takara, D.; Nagino, M. The effect of preoperative biliary drainage on infectious complications after hepatobiliary resection with cholangiojejunostomy. Surgery 2013, 153, 200–210. [Google Scholar] [CrossRef] [PubMed]
- Itoyama, R.; Okabe, H.; Yamashita, Y.I.; Kitamura, F.; Uemura, N.; Nakao, Y.; Yusa, T.; Imai, K.; Hayashi, H.; Baba, H. Intraoperative bile culture helps choosing antibiotics in pancreaticoduodenectomy: Mechanistic profiling study of complex rink between bacterobilia and postoperative complications. J. Hepatobiliary Pancreat. Sci. 2021, 28, 1107–1114. [Google Scholar] [CrossRef]
- Limongelli, P.; Pai, M.; Bansi, D.; Thiallinagram, A.; Tait, P.; Jackson, J.; Habib, N.A.; Williamson, R.C.; Jiao, L.R. Correlation between preoperative biliary drainage, bile duct contamination, and postoperative outcomes for pancreatic surgery. Surgery 2007, 142, 313–318. [Google Scholar] [CrossRef]
- Okamura, K.; Tanaka, K.; Miura, T.; Nakanishi, Y.; Noji, T.; Nakamura, T.; Tsuchikawa, T.; Okamura, K.; Shichinohe, T.; Hirano, S. Randomized controlled trial of perioperative antimicrobial therapy based on the results of preoperative bile cultures in patients undergoing biliary reconstruction. J. Hepatobiliary Pancreat. Sci. 2017, 24, 382–393. [Google Scholar] [CrossRef]
- Makino, K.; Ishii, T.; Yoh, T.; Ogiso, S.; Fukumitsu, K.; Seo, S.; Taura, K.; Hatano, E. The usefulness of preoperative bile cultures for hepatectomy with biliary reconstruction. Heliyon 2022, 8, e12226. [Google Scholar] [CrossRef]
- Lederer, A.K.; Chikhladze, S.; Kohnert, E.; Huber, R.; Muller, A. Current Insights: The Impact of Gut Microbiota on Postoperative Complications in Visceral Surgery-A Narrative Review. Diagnostics 2021, 11, 2099. [Google Scholar] [CrossRef]
- Teillant, A.; Gandra, S.; Barter, D.; Morgan, D.J.; Laxminarayan, R. Potential burden of antibiotic resistance on surgery and cancer chemotherapy antibiotic prophylaxis in the USA: A literature review and modelling study. Lancet Infect. Dis. 2015, 15, 1429–1437. [Google Scholar] [CrossRef]
- Winters, B.D.; Eberlein, M.; Leung, J.; Needham, D.M.; Pronovost, P.J.; Sevransky, J.E. Long-term mortality and quality of life in sepsis: A systematic review. Crit. Care Med. 2010, 38, 1276–1283. [Google Scholar] [CrossRef] [PubMed]
- Quartin, A.A.; Schein, R.M.; Kett, D.H.; Peduzzi, P.N. Magnitude and duration of the effect of sepsis on survival. Department of Veterans Affairs Systemic Sepsis Cooperative Studies Group. JAMA 1997, 277, 1058–1063. [Google Scholar] [CrossRef]
- Wang, T.; Derhovanessian, A.; De Cruz, S.; Belperio, J.A.; Deng, J.C.; Hoo, G.S. Subsequent Infections in Survivors of Sepsis. J. Intensive Care Med. 2014, 29, 87–95. [Google Scholar] [CrossRef] [PubMed]
- Palm, N.W.; De Zoete, M.R.; Flavell, R.A. Immune–microbiota interactions in health and disease. Clin. Immunol. 2015, 159, 122–127. [Google Scholar] [CrossRef] [PubMed]
- Hayakawa, M.; Asahara, T.; Henzan, N.; Murakami, H.; Yamamoto, H.; Mukai, N.; Minami, Y.; Sugano, M.; Kubota, N.; Uegaki, S.; et al. Dramatic Changes of the Gut Flora Immediately after Severe and Sudden Insults. Dig. Dis. Sci. 2011, 56, 2361–2365. [Google Scholar] [CrossRef]
- Krezalek, M.A.; Defazio, J.; Zaborina, O.; Zaborin, A.; Alverdy, J.C. The Shift of an Intestinal “Microbiome” to a “Pathobiome” Governs the Course and Outcome of Sepsis Following Surgical Injury. Shock 2016, 45, 475–482. [Google Scholar] [CrossRef]
- Tsujimoto, H.; Ueno, H.; Hashiguchi, Y.; Ono, S.; Ichikura, T.; Hase, K. Postoperative infections are associated with adverse outcome after resection with curative intent for colorectal cancer. Oncol. Lett. 2010, 1, 119–125. [Google Scholar] [CrossRef]
- Nespoli, A.; Gianotti, L.; Totis, M.; Bovo, G.; Nespoli, L.; Chiodini, P.; Brivio, F. Correlation between postoperative infections and long-term survival after colorectal resection for cancer. Tumori 2004, 90, 485–490. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vierra, M.; Rouhani Ravari, M.; Soleymani Sardoo, F.; Shogan, B.D. Tailored Pre-Operative Antibiotic Prophylaxis to Prevent Post-Operative Surgical Site Infections in General Surgery. Antibiotics 2024, 13, 99. https://doi.org/10.3390/antibiotics13010099
Vierra M, Rouhani Ravari M, Soleymani Sardoo F, Shogan BD. Tailored Pre-Operative Antibiotic Prophylaxis to Prevent Post-Operative Surgical Site Infections in General Surgery. Antibiotics. 2024; 13(1):99. https://doi.org/10.3390/antibiotics13010099
Chicago/Turabian StyleVierra, Mason, Mohsen Rouhani Ravari, Fatemeh Soleymani Sardoo, and Benjamin D. Shogan. 2024. "Tailored Pre-Operative Antibiotic Prophylaxis to Prevent Post-Operative Surgical Site Infections in General Surgery" Antibiotics 13, no. 1: 99. https://doi.org/10.3390/antibiotics13010099
APA StyleVierra, M., Rouhani Ravari, M., Soleymani Sardoo, F., & Shogan, B. D. (2024). Tailored Pre-Operative Antibiotic Prophylaxis to Prevent Post-Operative Surgical Site Infections in General Surgery. Antibiotics, 13(1), 99. https://doi.org/10.3390/antibiotics13010099